, Climate Change 2013: The physical science basis, p.5

. F. Ipcc-wgi-ar5-;-t, D. Stocker, G. Qin, M. Plattner, S. K. Tignor et al., Assessment Report, 2013.

V. Barros, K. Mach, and M. Mastrandrea, Climate Change 2014: Impacts, adaptation, and vulnerability, 5th Assessment Report, IPCC WGII AR5, Technical Summary, Coordinating Lead Authors: C. Field, 2014.

, Working Groups I, II and III, Core Writing Team, Synthesis Report" in 5th Assessment Report, p.151, 2014.

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli et al., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc, vol.137, pp.553-597, 2011.

N. A. Crook, Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields, Mon. Weather Rev, vol.124, pp.1767-1785, 1996.

S. Dierer, M. Arpagaus, A. Seifert, E. Avgoustoglou, R. Dumitrache et al., Deficiencies in quantitative precipitation forecasts: sensitivity studies using the COSMO model, Meteorol. Z, vol.18, pp.631-645, 2009.

L. Bengtsson, K. I. Hodges, and S. Hagemann, Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations, Tellus A, vol.56, pp.456-471, 2004.

K. Warrach-sagi, T. Schwitalla, V. Wulfmeyer, and H. Bauer, Evaluation of a climate simulation based on the WRF-NOAH model system: precipitation in Germany, Clim. Dynam, vol.41, pp.755-774, 2013.

S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué et al.,

, Proc. of SPIE, vol.11180, pp.111806-111811

, Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev, vol.7, pp.1297-1333, 2014.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu et al., A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles, Rev. Geophys, vol.53, pp.819-895, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02092407

L. J. Bennett, A. M. Blyth, R. R. Burton, A. M. Gadian, T. M. Weckwerth et al., Initiation of convection over the Black Forest mountains during COPS IOP15a, Q. J. R. Meteorol. Soc, vol.137, pp.176-189, 2011.

, Expert Team, Commission on Basic Systems, Working Group on Satellites, Third session, World Meteorological Organisation, issue.1, p.73, 1998.

. Ceos and . Wmo-on-line-database, World Meteorological Organization, 2003.

, GCOS 2016 Implementation Plan, WMO GCOS-200, 2016.

P. D. Girolamo, A. Behrendt, and V. Wulfmeyer, Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman Lidar and of relative humidity in combination with differential absorption Lidar: performance simulations, Appl. Opt, vol.45, pp.2474-2494, 2006.

P. D. Girolamo, A. Behrendt, and V. Wulfmeyer, Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: Performance simulations, Opt. Express, vol.26, issue.7, pp.8165-8161, 2018.

N. D. Whiteman, S. H. Melfi, and R. A. Ferrare, Raman lidar system for measurement of water vapor and aerosols in the Earth's atmosphere, Appl. Opt, vol.31, pp.3068-3082, 1992.

A. Behrendt and J. Reichardt, Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator, Appl. Opt, vol.39, pp.1372-1378, 2000.

I. Mattis, A. Ansmann, D. Althausen, V. Jaenisch, U. Wandinger et al., Relative-humidity profiling in the troposphere with a Raman lidar, Appl. Opt, vol.41, pp.6451-6462, 2002.

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient, Appl. Opt, vol.41, pp.7657-7666, 2002.

A. Behrendt, T. Nakamura, and T. Tsuda, Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere, Appl. Opt, vol.43, pp.2930-2939, 2004.

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. , Profiles of second to third order moments of turbulent temperature fluctuations in the convective boundary layer: First measurements with rotational Raman lidar, Atmos. Chem. Phys, vol.15, pp.5485-5500, 2015.

P. D. Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, Rotational Raman Lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett, vol.31, p.1106, 2004.

P. D. Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer et al., Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions, Remote Sens. Environ, vol.112, pp.1552-1568, 2008.

P. D. Girolamo, D. Summa, and R. Ferretti, Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event, J. Atmos. Ocean. Tech, vol.26, pp.1742-1762, 2009.

M. Radlach, A. Behrendt, and V. Wulfmeyer, Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields, Atmos. Chem. Phys, vol.8, pp.159-169, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00296413

D. D. Turner and J. E. Goldsmith, Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program's 1996 and 1997 water vapor intensive observation periods, J. Atmos. Oceanic Technol, vol.16, pp.1062-1076, 1999.

, Proc. of SPIE, vol.11180, pp.111806-111812

J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber et al., German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements, Appl. Opt, vol.51, pp.8111-8131, 2012.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori et al., Raman Lidar for Meteorological Observations, RALMO -Part 1: Instrument description, Atmos. Meas. Tech, vol.6, pp.1329-1346, 2013.

E. Hammann and A. Behrendt, Parametrization of optimum filter passbands for rotational Raman temperature measurements, Opt. Express, vol.23, pp.30767-30782, 2015.

D. N. Whiteman, R. Kurt, and R. Scott, Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar, J. Atmos. Ocean. Technol, vol.27, issue.11, pp.1781-1801, 2010.

B. Liu, Z. Wang, Y. Cai, P. Wechsler, W. Kuestner et al., Compact airborne Raman lidar for profiling aerosol, water vapor and clouds, Opt. Express, vol.22, pp.20613-20621, 2014.

W. Decheng, Z. Wang, P. Wechsler, N. Mahon, M. Deng et al., Airborne compact rotational Raman lidar for temperature measurement, Opt. Express, vol.24, pp.1210-1223, 2016.

É. Gérard, D. G. Tan, L. Garand, V. Wulfmeyer, G. Ehret et al., Major advances foreseen in humidity profiling from the Water Vapour Lidar Experiment in Space (WALES), Bull. Am. Meteorol. Soc, vol.85, issue.2, pp.237-252, 2004.

V. Wulfmeyer, H. Bauer, P. D. Girolamo, and C. Serio, Comparison of active and passive water vapour remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption Lidar, Remote Sens. Environ, vol.95, issue.2, pp.211-230, 2005.

C. Serio, G. Masiello, F. Esposito, P. D. Girolamo, T. D. Iorio et al., Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm -1, Opt. Express, vol.16, issue.20, pp.15816-15833, 2008.

D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere, Appl. Opt, vol.31, pp.3068-3082, 1992.

, Proc. of SPIE, vol.11180, pp.111806-111813