C. Emiliani, Pleistocene temperatures, J. Geol, vol.63, pp.538-578, 1955.

H. C. Urey, H. A. Lowenstam, S. Epstein, and C. R. Mckinney, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States, Geol. Soc. Am. Bull, vol.62, pp.399-416, 1951.

S. Epstein, R. Buchsbaum, H. A. Lowenstam, and H. C. Urey, Revised carbonate-water isotopic temperature scale, Geol. Soc. Am. Bull, vol.64, pp.1315-1326, 1953.

N. Mikkelsen, H. Erlenkeuser, J. S. Killingley, and W. H. Berger, Norwegian corals: Radiocarbon and stable isotopes in Lophelia pertusa, Boreas, vol.11, pp.163-171, 1982.

J. F. Adkins, H. Cheng, E. A. Boyle, E. R. Druffel, and R. L. Edwards, Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago, Science, vol.280, pp.725-728, 1998.

P. B. Mortensen, H. T. Rapp, and U. Båmstedt, Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L)(Anthozoa, Scleractinia): Implications for determination of linear extension rate, Sarsia, vol.83, pp.433-446, 1998.

J. E. Smith, H. P. Schwarcz, M. J. Risk, T. A. Mcconnaughey, and N. Keller, Paleotemperatures from deep-sea corals: Overcoming 'vital effects, Palaios, vol.15, pp.25-32, 2000.

L. F. Robinson, J. F. Adkins, N. Frank, A. C. Gagnon, N. G. Prouty et al., The geochemistry of deepsea coral skeletons: A review of vital effects and applications for palaeoceanography, Deep Sea Res. Part II Top. Stud. Oceanogr, vol.99, pp.184-198, 2014.

J. E. Smith, M. J. Risk, H. P. Schwarcz, and T. A. Mcconnaughey, Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals, Nature, vol.386, pp.818-820, 1997.

J. E. Smith, U. Brand, M. J. Risk, and H. P. Schwarcz, Mid-Atlantic Ridge hydrothermal events recorded by deep-sea corals, Can. J. Earth Sci, vol.36, pp.511-517, 1999.
DOI : 10.1139/e98-110

N. Frank, M. Paterne, L. Ayliffe, T. Van-weering, J. P. Henriet et al., Eastern North Atlantic deep-sea corals: Tracing upper intermediate water ? 14 C during the Holocene, Earth Planet. Sci. Lett, vol.219, pp.297-309, 2004.
DOI : 10.1016/s0012-821x(03)00721-0

S. Marali, M. Wisshak, M. L. Correa, and A. Freiwald, Skeletal microstructure and stable isotope signature of three bathyal solitary cold-water corals from the Azores, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.373, pp.25-38, 2013.

J. Raddatz, A. Rüggeberg, S. Flögel, E. C. Hathorne, V. Liebetrau et al., The influence of seawater pH on U/Ca ratios in the scleractinian cold-water coral Lophelia pertusa, Biogeosciences, vol.11, pp.1863-1871, 2014.

K. Shirai, M. Kusakabe, S. Nakai, T. Ishii, T. Watanabe et al., Deep-sea coral geochemistry: Implication for the vital effect, Chem. Geol, vol.224, pp.212-222, 2005.
DOI : 10.1016/j.chemgeo.2005.08.009

C. Rollion-bard and D. Blamart, SIMS method and examples of applications in coral biomineralization, In Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials, pp.249-261, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01962615

P. T. Spooner, W. Guo, L. F. Robinson, N. Thiagarajan, K. R. Hendry et al., Clumped isotope composition of cold-water corals: A role for vital effects?, Geochim. Cosmochim. Acta, vol.179, pp.123-141, 2016.

S. U. Noé and W. C. Dullo, Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk), Coral Reefs, vol.25, pp.303-320, 2006.

R. Thresher, S. R. Rintoul, J. A. Koslow, C. Weidman, J. Adkins et al., Oceanic evidence of climate change in southern Australia over the last three centuries, Geophys. Res. Lett, p.31, 2004.

