J. Veizer, Y. Godderis, and L. M. François, Evidence for decoupling of atmospheric CO 2 and global climate during the Phanerozoic eon, Nature, vol.408, pp.698-701, 2000.

J. B. Jaffrés, G. A. Shields, and K. Wallmann, The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years, Earth Sci. Rev, vol.83, pp.83-122, 2007.

J. F. Kasting and S. Ono, Palaeoclimates: the first two billion years, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.361, pp.917-929, 2006.

C. Lécuyer and P. Allemand, Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the ? 18 O of marine sediments, Geochim. Cosmochim. Acta, vol.63, pp.351-361, 1999.

J. Veizer and A. Prokoph, Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth Sci. Rev, vol.146, pp.92-104, 2015.

R. Tartèse, M. Chaussidon, A. Gurenko, F. Delarue, and F. Robert, Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants, Geochem. Perspect. Lett, vol.3, pp.55-65, 2017.

F. Robert and M. Chaussidon, A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts, Nature, vol.443, pp.969-972, 2006.

K. Muehlenbachs and R. N. Clayton, Oxygen isotope composition of the oceanic crust and its bearing on seawater, J. Geophys. Res, vol.81, pp.4365-4369, 1976.

R. T. Gregory and H. P. Taylor, An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for ? 18 O buffering of the oceans by deep (5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res. Solid Earth, vol.86, pp.2737-2755, 1981.

E. C. Pope, D. K. Bird, and M. T. Rosing, Isotope composition and volume of Earth's early oceans, Proc. Natl Acad. Sci. USA, vol.109, pp.4371-4376, 2012.

M. Leblanc, Ophiolites Précambriennes et Gites Arséniés De Cobalt, Bou Azzer -Maroc, 1975.

G. J. Walsh, Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer-El Graara inliers, Precambrian Res, vol.216, pp.23-62, 2012.

J. L. Bodinier, C. Dupuy, and J. Dostal, Geochemistry of Precambrian ophiolites from Bou Azzer, vol.87, pp.43-50, 1984.

D. D. Naidoo, S. H. Bloomer, A. Saquaque, and K. Hefferan, Geochemistry and significance of metavolcanic rocks from the Bou Azzer-El Graara ophiolite (Morocco), Precambrian Res, vol.53, pp.79-97, 1991.

F. Hodel, Neoproterozoic Serpentinites: A Window on the Oceanic Lithosphere Associated With the Rodinia Break-Up, 2017.

A. Triantafyllou, Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex, Precambrian Res, vol.304, pp.39-63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737911

H. A. Gahlan, Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, J. African Earth Sci, vol.46, pp.318-330, 2006.

F. Hodel, Unusual massive magnetite veins and highly altered Cr-spinels as relics of a Cl-rich acidic hydrothermal event in Neoproterozoic serpentinites (Bou Azzer ophiolite, Precambrian Res, vol.300, pp.151-167, 2017.

E. Douville, The rainbow vent fluids (36°14?N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids, Chem. Geol, vol.184, pp.37-48, 2002.

P. R. Craddock, Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins, Geochim. Cosmochim. Acta, vol.74, pp.5494-5513, 2010.

H. Paulick, Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°2 0?N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments, Chem. Geol, vol.234, pp.179-210, 2006.

N. Augustin, Alteration at the ultramafic-hosted Logatchev hydrothermal field: constraints from trace element and Sr-O isotope data, Geochemistry, Geophys. Geosystems, vol.13, pp.0-07, 2012.

A. F. Marques, F. Barriga, V. Chavagnac, and Y. Fouquet, Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge, Miner. Depos, vol.41, pp.52-67, 2006.

M. Andreani, Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36°14?N), Geochem. Geophys. Geosystems, vol.15, pp.3543-3571, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115281

G. Klinkhammer, H. Elderfield, J. Edmond, and A. Mitra, Geochemical implications of rare earth element patterns in hydrothermal fluids from midocean ridges, Geochim. Cosmochim. Acta, vol.58, pp.5105-5113, 1994.

R. H. James, H. Elderfield, and M. R. Palmer, The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic ridge, Geochim. Cosmochim. Acta, vol.59, pp.651-659, 1995.

E. Douville, Yttrium and rare earth elements in fluids from various deepsea hydrothermal systems, Geochim. Cosmochim. Acta, vol.63, pp.627-643, 1999.

Y. Niu, Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges, J. Petrol, vol.45, pp.2423-2458, 2004.

C. You, P. Castillo, J. Gieskes, and L. Chan, Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones, Earth. Planet. Sci. Lett, vol.140, pp.41-52, 1996.

T. Oberthür, Hercynian age of the colbalt-nickel-arsenide-(gold) ores, Bou Azzer, Econ. Geol, vol.104, pp.1065-1079, 2009.

B. Debret and . Serpentinites, Vecteurs des Circulations Fluides et des Transferts Chimiques de L'Océanisation à la Subduction: Exemple Dans les Alpes Occidentales, 2013.

A. F. Marques, F. J. Barriga, and S. D. Scott, Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides, Mar. Geol, vol.245, pp.20-39, 2007.

I. Fanlo, F. Gervilla, V. Colás, and I. Subías, Zn-, Mn-and Co-rich chromian spinels from the Bou-Azzer mining district (Morocco): constraints on their relationship with the mineralizing process, Ore Geol. Rev, vol.71, pp.82-98, 2015.

S. Schwartz, Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites, Lithos, vol.178, pp.197-210, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02108626

B. W. Evans, The serpentinite multisystem revisited: chrysotile is metastable, Int. Geol. Rev, vol.46, pp.479-506, 2004.

P. Lanari, T. Wagner, and O. Vidal, A thermodynamic model for ditrioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al 2 O 3 -SiO 2 -H 2 O: applications to P-T sections and geothermometry, Contrib. Mineral. Petrol, vol.167, p.968, 2014.

