C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom et al., Martian regolith simulant JSC Mars-1 [abstract 1690, 29 th Lunar and Planetary Science Conference, Lunar and Planetary Institute, 1998.

K. Altwegg, H. Balsiger, A. Bar-nun, J. Berthelier, A. Bieler et al., Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P, ChuryumovGerasimenko. Sci Adv, vol.2, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01351340

M. Barbatti and S. Ullrich, Ionization potentials of adenine along the internal conversion pathways, Phys Chem Chem Phys, vol.13, pp.15492-15500, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01415204

B. Barbier, O. Henin, F. Boillot, A. Chabin, D. Chaput et al., Exposure of amino acids and derivatives in the Earth orbit, Planet Space Sci, vol.50, pp.353-359, 2002.

S. A. Benner, K. G. Devine, L. N. Matveeva, and D. H. Powell, The missing organic molecules on Mars, Proc Natl Acad Sci, vol.97, pp.2425-2430, 2000.

K. Biemann, The implications and limitations of the findings of the Viking organic analysis experiment, J Mol Evol, vol.14, pp.65-70, 1979.

O. Botta, Organic chemistry in meteorites, comets, and the interstellar medium, Astrochemistry: Recent Successes and Current Challenges, Proceedings of the 231 st Symposium of the International Astronomical Union, pp.479-488, 2005.

O. Botta and J. L. Bada, Extraterrestrial organic compounds in meteorites, Surveys in Geophysics, vol.23, pp.411-467, 2002.

K. L. Brinton, C. Engrand, D. P. Glavin, J. L. Bada, and M. Maurette, A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites, Orig Life Evol Biosph, vol.28, pp.413-424, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-02114748

M. P. Callahan, K. E. Smith, H. J. Cleaves, J. Ruzicka, J. C. Stern et al., Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases, Proc Natl Acad Sci, vol.108, pp.13995-13998, 2011.

S. F. Chun, K. D. Pang, and J. A. Cutts, Photocatalytic oxidation of organic compounds on Mars, Nature, vol.274, pp.875-876, 1978.

S. J. Clemett, X. D. Chillier, S. Gillette, R. N. Zare, M. Maurette et al., Observation of indigenous polycyclic aromatic hydrocarbons in 'giant' carbonaceous Antarctic micrometeorites, Orig Life Evol Biosph, vol.28, pp.425-448, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00003160

A. L. Cochran, A. Levasseur-regourd, M. Cordiner, E. Hadamcik, J. Lasue et al., The composition of comets, Space Sci Rev, vol.197, pp.9-46, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01180547

C. S. Cockell and J. A. Raven, Zones of photosynthetic potential on Mars and the early Earth, Icarus, vol.169, pp.300-310, 2004.

C. S. Cockell, D. C. Catling, W. L. Davis, K. Snook, R. L. Kepner et al., The ultraviolet environment of Mars: biological implications past, present, and future, Icarus, vol.146, pp.343-359, 2000.

H. Cottin, P. Coll, D. Coscia, N. Fray, Y. Y. Guan et al., Heterogeneous solid/gas chemistry of organic compounds related to comets, meteorites, Titan, and Mars: laboratory and in lower Earth orbit experiments, Adv Space Res, vol.42, pp.2019-2035, 2008.

H. Cottin, A. Noblet, Y. Y. Guan, O. Poch, K. Saiagh et al., The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low Earth orbit, Astrobiology, vol.12, pp.412-425, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00710533

H. Cottin, J. M. Kotler, D. Billi, C. Cockell, R. Demets et al., Space as a tool for astrobiology: review and recommendations for experimentations in Earth orbit and beyond, vol.209, pp.83-181, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01544000

L. R. Dartnell, L. Desorgher, J. M. Ward, and A. J. Coates, Modelling the surface and subsurface martian radiation environment: implications for astrobiology, Geophys Res Lett, vol.34, 2007.

E. Dartois, C. Engrand, R. Brunetto, J. Duprat, T. Pino et al., UltraCarbonaceous Antarctic micrometeorites, Icarus, vol.224, pp.243-252, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01763416

R. Demets, W. Schulte, and P. Baglioni, The past, present and future of Biopan, Adv Space Res, vol.36, pp.311-316, 2005.

R. Santos, M. Patel, J. Cuadros, and Z. Martins, Influence of mineralogy on the preservation of amino acids under simulated Mars conditions, Icarus, vol.277, pp.342-353, 2016.

B. Ehresmann, C. J. Zeitlin, D. M. Hassler, D. Matthiä, J. Guo et al., The charged particle radiation environment on Mars measured by MSL/ RAD from November 15, Life Sci Space Res, vol.14, pp.3-11, 2015.

