H. V. Atkinson, Theories of normal grain growth in pure single phase systems, Acta Metall, vol.36, pp.469-491, 1988.

N. J. Austin and B. Evans, Paleowattmeters: A scaling relation for dynamically recrystallized grain size, Geology, vol.35, pp.343-346, 2007.

K. Bose and J. Ganguly, Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes, Earth Planet. Sc. Lett, vol.136, pp.109-121, 1995.

R. J. Brook and F. F. Wang, Treatise on Materials Science and Technology, vol.9, pp.331-364, 1976.

S. F. Cox and M. A. Etheridge, Crack-seal fibre growth mechanisms and their significance in the development of oriented layer silicate microstructures, Tectonophysics, vol.92, pp.147-170, 1983.

A. J. Cross, D. J. Prior, M. Stipp, and S. Kidder, The recrystallized grain size piezometer for quartz: An EBSDbased calibration, Geophys. Res. Lett, vol.44, pp.6667-6674, 2017.

N. E. Davis, J. Newman, P. B. Wheelock, and A. K. Kronenberg, Grain growth kinetics of dolomite, magnesite and calcite: a comparative study, Phys. Chem. Minerals, vol.38, pp.123-138, 2011.

B. Derby, Dynamic recrystallization and grain size, Deformation processes in minerals, ceramics and rocks, pp.354-364, 1990.

S. W. Brok and C. J. Spiers, Experimental evidence for water weakening of quartzite by microcracking plus solutionprecipitation creep, J. Geol. Soc. London, vol.148, pp.541-548, 1991.

G. Dresen, G. Wang, and Q. Bai, Kinetics of grain growth in anorthite, Tectonophysics, vol.258, pp.251-262, 1996.

B. Evans, J. Renner, and G. Hirth, A few remarks on the kinetics of static grain growth in rocks, Int. J. Earth Sci, vol.90, pp.88-103, 2001.

J. Farver and R. Yund, Silicon diffusion in a natural quartz aggregate: constraints on solution-transfer diffusion creep, Tectonophysics, vol.325, issue.00, pp.121-130, 2000.

J. Fukuda and I. Shimizu, Theoretical derivation of flow laws for quartz dislocation creep: Comparisons with experimental creep data and extrapolation to natural conditions using water fugacity corrections, J. Geophys. Res, vol.122, pp.5956-5971, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01580058

J. Fukuda, C. W. Holyoke, and A. K. Kronenberg, Deformation of fine-grained quartz aggregates by mixed diffusion and dislocation creep, J. Geophys. Res, vol.123, pp.4676-4696, 2018.

F. Gaillard, Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure, Earth Planet. Sc. Lett, vol.218, issue.03, pp.639-642, 2004.

G. C. Gleason and J. Tullis, A flow law for dislocation creep of quartz aggregates determined with the molten salt cell, Tectonophysics, vol.247, issue.95, p.11, 1995.

J. Götze, M. Plötze, and D. Habermann, Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz -a review, Miner. Petrol, vol.71, pp.225-250, 2001.

M. R. Handy, The solid-state flow of polymineralic rocks, J. Geophys. Res, vol.95, pp.8647-8661, 1990.

R. Heilbronner, J. Tullis, S. De-meer, M. R. Drury, J. H. De-bresser et al., The effect of static annealing on microstructure and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear, in: Deformation mechanisms, Rheology and Tectonics: Current status and future perspectives, pp.191-218, 2002.

G. Hirth and J. Tullis, Dislocation creep regimes in quartz aggregates, J. Struct. Geol, vol.14, pp.145-159, 1992.

G. Hirth, C. Teyssier, and W. J. Dunlap, An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks, Int. J. Earth Sci, vol.90, pp.70-87, 2001.

M. B. Holness, Equilibrium dihedral angles in the system quartz-CO 2 -H 2 O-NaCl at 800 ? C and 1-15 kbar: The effect of pressure and fluid composition on permeability of quartzites, Earth Planet. Sc. Lett, vol.114, p.90159, 1992.

M. B. Holness, Temperature and pressure dependence of quartzaqueous fluid dihedral angles: The control of adsorbed H 2 O on the permeability of quartzites, Earth Planet. Sc. Lett, vol.117, pp.363-377, 1993.

