E. A. Ainsworth and S. P. Long, What have we learned from 15 years of free-air CO 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2, New Phytol, vol.165, pp.351-371, 2005.

D. M. Alongi, J. A. Keuskamp, and H. J. Laanbroek, Potential for sulfate reduction in mangrove forest soils: comparison between two dominant species of the, Americas. Front. Microbiol, vol.1, p.1855, 2015.

T. Balke, T. J. Bouma, E. M. Horstman, E. L. Webb, P. L. Erftemeijer et al., Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats, Mar. Ecol. Prog. Ser, vol.440, pp.1-9, 2011.

M. C. Ball, M. J. Cochrane, H. M. Rawson, T. Matos, E. Bernini et al., Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO 2, Brazil. Lat. Am. J. Aquat. Res, vol.20, pp.398-407, 1997.

R. A. Betts, C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, El Nino and a record CO 2 rise, Nat. Clim. Change, vol.6, pp.806-810, 2016.

S. Bouillon, A. V. Borges, E. Castañeda-moya, K. Diele, T. Dittmar et al., Mangrove production and carbon sinks: a revision of global budget estimates, Glob. Biogeochem. Cycles, vol.22, pp.1-12, 2008.

D. R. Cahoon, P. F. Hensel, T. Spencer, D. J. Reed, K. L. Mckee et al., Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls, Wetlands and Natural Resource Management Ecological Studies, pp.271-292, 2006.

J. A. Church, P. U. Clark, A. Cazenave, J. M. Gregory, S. Jevrejeva et al., Sea level change, " in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

M. Plattner, S. K. Tignor, J. Allen, A. Boschung, Y. Nauels et al.,

M. Collins, J. Arblaster, J. Dufresne, T. Fichefet, P. Friedlingstein et al., Long-term climate change: projections, commitments and irreversibility pages 1029 to 1076, Climate Change 2013 -The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp.1029-1136, 2014.

R. T. Conant, M. G. Ryan, G. I. Ågren, H. E. Birge, E. A. Davidson et al., Temperature and soil organic matter decomposition rates -synthesis of current knowledge and a way forward, Glob. Change Biol, vol.17, pp.3392-3404, 2011.

J. Cook, N. Oreskes, P. T. Doran, W. R. Anderegg, B. Verheggen et al., Consensus on consensus: a synthesis of consensus estimates on human-caused global warming, Environ. Res. Lett, vol.11, p.48002, 2016.

M. F. Cotrufo, P. Ineson, and A. Scott, Elevated CO 2 reduces the nitrogen concentration of plant tissues, Glob. Change Biol, vol.4, pp.43-54, 1998.

E. A. Davidson and I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.440, pp.165-173, 2006.

,. De-graaff, K. Van-groenigen, J. Six, B. Hungate, and C. Van-kessel, Interactions between plant growth and soil nutrient cycling under elevated CO 2 . Interactions betwGlob, Change Biol, vol.12, pp.2077-2091, 2006.

J. C. Ellison, Vulnerability assessment of mangroves to climate change and sea-level rise impacts, Wetl. Ecol. Manag, vol.23, pp.115-137, 2015.

C. Fang and J. B. Moncrieff, The dependence of soil CO 2 efflux on temperature, Soil Biol, vol.33, pp.155-165, 2001.

E. J. Farnsworth, A. M. Ellison, and W. K. Gong, Elevated CO 2 alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.), Oecologia, vol.108, pp.599-609, 1996.

N. Fierer, J. M. Craine, K. Mclauchlan, and J. P. Schimel, Litter quality and the temperature sensitivity of decomposition, Ecology, vol.86, pp.320-326, 2005.

R. M. Gifford, D. J. Barrett, and J. L. Lutze, The effects of elevated [CO 2 ] on the C:N and C:P mass ratios of plant tissues, Plant Soil, vol.224, pp.1-14, 2000.

E. L. Gilman, J. Ellison, N. C. Duke, and C. Field, Threats to mangroves from climate change and adaptation options: a review, Aquat. Bot, vol.89, pp.237-250, 2008.