O. A. Sherwood, R. E. Thresher, S. J. Fallon, D. M. Davies, and T. W. Trull, Multi-century time-series of 15 N and 14 C in bamboo corals from deep Tasmanian seamounts: Evidence for stable oceanographic conditions, Mar. Ecol. Prog. Ser, vol.397, pp.209-218, 2009.

M. Lavigne, T. M. Hill, H. J. Spero, and T. P. Guilderson, Bamboo coral Ba/Ca: Calibration of a new deep ocean refractory nutrient proxy, Earth Planet. Sci. Lett, pp.312-506, 2011.

T. M. Hill, M. Lavigne, H. J. Spero, T. Guilderson, B. Gaylord et al., Variations in seawater Sr/Ca recorded in deep-sea bamboo corals, Paleoceanography, vol.27, 2012.
DOI : 10.1029/2011pa002260

J. R. Farmer, B. Hoenisch, L. F. Robinson, and T. M. Hill, Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals, Geochim. Cosmochim. Acta, vol.155, pp.86-106, 2015.

R. E. Thresher, S. J. Fallon, and A. T. Townsend, A "core-top" screen for trace element proxies of environmental conditions and growth rates in the calcite skeletons of bamboo corals (Isididae), Geochim. Cosmochim. Acta, vol.193, pp.75-99, 2016.

J. M. Roberts, A. J. Wheeler, A. Freiwald, and S. D. Cairns, Cold-Water Corals: The Biology and Geology of Deep-Sea Coral Habitats

J. M. Roberts, A. J. Wheeler, and A. Freiwald, , p.333, 2009.

J. F. Adkins, E. A. Boyle, W. B. Curry, and A. Lutringer, Stable isotopes in deep-sea corals and a new mechanism for "vital effects, Geochim. Cosmochim. Acta, vol.67, pp.1129-1143, 2003.
DOI : 10.1016/s0016-7037(02)01203-6

URL : http://www.gps.caltech.edu/~jess/VitalEffectsText.pdf

D. J. Sinclair and M. J. Risk, A numerical model of trace-element coprecipitation in a physicochemical calcification system: Application to coral biomineralization and trace-element 'vital effects, Geochim. Cosmochim. Acta, vol.70, pp.3855-3868, 2006.

D. Blamart, C. Rollion-bard, A. Meibom, J. P. Cuif, A. Juillet-leclerc et al., Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH, Geochem. Geophys. Geosyst, vol.8, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00268823

T. Mcconnaughey, 13 C and 18 O isotopic disequilibrium in biological carbonates: I. Patterns, Geochim. Cosmochim. Acta, vol.53, pp.151-162, 1989.

C. Rollion-bard, D. Blamart, J. P. Cuif, and Y. Dauphin, In situ measurements of oxygen isotopic composition in deep-sea coral, Lophelia pertusa: Re-examination of the current geochemical models of biomineralization, Geochim. Cosmochim. Acta, vol.74, pp.1338-1349, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00455144

C. Rollion-bard and D. Blamart, Possible controls on Li, Na, and Mg incorporation into aragonite coral skeletons, Chem. Geol, vol.396, pp.98-111, 2015.
DOI : 10.1016/j.chemgeo.2014.12.011

URL : https://hal.archives-ouvertes.fr/hal-01806247

J. P. Cuif and Y. Dauphin, Microstructural and physico-chemical characterizations of the"centers of calcification" in the septa of some recent Scleractinian corals, Paläont. Zeit, vol.72, pp.257-270, 1998.

M. M. Ogilvie, Microscopic and systematic study of Madreporarian types of corals, Philos. Trans. R. Soc. B, vol.1896, pp.83-345

H. Milne-edwards, Histoire Naturelle des Coralliaires ou Polypes Proprement Dits, Roret, vol.1, p.560
DOI : 10.5962/bhl.title.11574

URL : https://www.archive.org/download/histoirenature01miln/histoirenature01miln.pdf

J. W. Wells and . Scleractinia, Treatise on Invertebrate Paleontology

P. F. Coelenterata and R. C. Moore, , pp.328-344, 1956.

W. H. Bryan and D. Hill, Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals, Proc. R. Soc. Qld, vol.52, pp.78-91, 1941.