J. L. Eigenbrode, R. E. Summons, A. Steele, C. Freissinet, M. Millan et al., Organic matter preserved in 3-billion-year-old mudstones at Gale Crater, Mars. Science, vol.360, pp.1096-1101, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01812446

J. E. Elsila, D. P. Glavin, and J. P. Dworkin, Cometary glycine detected in samples returned by Stardust, Meteorit Planet Sci, vol.44, pp.1323-1330, 2009.

G. J. Flynn, The delivery of organic matter from asteroids and comets to the early surface of Mars, Earth Moon Planets, vol.72, pp.469-474, 1996.

C. Freissinet, D. P. Glavin, P. R. Mahaffy, K. E. Miller, J. L. Eigenbrode et al., Organic molecules in the Sheepbed Mudstone, vol.120, pp.495-514, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01218165

D. P. Glavin, G. Matrajt, and J. L. Bada, Re-examination of amino acids in Antarctic micrometeorites, Adv Space Res, vol.33, pp.106-113, 2004.

D. P. Glavin, C. Freissinet, K. E. Miller, J. L. Eigenbrode, A. E. Brunner et al., Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J Geophys Res Planets, vol.118, pp.1955-1973, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00868826

J. Gómez-elvira, C. Armiens, I. Carrasco, M. Genzer, F. Gó-mez et al., Curiosity's rover environmental monitoring station: overview of the first 100 sols, J Geophys Res Planets, vol.119, pp.1680-1688, 2014.

N. B. Gontareva, Photochemical stability of biomolecules in the experiments modelling martian surface conditions, Int J Astrobiol, vol.4, pp.93-96, 2005.

Y. Y. Guan, N. Fray, P. Coll, F. D. Macari, D. Chaput et al., UVolution: compared photochemistry of prebiotic organic compounds in low Earth orbit and in the laboratory, Planet Space Sci, vol.58, pp.1327-1346, 2010.

M. Guzman, C. P. Mckay, R. C. Quinn, C. Szopa, A. F. Davila et al., Identification of chlorobenzene in the Viking gas chromatographmass spectrometer data sets: reanalysis of Viking Mission data consistent with aromatic organic compounds on Mars, J Geophys Res Planets, vol.123, pp.1674-1683, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01820363

R. Hayatsu, M. H. Studier, L. P. Moore, A. , and E. , Purines and triazines in the Murchison meteorite, Geochim Cosmochim Acta, vol.39, pp.471-488, 1975.

M. H. Hecht, S. P. Kounaves, R. C. Quinn, S. J. West, S. M. Young et al., Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site, Science, vol.325, pp.64-67, 2009.

W. R. Kuhn and S. K. Atreya, Solar radiation incident on the martian surface, J Mol Evol, vol.14, pp.57-64, 1979.

J. Lasne, A. Noblet, C. Szopa, R. Navarro-gonzález, M. Cabane et al., Oxidants at the surface of Mars: a review in light of recent exploration results, Astrobiology, vol.16, pp.977-996, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01423933

B. Laurent, C. R. Cousins, M. F. Pereira, and Z. Martins, Effects of UV-organic interaction and martian conditions on the survivability of organics, Icarus, vol.323, pp.33-39, 2019.

Z. Martins, Organic molecules in meteorites and their astrobiological significance, Handbook of Astrobiology, pp.177-194, 2019.

Z. Martins and M. A. Sephton, Extraterrestrial amino acids, Amino Acids, Peptides and Proteins in Organic Chemistry, pp.3-42, 2009.

Z. Martins, C. M. Alexander, G. E. Orzechowska, M. L. Fogel, and P. Ehrenfreund, Indigenous amino acids in primitive CR meteorites, Meteorit Planet Sci, vol.42, pp.2125-2136, 2007.

Z. Martins, P. Modica, B. Zanda, and L. L. Hendecourt, The amino acid and hydrocarbon contents of the Paris meteorite: insights into the most primitive CM chondrite, Meteorit Planet Sci, vol.50, pp.926-943, 2015.

M. J. Mumma and S. B. Charnley, The chemical composition of comets-emerging taxonomies and natal heritage, Annu Rev Astron Astrophys, vol.49, pp.471-524, 2011.

H. Naraoka, A. Shimoyama, and K. Harada, Isotopic evidence from an Antarctic carbonaceous chondrite for two reaction pathways of extraterrestrial PAH formation, Earth Planet Sci Lett, vol.184, pp.1-7, 2000.

R. Navarro-gonzález, K. F. Navarro, J. De-la-rosa, E. Iñiguez, P. Molina et al., The limitations on organic detection in Mars-like soils by thermal volatilizationgas chromatography-MS and their implications for the Viking results, Proc Natl Acad Sci, vol.103, pp.16089-16094, 2006.

R. Navarro-gonzález, E. Vargas, J. De-la-rosa, A. C. Raga, and C. P. Mckay, Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J Geophys Res Planets, vol.115, 2010.