O. Vidal, T. Parra, and F. Trotet, A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600°C, 1 to 25 kb range, Am. J. Sci, vol.301, pp.557-592, 2001.

V. De-andrade, O. Vidal, E. Lewin, P. O'brien, and P. Agard, Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples, J. Metamorph. Geol, vol.24, pp.655-668, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00139644

S. Block, Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton, J. Metamorph. Geol, vol.33, pp.463-494, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221349

J. Ganne, Statistical petrology reveals a link between supercontinents cycle and mantle global climate, Am. Mineral, vol.101, pp.2768-2773, 2016.

V. K. Purtov, V. V. Kholodnov, V. N. Anfilogov, and G. S. Nechkin, The role of chlorine in the formation of magnetite skarns, Int. Geol. Rev, vol.31, pp.63-71, 1989.

J. B. Fein, J. J. Hemley, W. M. Angelo, A. Komninou, and D. A. Sverjensky, Experimental study of iron-chloride complexing in hydrothermal fluids, Geochim. Cosmochim. Acta, vol.56, pp.3179-3190, 1992.

M. J. Kalczynski and A. E. Gates, Hydrothermal alteration, mass transfer and magnetite mineralization in dextral shear zones, Ore Geol. Rev, vol.61, pp.226-247, 2014.

Y. Zheng and K. Simon, Oxygen isotope fractionation in hematite and magnetite: a theoretical calculation and application to geothermometry of metamorphic iron-formations, Eur. J. Mineral, vol.3, pp.877-886, 1991.

P. Jean-baptiste, J. L. Charlou, and M. Stievenard, Oxygen isotope study of midocean ridge hydrothermal fluids: Implication for the oxygen-18 budget of the oceans, Geochim. Cosmochim. Acta, vol.61, pp.2669-2677, 1997.

W. Bach and S. E. Humphris, Relationship between the Sr and O isotope compositions of hydrothermal fluids and the spreading and magma-supply rates at oceanic spreading centers, Geology, vol.27, p.1067, 1999.

E. P. Reeves, Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Geochim. Cosmochim. Acta, vol.75, pp.1088-1123, 2011.

R. H. James, Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre, Geochim. Cosmochim. Acta, vol.139, pp.47-71, 2014.

S. J. Carpenter, & Lohmann, K. C. ? 18 O and ? 13 C values of modern brachiopod shells, Geochim. Cosmochim. Acta, vol.59, pp.3749-3764, 1995.

N. Lhomme, G. K. Clarke, and C. Ritz, Global budget of water isotopes inferred from polar ice sheets, Geophys. Res. Lett, vol.32, p.20502, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00374638

J. Veizer and J. Hoefs, The nature of 18 O/ 16 O and 13 C/ 12 C secular trends in sedimentary carbonate rocks, Geochim. Cosmochim. Acta, vol.40, pp.1387-1395, 1976.

L. P. Knauth and D. R. Lowe, Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts, Earth. Planet. Sci. Lett, vol.41, pp.209-222, 1978.

K. Wallmann, The geological water cycle and the evolution of marine ? 18 O values, Geochim. Cosmochim. Acta, vol.65, pp.2469-2485, 2001.

A. Prokoph, G. A. Shields, and J. Veizer, Compilation and time-series analysis of a marine carbonate ? 18 O, ? 13 C, 87 Sr/ 86 Sr and ? 34 S database through Earth history, Earth Sci. Rev, vol.87, pp.113-133, 2008.

R. E. Blake, S. J. Chang, and A. Lepland, Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean, Nature, vol.464, pp.1029-1032, 2010.

D. R. Cole, An experimental and theoretical determination of oxygen isotope fractionation in the system magnetite-H 2 O from 300 to 800°C, Geochim. Cosmochim. Acta, vol.68, pp.3569-3585, 2004.

S. M. Fortier, Determination of the magnetite-water equilibrium oxygen isotope fractionation factor at 350°C: A comparison of ion microprobe and laser fluorination techniques, Geochim. Cosmochim. Acta, vol.59, pp.3871-3875, 1995.

J. Carignan, P. Hild, G. Mevelle, J. Morel, D. Yeghicheyan et al., Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical referencematerials BR, Geoanal. Res, vol.25, pp.187-198, 2001.

D. A. Ionov, L. Savoyant, and C. Dupuy, Application of the ICP-MS technique to trace element analysis of peridotites and their minerals, Geostand. Geoanal. Res, vol.16, pp.311-315, 1992.

M. Godard, D. Jousselin, and J. Bodinier, Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite, Earth. Planet. Sci. Lett, vol.180, pp.133-148, 2000.

M. Godard, Y. Lagabrielle, O. Alard, and J. Harvey, Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge, Earth Planet Sci. Lett, vol.267, pp.410-425, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412001

J. Kodolányi, T. Pettke, C. Spandler, B. S. Kamber, and K. Gméling, Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones, J. Petrol, vol.53, pp.235-270, 2012.

I. J. Parkinson and J. A. Pearce, Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting, J. Petrol, vol.39, pp.1577-1618, 1998.

I. P. Savov, J. G. Ryan, M. Antonio, K. Kelley, and P. Mattie, Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones, Geochem. Geophys. Geosyst, vol.6, pp.4-15, 2005.

I. P. Savov, J. G. Ryan, M. Antonio, and P. Fryer, Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc, J. Geophys. Res, vol.112, p.9205, 2007.

J. A. Barrat, Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes, Geochim. Cosmochim. Acta, vol.83, pp.79-92, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00670053