H. A. Lowenstam, Minerals formed by organisms, Science, vol.211, pp.1126-1131, 1981.
DOI : 10.1126/science.7008198

A. Veis, A window on biomineralization, vol.307, pp.1419-1420, 2005.
DOI : 10.1126/science.1109440

J. N. Weber and P. M. Woodhead, Temperature dependence of oxygen-18 concentration in reef coral carbonates, J. Geophys. Res, vol.77, pp.463-473, 1972.

W. Volz, . Frech, ;. Fritz, and W. Volz, Die Korallen der Schichten von St, Die Korallenfauna der Trias. Monographisch bearbeitet. II). Palaeontographica 1896, vol.2, pp.1-124

E. Balan, J. Aufort, S. Pouillé, M. Dabos, M. Blanchard et al., Infrared spectroscopic study of sulfate-bearing calcite from deep-sea bamboo coral, Eur. J. Mineral, vol.29, pp.1-12, 2017.
DOI : 10.1127/ejm/2017/0029-2611

URL : https://hal.archives-ouvertes.fr/hal-02107464

N. Tisnérat-laborde, M. Paterne, B. Métivier, M. Arnold, P. Yiou et al., Variability of the northeast Atlantic sea surface ? 14 C and marine reservoir age and the North Atlantic Oscillation (NAO)

, Quat. Sci. Rev, vol.29, pp.2633-2646, 2010.

W. G. Mook and J. Van-der-plicht, Reporting 14 C activities and concentrations, Radiocarbon, vol.41, pp.227-239, 1999.
DOI : 10.1017/s0033822200057106

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/4D450F610690258BED45F7ED7AF41189/S0033822200057106a.pdf/div-class-title-reporting-span-class-sup-14-span-c-activities-and-concentrations-div.pdf

E. B. Roark, T. P. Guilderson, R. B. Dunbar, and B. L. Ingram, Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals, Mar. Ecol. Prog. Ser, vol.327, pp.1-14, 2006.
DOI : 10.3354/meps327001

URL : https://www.int-res.com/articles/feature/m327p001.pdf

R. E. Thresher, Environmental and compositional correlates of growth rate in deep-water bamboo corals (Gorgonacea; Isididae), Mar. Ecol. Prog. Ser, vol.397, pp.187-196, 2009.

J. R. Farmer, L. F. Robinson, and B. Hönisch, Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis). Deep Sea Res. Part I, vol.105, pp.26-40, 2015.

A. V. Lazier, J. E. Smith, M. J. Risk, and H. P. Schwarcz, The skeletal structure of Desmophyllum cristagalli: The use of deep-water corals in sclerochronology, Lethaia, vol.32, pp.119-130, 1999.

J. P. Cuif, Y. Dauphin, J. Doucet, M. Salome, and J. Susini, XANES mapping of organic sulfate in three scleractinian coral skeletons, Geochim. Cosmochim. Acta, vol.67, pp.75-83, 2003.

C. Rollion-bard, D. Blamart, J. P. Cuif, and A. Juillet-leclerc, Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe, Coral Reefs, vol.22, pp.405-415, 2003.

C. Rollion-bard, M. Chaussidon, and . France-lanord, C. pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sc. Lett, vol.215, pp.275-288, 2003.

C. Rollion-bard, D. Mangin, and M. Champenois, Development and application of oxygen and carbon isotopic measurements of biogenic carbonates by ion microprobe, Geostand. Geoanal. Res, vol.31, pp.39-50, 2007.

C. Rollion-bard and J. Marin-carbonne, Determination of SIMS matrix effects on oxygen isotopic compositions in carbonates, J. Anal. At. Spectrom, vol.26, pp.1285-1289, 2011.

K. L. Bice, G. D. Layne, and K. Dahl, Application of secondary ion mass spectrometry to the determination of Mg/Ca in rare, delicate, or altered planktonic foraminifera: Examples from the Holocene, Paleogene, and Cretaceous, Geochem. Geophys. Geosyst, vol.6, 2005.