S. Hättenschwiler and P. Gasser, Soil animals alter plant litter diversity effects on decomposition, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.1519-1524, 2005.

G. Holguin, P. Vazquez, and Y. Bashan, The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview, Biol. Fertil. Soils, vol.33, pp.265-278, 2001.

M. J. Hovenden, M. Curran, M. A. Cole, P. F. Goulter, N. J. Skelton et al., Ventilation and respiration in roots of one-year-old seedlings of grey mangrove Avicennia marina (Forsk.) Vierh, Hydrobiologia, vol.295, pp.23-29, 1995.

K. S. Inglett, P. W. Inglett, K. R. Reddy, and T. Z. Osborne, Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation, Biogeochemistry, vol.108, pp.77-90, 2012.

M. Jacob, K. Viedenz, A. Polle, and F. M. Thomas, Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica), Oecologia, vol.164, pp.1083-1094, 2010.

A. Jacotot, C. Marchand, S. Gensous, A. , and M. , Effects of elevated atmospheric CO 2 and increased tidal flooding on leaf gasexchange parameters of two common mangrove species: Avicennia marina and Rhizophora stylosa, Photosynth. Res, vol.138, pp.249-260, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913698

M. U. Kirschbaum, Does enhanced photosynthesis enhance growth? Lessons learned from CO 2 enrichment studies, Plant Physiol, vol.155, pp.117-124, 2011.

K. W. Krauss, N. Cormier, M. J. Osland, M. L. Kirwan, C. L. Stagg et al., Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise, Sci. Rep, vol.7, p.1030, 2017.

K. W. Krauss, K. L. Mckee, C. E. Lovelock, D. R. Cahoon, N. Saintilan et al., How mangrove forests adjust to rising sea level, New Phytol, vol.202, pp.19-34, 2014.

E. Kristensen, S. Bouillon, T. Dittmar, and C. Marchand, Organic carbon dynamics in mangrove ecosystems: a review, Aquat. Bot, vol.89, pp.201-219, 2008.

L. P. Lamers, L. L. Govers, I. C. Janssen, J. J. Geurts, M. E. Van-der-welle et al., Sulfide as a soil phytotoxin-a review, Front. Plant Sci, vol.4, p.268, 2013.

A. Leopold, C. Marchand, A. Renchon, J. Deborde, T. Quiniou et al., Coeur de Voh" mangrove, New Caledonia: Effects of water stress on mangrove productivity in a semi-arid climate, Agric. For. Meteorol, vol.223, pp.217-232, 2016.

N. Lotfiomran, M. Köhl, and J. Fromm, Interaction effect between elevated CO 2 and fertilization on biomass, gas exchange and C/N ratio of European beech, Fagus sylvatica L.). Plants, vol.5, p.38, 2016.

C. E. Lovelock, D. R. Cahoon, D. A. Friess, G. R. Guntenspergen, K. W. Krauss et al., The vulnerability of Indo-Pacific mangrove forests to sea-level rise, Nature, vol.526, pp.559-563, 2015.

Y. Luo, D. Hui, and D. Zhang, Elevated CO 2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis, Ecology, vol.87, pp.53-63, 2006.

Z. Luo, O. J. Sun, E. Wang, H. Ren, and H. Xu, Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using biome-BGC, Ecosystems, vol.13, pp.949-965, 2010.

T. L. Lyimo and D. Mushi, Sulfide concentration and redox potential patterns in mangrove forests of Dar es Salaam: effects on Avicennia Marina and Rhizophora Mucronata seedling establishment, West. Indian Ocean J. Mar. Sci, vol.4, pp.163-174, 2005.

A. P. Mackey and G. Smail, The decomposition of mangrove litter in a subtropical mangrove forest, Hydrobiologia, vol.332, pp.93-98, 1996.

C. Marchand, M. Allenbach, and E. Lallier-vergès, Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia), Geoderma, vol.160, pp.444-456, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00536395

C. Marchand, J. Fernandez, B. Moreton, L. Landi, E. Lallier-vergès et al., The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia), Chem. Geol, pp.300-301, 2012.