A. Noblet, F. Stalport, Y. Y. Guan, O. Poch, P. Coll et al., The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-Earth orbit, Astrobiology, vol.12, pp.436-444, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00710443

K. D. Pang, S. F. Chun, J. M. Ajello, Z. Nansheng, and L. Minji, Organic and inorganic interpretations of the martian ultraviolet infrared reflectance spectrum, Nature, vol.295, pp.43-46, 1982.

M. R. Patel, J. C. Zarnecki, and D. C. Catling, Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor, Planet Space Sci, vol.50, pp.915-927, 2002.

A. A. Pavlov, G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy, Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys Res Lett, vol.39, 2012.

S. Perun, A. L. Sobolewski, and W. Domcke, Photostability of 9H-adenine: mechanisms of the radiationless deactivation of the lowest excited singlet states, Chem Phys, vol.313, pp.107-112, 2005.

O. Poch, A. Noblet, F. Stalport, J. J. Correia, N. Grand et al., Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the ''Mars Organic Molecule Irradiation and Evolution'' (MOMIE) setup, Planet Space Sci, vol.85, pp.188-197, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00838344

O. Poch, S. Kaci, F. Stalport, C. Szopa, and P. Coll, Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions, Icarus, vol.242, pp.50-63, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01053858

O. Poch, M. Jaber, F. Stalport, S. Nowak, T. Georgelin et al., Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions, Astrobiology, vol.15, pp.221-237, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01136822

E. Rabbow, P. Rettberg, S. Barczyk, M. Bohmeier, A. Parpart et al., EXPOSE-E, an ESA astrobiology mission 1.5 years in space, Astrobiology, vol.12, pp.374-386, 2012.

E. Rabbow, P. Rettberg, A. Parpart, C. Panitz, W. Schulte et al., EXPOSE-R2: the astrobiological ESA mission on board of the International Space Station, Front Microbiol, vol.8, 2017.

R. Rieder, T. Economou, H. Wanke, A. Turkevich, J. Crisp et al., The chemical composition of martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode, Science, vol.278, pp.1771-1774, 1997.

D. Roy, K. Najafian, and P. Schleyer, Chemical evolution: the mechanism of the formation of adenine under prebiotic conditions, Proc Natl Acad Sci, vol.104, pp.17272-17277, 2007.

K. M. Sancier and H. Wise, Photoassisted oxidation of organic material catalyzed by sand, Atmospheric Environment, vol.15, pp.639-640, 1981.

P. Schmitt-kopplin, Z. Gabelica, R. G. Gougeon, A. Fekete, B. Kanawati et al., High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall, Proc Natl Acad Sci, vol.107, pp.2763-2768, 2010.

I. A. Shkrob, S. D. Chemerisov, and T. W. Marin, Photocatalytic decomposition of carboxylated molecules on light-exposed martian regolith and its relation to methane production on Mars, Astrobiology, vol.10, pp.425-436, 2010.

F. Stalport, P. Coll, C. Szopa, and F. Raulin, Search for organic molecules at the Mars surface: the ''Martian Organic Material Irradiation and Evolution'' (MOMIE) project, Adv Space Res, vol.42, pp.2014-2018, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00339782

F. Stalport, P. Coll, C. Szopa, H. Cottin, and F. Raulin, Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions, Astrobiology, vol.9, pp.543-549, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00410868

F. Stalport, Y. Y. Guan, P. Coll, C. Szopa, F. D. Macari et al., UVolution, a photochemistry experiment in low Earth orbit: investigation of the photostability of carboxylic acids exposed to Mars surface UV radiation conditions, Astrobiology, vol.10, pp.449-461, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00492228

A. Steele, F. M. Mccubbin, M. Fries, L. Kater, N. Z. Boctor et al., A reduced organic carbon component in martian basalts, Science, vol.337, pp.212-215, 2012.

C. R. Stoker and M. A. Bullock, Organic degradation under simulated martian conditions, J Geophys Res, vol.102, pp.10881-10888, 1997.

I. L. Kate, J. R. Garry, Z. Peeters, R. Quinn, B. Foing et al., Amino acid photostability on the martian surface, Meteorit Planet Sci, vol.40, pp.1185-1193, 2005.

I. L. Kate, J. R. Garry, Z. Peeters, B. Foing, and P. Ehrenfreund, The effects of martian near surface conditions on the photochemistry of amino acids, Planet Space Sci, vol.54, pp.296-302, 2006.

J. L. Vago, F. Westall, A. J. Coates, R. Jaumann, O. Korablev et al., Habitability on early Mars and the search for biosignatures with the ExoMars rover, vol.17, pp.471-510, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01575233

A. S. Yen, S. S. Kim, M. H. Hecht, M. S. Frant, M. et al., Evidence that the reactivity of the martian soil is due to superoxide ions, Science, vol.289, pp.1909-1912, 2000.

M. Zolotov and E. Shock, Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars, J Geophys Res, vol.104, pp.14033-14050, 1999.