N. Vigier, C. Rollion-bard, S. Spezzaferri, and F. Brunet, In situ measurements of Li isotopes in foraminifera, Geochem. Geophys. Geosyst, vol.8, 2007.

J. B. Kimball, R. B. Dunbar, and T. P. Guilderson, Oxygen and carbon isotope fractionation in calcitic deep-sea corals: Implications for paleotemperature reconstruction, Chem. Geol, vol.381, pp.223-233, 2014.
DOI : 10.1016/j.chemgeo.2014.05.008

T. M. Hill, H. J. Spero, T. Guilderson, M. Lavigne, D. Clague et al., Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: A test of the "lines method, Geochem. Geophys. Geosyst, vol.12, 2011.

R. E. Thresher and H. Neil, Scale dependence of environmental and physiological correlates of ? 18 O and ? 13 C in the magnesium calcite skeletons of bamboo corals (Gorgonacea; Isididae), Geochim. Cosmochim. Acta, vol.187, pp.260-278, 2016.

S. Chaabane, M. L. Correa, P. Montagna, N. Kallel, M. Taviani et al., Exploring the oxygen and carbon isotopic composition of the Mediterranean red coral (Corallium rubrum) for seawater temperature reconstruction, Mar. Chem, vol.186, pp.11-23, 2016.

C. Saenger, R. I. Gabitov, J. Farmer, J. M. Watkins, and R. Stone, Linear correlations in bamboo coral ? 13 C and ? 18 O sampled by SIMS and micromill: Evaluating paleoceanographic potential and biomineralization mechanisms using ? 11 B and ? 47 composition, Chem. Geol, vol.454, pp.1-14, 2017.
DOI : 10.1016/j.chemgeo.2017.02.014

M. J. Risk, J. Hall-spencer, and B. Williams, Climate records from the Faroe-Shetland Channel using Lophelia pertusa (Linnaeus, 1758), In Cold-Water Corals and Ecosystems
DOI : 10.1007/3-540-27673-4_55

URL : https://pearl.plymouth.ac.uk/bitstream/10026.1/1390/2/Risk%20Williams%20Hall-Spencer%202005.pdf

A. Freiwald and J. M. Roberts, , pp.1097-1108, 2005.

A. Lutringer, D. Blamart, N. Frank, and L. Labeyrie, Paleotemperatures from deep-sea corals: Scale effects, In Cold-Water Corals and Ecosystems
DOI : 10.1007/3-540-27673-4_54

A. Freiwald and J. M. Roberts, , pp.1081-1096, 2005.

R. I. Gabitov, C. Rollion-bard, A. Tripati, and A. Sadekov, In situ study of boron partitioning between calcite and fluid at different crystal growth rates, Geochim. Cosmochim. Acta, vol.137, pp.81-92, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01766434

J. Noireaux, V. Mavromatis, J. Gaillardet, J. Schott, V. Montouillout et al., Crystallographic control on the boron isotope paleo-pH proxy, Earth Planet. Sci. Lett, vol.430, pp.398-407, 2015.
DOI : 10.1016/j.epsl.2015.07.063

R. E. Thresher, N. C. Wilson, C. M. Macrae, and H. Neil, Temperature effects on the calcite skeletal composition of deep-water gorgonians (Isididae), Geochim. Cosmochim. Acta, vol.74, pp.4655-4670, 2010.

O. A. Sherwood, J. M. Heikoop, D. B. Scott, M. J. Risk, T. P. Guilderson et al., Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: A new archive of surface processes, Mar. Ecol. Prog. Ser, vol.301, pp.135-148, 2005.

D. Sinclair, O. Sherwood, M. Risk, C. Hillaire-marcel, M. Tubrett et al., Testing the reproducibility of Mg/Ca profiles in the deep-water coral Primnoa resedaeformis: Putting the proxy through its paces, In Cold-Water Corals and Ecosystems

A. Freiwald and J. M. Roberts, , pp.1039-1060, 2005.

D. J. Sinclair, B. Williams, G. Allard, B. Ghaleb, S. Fallon et al., Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp, Geochim. Cosmochim. Acta, vol.75, pp.5101-5121, 2011.