C. Marchand, E. Lallier-vergès, A. , and M. , Redox conditions and heavy metals distribution in mangrove forests receiving effluents from shrimp farms (Teremba Bay, New Caledonia), J. Soils Sediments, vol.11, pp.529-541, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00559759

E. P. Mcdonald, J. E. Erickson, and E. L. Kruger, Research note: can decreased transpiration limit plant nitrogen acquisition in elevated CO 2 ?, Funct. Plant Biol, vol.29, 2002.

K. L. Mckee, Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems, Estuar. Coast. Shelf Sci, vol.91, pp.475-483, 2011.

K. L. Mckee, D. R. Cahoon, and I. C. Feller, Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation, Glob. Ecol. Biogeogr, vol.16, pp.545-556, 2007.

K. L. Mckee and J. E. Rooth, Where temperate meets tropical: multifactorial effects of elevated CO 2 , nitrogen enrichment, and competition on a mangrove-salt marsh community, Glob. Change Biol, vol.14, pp.971-984, 2008.

E. Mcleod, G. L. Chmura, S. Bouillon, R. Salm, M. Björk et al., A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2, Front. Ecol. Environ, vol.9, pp.552-560, 2011.

G. Naidoo, H. Rogalla, and D. J. Willert, Gas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditions, Hydrobiologia, vol.352, p.39, 1997.

R. J. Norby, E. H. Delucia, B. Gielen, C. Calfapietra, C. P. Giardina et al., Forest response to elevated CO 2 is conserved across a broad range of productivity, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.18052-18056, 2005.

H. Poorter and M. Navas, Plant growth and competition at elevated CO 2 : on winners, losers and functional groups, New Phytol, vol.157, pp.175-198, 2003.

S. A. Prior, G. B. Runion, S. C. Marble, H. H. Rogers, C. H. Gilliam et al., A review of elevated atmospheric CO 2 effects on plant growth and water relations: implications for horticulture, HortScience, vol.46, pp.158-162, 2011.

, R: A Language and Environment for Statistical Computing, 2008.

R. Reef, I. C. Feller, and C. E. Lovelock, Nutrition of mangroves, Tree Physiol, vol.30, pp.1148-1160, 2010.

R. Reef, M. Slot, U. Motro, M. Motro, Y. Motro et al., The effects of CO 2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans, Photosynth. Res, vol.129, pp.159-170, 2016.

R. Reef, K. Winter, J. Morales, M. F. Adame, D. L. Reef et al., The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities, Physiol. Plant, vol.154, pp.358-368, 2015.

R. Segers, Methane production and methane consumption: a review of processes underlying wetland methane fluxes, Biogeochemistry, vol.41, pp.23-51, 1998.

N. J. Skelton and W. G. Allaway, Oxygen and pressure changes measured in situ during flooding in roots of the grey mangrove Avicennia marina (Forssk.) Vierh, Aquat. Bot, vol.54, pp.165-175, 1996.

T. F. Stocker, D. Qin, G. Plattner, M. Tignor, S. K. Allen et al., IPCC, 2013: climate change 2013: the physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

D. R. Taub, X. Wang, A. F. Van-loon, R. Dijksma, and M. E. Van-mensvoort, Why are nitrogen concentrations in plant tissues lower under elevated CO 2 ? A critical examination of the hypotheses, J. Integr. Plant Biol, vol.50, pp.80-82, 2007.

R. D. Ward, D. A. Friess, R. H. Day, and R. A. Mackenzie, Impacts of climate change on mangrove ecosystems: a region by region overview, Ecosyst. Health Sustain, vol.2, p.1211, 2016.

X. Yin, Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO 2 enrichment: a retrospective synthesis across 62 species, Glob. Change Biol, vol.8, pp.631-642, 2002.

D. Zhang, D. Hui, Y. Luo, and G. Zhou, Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, J. Plant Ecol, vol.1, pp.85-93, 2008.

M. Zimmermann, P. Meir, M. Bird, Y. Malhi, and A. Ccahuana, Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest, Soil Biol. Biochem, vol.41, pp.1338-1340, 2009.