M. B. Holness and G. R. Watt, Quartz recrystallization and fluid flow during contact metamorphism: A cathodoluminescence study, Geofluids, vol.1, pp.215-228, 2001.

C. W. Holyoke, A. K. Kronenberg, C. W. Holyoke, and A. K. Kronenberg, Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology, Earth Planet. Sc. Lett, vol.494, pp.385-390, 2010.

J. D. Hunt and C. E. Manning, A thermodynamic model for the system SiO 2 -H 2 O near the upper critical end point based on quartz solubility experiments at 500-1100 ? C and 5-20 kbar, Geochim. Cosmochim. Acta, vol.86, pp.196-213, 2012.

O. Jaoul, J. Tullis, and A. Kronenberg, The effect of varying water contents on the creep behavior of Hevitree quartzite, J. Geophys. Res, vol.89, pp.4298-4312, 1984.

M. W. Jessell, Grain-boundary migration microstructures in a naturally deformed quartzite, J. Struct. Geol, vol.9, pp.90008-90011, 1987.

R. Joesten, Grain growth and grain boundary diffusion in quartz from the Christmas Mountains (Texas) contact aureole, Am. J. Sci, vol.283, pp.233-254, 1983.

S. Karato, Grain growth kinetics in olivine aggregates, Tectonophysics, vol.168, issue.89, pp.90221-90228, 1989.

S. Karato, Deformation of Earth Materials, 2008.

J. Kim and F. L. Desmond, Characteristics of zeta potential distribution in silica particles, Bull. Korean Chem. Soc, vol.26, pp.1083-1089, 2005.

D. L. Kohlstedt, B. Evans, and S. J. Mackwell, Strength of the lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res, vol.100, pp.17587-17602, 1995.

D. L. Kohlstedt, H. Keppler, R. , and D. C. , Solubility of water in the ?, ?, ? phases of (Mg, Fe) 2 SiO 2, Contrib. Mineral. Petrol, vol.123, pp.345-357, 1996.

M. Laumonier, F. Gaillard, and D. Sifré, The effect of pressure and water concentration on the electrical conductivity of dacitic melts: Implication for magnetotelluric imaging in subduction areas, Chem. Geol, vol.418, pp.66-76, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01092317

F. C. Luan and M. S. Paterson, Preparation and deformation of synthetic aggregates of quartz, J. Geophys. Res, vol.97, pp.301-320, 1992.

N. S. Mancktelow and G. Pennacchioni, The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites, J. Struct. Geol, vol.26, issue.03, pp.81-87, 2004.

L. Menegon, P. Nasipuri, H. Stünitz, H. Behrens, and E. Ravna, Dry and strong quartz during deformation of the lower crust in the presence of melt, J. Geophys. Res, vol.116, p.10410, 2011.

K. Michibayashi and H. Imoto, Grain growth kinetics and the effect of crystallographic anisotropy on normal grain growth of quartz, Phys. Chem. Minerals, vol.39, pp.213-218, 2012.

Y. Nishihara, T. Shinmei, and S. Karato, Grain-growth kinetics in wadsleyite: Effects of chemical environment, Phys. Earth Planet. Inter, vol.154, pp.30-43, 2006.

A. Okamoto and K. Sekine, Textures of syntaxial quartz veins synthesized by hydrothermal experiments, J. Struct. Geol, vol.33, pp.1-21, 2011.

T. Okudaira and N. Shigematsu, Estimates of stress and strain rate in mylonites based on the boundary between the fields of grain-size sensitive and insensitive creep, J. Geophys. Res, vol.117, 2012.

T. Okudaira, H. Bando, Y. , and K. , Grain-boundary diffusion rates inferred from grain-size variations of quartz in metacherts from a contact aureole, Am. Mineral, vol.98, pp.680-688, 2013.

D. L. Olgaard and B. Evans, Grain growth in synthetic marbles with added mica and water, Contrib. Mineral. Petrol, vol.100, pp.246-260, 1988.

S. Piazolo, D. J. Prior, and M. D. Holness, The use of combined cathodoluminescence and EBSD analysis: A case study investigating grain boundary migration mechanisms in quartz, J. Microsc, vol.217, pp.152-161, 2005.

K. S. Pitzer and S. M. Sterner, Equations of state valid continuously from zero to extreme pressures for H 2 O and CO 2, J. Chem. Phys, vol.101, pp.3111-3116, 1994.