O. H. Pilkey and R. C. Harris, The effect of intertidal environment on the composition of calcareous skeletal material, Limnol. Oceanogr, vol.11, pp.381-385, 1966.

Z. A. Bond, A. L. Cohen, S. R. Smith, and W. J. Jenkins, Growth and composition of high-Mg calcite in the skeleton of a Bermudian gorgonian (Plexaurella dichotoma): Potential for paleothermometry, Geochem. Geophys. Geosyst, vol.6, 2005.

R. I. Gabitov, A. C. Gagnon, Y. Guan, J. M. Eiler, and J. F. Adkins, Accurate Mg/Ca, Sr/Ca, and Ba/Ca ratio measurements in carbonates by SIMS and NanoSIMS and an assessment of heterogeneity in common calcium carbonate standards, Chem. Geol, vol.356, pp.94-108, 2013.

D. H. Case, L. F. Robinson, M. E. Auro, and A. C. Gagnon, Environmental and biological controls on Mg and Li in deep-sea scleractinian corals, Earth Planet. Sci. Lett, vol.300, pp.215-225, 2010.
DOI : 10.1016/j.epsl.2010.09.029

URL : http://darchive.mblwhoilibrary.org/bitstream/1912/4379/1/Case_Manuscript_Revision_inc-table%26figures.pdf

E. C. Hathorne, T. Felis, A. Suzuki, H. Kawahata, and G. Cabioch, Lithium in the aragonite skeletons of massive Porites corals: A new tool to reconstruct tropical sea surface temperatures, Paleoceanography, vol.28, pp.143-152, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00910395

J. Raddatz, V. Liebetrau, A. Rüggeberg, E. Hathorne, A. Krabbenhöft et al., Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa, Chem. Geol, vol.352, pp.143-152, 2013.
DOI : 10.1016/j.chemgeo.2013.06.013

P. Montagna, M. Mcculloch, E. Douville, M. L. Correa, J. Trotter et al., Mg systematics in scleractinian corals: Calibration of the thermometer, Geochim. Cosmochim. Acta, vol.132, pp.288-310, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01517474

F. A. Al-horani, S. M. Al-moghrabi, and D. De-beer, The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis, Mar. Biol, vol.142, pp.419-426, 2003.

A. A. Venn, E. Tambutté, S. Lotto, D. Zoccola, D. Allemand et al., Imaging intracellular pH in a reef coral and symbiotic anemone, Proc. Natl. Acad. Sci, vol.106, pp.16574-16579, 2009.

A. A. Venn, E. Tambutté, M. Holcomb, D. Allemand, and S. Tambutté, Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater, PLoS ONE, vol.6, 2011.
DOI : 10.1371/journal.pone.0020013

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0020013&type=printable

A. A. Venn, E. Tambutté, M. Holcomb, J. Laurent, D. Allemand et al., Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals, Proc. Natl. Acad. Sci, vol.110, pp.1634-1639, 2013.

K. Klochko, A. J. Kaufman, W. Yao, R. H. Byrne, and J. A. Tossell, Experimental measurement of boron isotope fractionation in seawater, Earth Planet. Sci. Lett, vol.248, pp.276-285, 2006.

N. G. Hemming and G. N. Hanson, Boron isotopic composition and concentration in modern marine carbonates, Geochim. Cosmochim. Acta, vol.56, pp.537-543, 1992.
DOI : 10.1016/0016-7037(92)90151-8

K. Klochko, G. D. Cody, J. A. Tossell, P. Dera, and A. J. Kaufman, Re-evaluating boron speciation in biogenic calcite and aragonite using 11 B MAS NMR, Geochim. Cosmochim. Acta, vol.73, pp.1890-1900, 2009.
DOI : 10.1016/j.gca.2009.01.002

C. Rollion-bard, D. Blamart, J. Trebosc, G. Tricot, A. Mussi et al., Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using 11 B MAS NMR and EELS, Geochim. Cosmochim. Acta, vol.75, pp.1003-1012, 2011.
DOI : 10.1016/j.gca.2010.11.023