J. P. Poirier and M. Guillopé, Deformation induced recrystallization of minerals, Bull. Minéral, vol.102, pp.67-74, 1979.

A. Pommier, F. Gaillard, M. Pichavant, and B. Scaillet, Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure, J. Geophys. Res, vol.113, 2008.

G. Prouteau and B. Scaillet, Experimental constrains on sulphur behaviour in subduction zones: Implications for TTG and adakite production and the global sulphur cycle since the Archean, J. Petrol, vol.54, pp.183-213, 2013.

G. Prouteau, B. Scaillet, M. Pichavant, M. , and R. , Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust, Nature, vol.410, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00068850

B. Richter, H. Stünitz, and R. Heilbronner, The brittle-to-viscous transition in polycrystalline quartz: An experimental study, J. Struct. Geol, vol.114, pp.1-21, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01817648

U. Ring, M. T. Brandon, S. D. Willett, G. S. Lister, U. Ring et al., Exhumation processes, Ductile flow and erosion, vol.154, pp.1-27, 1999.

E. H. Rutter and K. H. Brodie, The role of tectonic grain size reduction in the rheological stratification of the lithosphere, Geol. Rundsch, vol.77, pp.295-308, 1988.

E. H. Rutter and K. H. Brodie, Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals, J. Struct. Geol, vol.26, pp.259-270, 2004.

E. H. Rutter and K. H. Brodie, Experimental grain-size sensitive flow of hot-pressured Brazilian quartz aggregates, J. Struct. Geol, vol.26, 2004.

J. Fukuda, Grain growth of quartz
URL : https://hal.archives-ouvertes.fr/insu-02143142

S. M. Schmid, Microfabric studies as indicators of deformation mechanisms and flow laws operative in mountain building, Mountain building processes, pp.95-110, 1982.

I. Shimizu, Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms, J. Struct. Geol, vol.30, pp.899-917, 2008.

I. Shimizu, Rheological profile across the NE Japan interplate megathrust in the source region of the, 2011.

, Tohoku-oki earthquake, Earth Planet. Space, vol.66, 2014.

S. M. Sterner and K. S. Pitzer, An equation of state for carbon dioxide valid from zero to extreme pressures, Contrib. Mineral. Petrol, vol.117, pp.362-374, 1994.

M. Stipp, H. Stünitz, R. Heilbronner, S. M. Schmid, S. De-meer et al., Dynamic recrystallization of quartz: Correlation between natural and experimental conditions, in: Deformation mechanisms, Rheology and Tectonics: Current status and future perspectives, J. Geol. Soc. London, pp.171-190, 2002.

M. Stipp and J. Tullis, The recrystallized grain size piezometer for quartz, Geophys. Res. Lett, vol.30, 2003.

M. Stipp, J. Tullis, and H. Behrens, Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer, J. Geophys. Res, vol.111, 2006.

J. Tullis, S. Karato, and H. R. Wenk, Deformation of granitic rocks: Experimental studies and natural examples, in: Plastic deformation of minerals and rocks, Rev. Mineral. Geochem, vol.51, pp.51-95, 2002.

J. Tullis and R. A. Yund, Grain growth kinetics of quartz and calcite aggregates, J. Geol, vol.90, pp.301-318, 1982.

R. J. Twiss, Theory and applicability of recrystallized grain size paleopiezometer, Pure Appl. Geophys, vol.115, pp.227-244, 1977.

M. G. Vernooij, B. Den-brok, and K. Kunze, Development of crystallographic preferred orientations by nucleation and growth of new grains in experimentally deformed quartz single crystals, Tectonophysics, vol.427, pp.35-53, 2006.

E. B. Watson and J. M. Brenan, Experimentally-determined wetting characteristics of CO 2 -H 2 O fluids and their implications for fluid transport, hostrock physical properties, and fluid inclusion formation, Earth Planet. Sc. Lett, vol.1, pp.90144-90144, 1987.

S. White, Geological significance of recovery and recrystallization processes in quartz, Tectonophysics, vol.39, pp.90093-90095, 1977.

R. H. Wightman, D. J. Prior, and T. A. Little, Quartz veins deformed by diffusion creep-accommodated grain boundary sliding during a transient, high strain-rate event in the Southern Alps, New Zealand. J. Struct. Geol, vol.28, pp.902-918, 2006.