URL : https://hal.archives-ouvertes.fr/hal-00595369

M. Cusack, N. A. Kamenos, C. Rollion-bard, and G. Tricot, Red coralline algae assessed as marine pH proxies using 11 B, MAS NMR. Sci. Rep, vol.5, 2015.
DOI : 10.1038/srep08175

URL : https://hal.archives-ouvertes.fr/hal-01168275

G. L. Foster, P. A. Pogge-von-strandmann, and J. W. Rae, Boron and magnesium isotopic composition of seawater, Geochem. Geophys. Geosyst, p.11, 2010.
DOI : 10.1029/2010gc003201

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2010GC003201

A. G. Dickson, Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A, vol.37, pp.755-766, 1990.

M. Mcculloch, J. Falter, J. Trotter, and P. Montagna, Coral resilience to ocean acidification and global warming through pH up-regulation, Nat. Clim. Chang, vol.2, pp.623-627, 2012.

Y. K. Ip, A. L. Lim, and R. W. Lim, Some properties of calcium-activated adenosine triphosphatase from the hermatypic coral Galaxea fascicularis, Mar. Biol, vol.111, pp.191-197, 1991.

R. J. Kingsley and N. Watabe, An autoradiographic study of calcium transport in spicule formation in the gorgonian Leptogorgia virgulata (Lamarck) (Coelenterata: Gorgonacea), Cell Tissue Res, vol.239, pp.305-310, 1985.

E. Anagnostou, K. F. Huang, C. F. You, E. L. Sikes, and R. M. Sherrell, Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment, Earth Planet Sci. Lett, vol.349, pp.251-260, 2012.

M. G. Weinbauer, F. Brandstätter, and B. Velimirov, On the potential use of magnesium and strontium concentrations as ecological indicators in the calcite skeleton of the red coral (Corallium rubrum), Mar. Biol, vol.137, pp.801-809, 2000.

T. Oomori, H. Kaneshima, Y. Maezato, and Y. Kitano, Distribution coefficient of Mg 2+ ions between calcite and solution at 10-50 ? C, Mar. Chem, vol.20, pp.327-336, 1987.
DOI : 10.1016/0304-4203(87)90066-1

J. P. Cuif, Y. Dauphin, and J. E. Sorauf, Biominerals and Fossils through Time, p.512, 2010.
DOI : 10.1017/cbo9780511781070

J. P. Cuif, Calcification in the Cnidaria through Time: An Overview of Their Skeletal Patterns from Individual to Evolutionary Viewpoints, The Cnidaria, pp.163-179, 2016.

J. P. Cuif, The Rugosa-Scleractinia gap re-examined through microstructural and biochemical evidence: A tribute to HC Wang, vol.23, pp.1-14, 2014.

E. Beniash, J. Aizenberg, L. Addadi, and S. Weiner, Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. Lond. B Biol. Sci, vol.264, pp.461-465, 1997.
DOI : 10.1098/rspb.1997.0066

URL : http://europepmc.org/articles/pmc1688267?pdf=render

J. P. Cuif, Y. Dauphin, B. Farre, and G. Nehrke, Distribution of sulphated polysaccharides within calcareous biominerals indicates a widely shared layered growth-mode for the Invertebrate skeletons and suggests a two-step crystallization process for the mineral growth units, Mineral. Mag, vol.72, pp.233-237, 2008.

A. Meibom, J. P. Cuif, F. Hillion, B. R. Constantz, A. Juillet-leclerc et al., Distribution of magnesium in coral skeleton, Geophys. Res. Lett, p.31, 2004.

J. P. Cuif and Y. Dauphin, The environmental recording unit in coral skeleton-A synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres, Biogeosciences, vol.2, pp.61-73, 2005.

J. N. Sutton, Y. W. Liu, J. B. Ries, M. Guillermic, E. Ponzevera et al., A. ? 11 B as monitor of calcification site pH in marine calcifying organisms, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645341