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ABSTRACT
Dynamo models relying on the Babcock-Leighton mechanism are successful in reproducing most of the 
solar magnetic field dynamical characteristics. However, considering that such models operate only above 
a lower magnetic field threshold, they do not provide an appropriate magnetic field regeneration process 
characterizing a self-sustainable dynamo. In this work we consider the existence of an additional α-effect 
to the Babcock-Leighton scenario in a mean-field axisymmetric kinematic numerical model. Both poloidal 
field regeneration mechanisms are treated with two different strength-limiting factors. Apart from the 
solar antisymmetric parity behavior, the main solar features are reproduced: cyclic polarity reversals, mid-
latitudinal equatorward migration of strong toroidal field, poleward migration of polar surface radial fields, 
and the quadrature phase shift between both. Long-term variability of the solutions exhibits lenghty periods 
of minimum activity followed by posterior recovery, akin to the observed Maunder Minimum. Based on 
the analysis of the residual activity during periods of minimum activity, we suggest that these are caused by 
a predominance of the α-effect over the Babcock-Leighton mechanism in regenerating the poloidal field.

Key words: solar dynamo, solar cycle, sunspots, magnetohydrodynamics.

INTRODUCTION

The Sun is a magnetic active star, which undergoes periods of high and low magnetic activity approximately 
each 11 years. Its dynamical behavior imposes important consequences to the terrestrial environment, not 
only producing magnetic storms, which affect satellite operation (Baker 2000), but also possibly having an 
important role in Earth’s climate long-term variability (Haigh 2003).

By magnetic activity we understand the appearance of sunspots, characterized by their lower luminosity 
(in comparison with the overall photosphere) and intense magnetic fields (Solanki 2003). Sunspots usually 
appear in pairs of opposite polarities roughly aligned with the E-W direction, as the superficial signature of 
concentrated azimuthal magnetic fields (toroidal flux tubes), arising from the deep of the convection zone by 
magnetic buoyancy (Parker 1979). It is important to mention that the alignment with the equatorial direction 
is not perfect: sunspot pairs often display a systematic tilt, the leading spot being nearer the equator than 
the following one ‒ Joy’s law. Sunspots generally appear within a 30° latitudinal band in each side of the 

Correspondence to: Sabrina Sanchez
E-mail: sabrina@on.br

http://dx.doi.org/10.1590/0001-37652014111212

11-26



An Acad Bras Cienc (2014) 86 (1)

12 SABRINA SANCHEZ et al.

equator, displaying opposite polarity configuration in each hemisphere ‒ Hale’s polarity law. As the activity 
cycle is initiated, sunspot appearance migrates towards the equatorial region, and after the end of the 11 years 
cycle they begin again to appear at approximately 30° latitude, but with an opposite polarity configuration. 
This means the full magnetic sunspot cycle lasts for twice the activity period. Moreover, sunspots cyclic 
appearance is directly linked with the variability of the large-scale solar magnetic field: during episodes of 
maximum activity, the polar magnetic field undergoes polarity inversion (Makarov et al. 2001).

All such outstandingly well organized features of the dynamical solar magnetic field originate from 
a natural dynamo process. The magnetic field is regenerated against ohmic dissipation by electromagnetic 
induction - convective motions (comprising large-scale, laminar and small-scale turbulent flows) produce 
electric currents which generate, in turn, secondary magnetic fields thereby maintaining the field (see 
Ossendrijver (2003) for a review on the subject). These features also indicate that the large-scale magnetic 
field can be decomposed into two main evolving components whose phases are shifted: the toroidal 
(azimuthal) magnetic field, associated with sunspots, and the poloidal (meridional) field, represented by 
the polar field. Despite the regular character evidenced by the solar cycle, it also undergoes amplitude and 
frequency fluctuations (Hathaway 2010). The most striking examples of this variability are the periods 
of minimum activity, such as the Maunder Minimum. During this episode, which took place from nearly 
1645 AD to 1715 AD, sunspots were rarely seen. However, indirect data indicated the persistence, although 
weak, of the solar cycle (Beer et al. 1998). Much discussion exists on the cause of this peculiar variability, 
and how the answers could help access unconstrained properties of the solar dynamo mechanism.

Modeling of the solar dynamo has shed light into some of the main processes responsible for the solar 
cycle (Charbonneau 2010). The three processes (α-effect, Ω-effect, and Bacbcock-Leighton mechanism) 
discussed in the following are illustrated in Figure 1.

Figure 1 - Representative scheme of the main processes thought to occur during the solar cycle, departing from (a), an initial 
poloidal field. (b) and (c) represent the generation of the toroidal field by differential rotation - the Ω-effect. (d) and (e) show 
the effect of cyclonic turbulence on former toroidal fields, creating small-scale secondary poloidal magnetic fields - the α-effect. 
Averaged, they result in a net electromotive force generating a new large-scale poloidal field (f), closing the first half part of the 
magnetic cycle with a new poloidal field (g), with opposite polarity than the initial one. (h) represents the beginning of the Babcock-
Leighton mechanism: toroidal flux tubes buoyantly rise to the surface forming sunspots, tilted bipolar regions. In (i), the fields 
from the bipolar regions diffuse and reconnect with each other and with the polar fields. The resulting poloidal flux is advected by 
meridional circulation to the poles (j), generating the final large-scale poloidal field in (g).
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The Ω-effect symbolizes the shearing action of the diferential rotation of the flow on an initial poloidal 
field, giving rise to a toroidal field. Through the advent of helioseismology, the large-scale flow has been 
mapped in detail (Schou et al. 1998). The region of strongest angular velocity gradients, and so the preferred 
site for the Ω-effect, was found to be at the base of the convection zone: the tachocline (Howe et al. 2000). 
Turbulent motions associated with the Coriolis force, in turn, twist the toroidal field, generating a new 
component of the poloidal field and thus maintaining the solar cycle (Parker 1955). This latter process is 
known as the mean-field α-effect, and unlike the Ω-effect, is far from being totally understood, as well as 
the preferred place for its action. It is also known that the Lorentz force back-reaction of strong magnetic 
field inhibits turbulence, so the conventional α-effect would not lead to great effectiveness in regenerating 
the poloidal field in a dynamo within a strong magnetic field regime (Cattaneo and Hughes 1996). Other 
mechanisms, like interface dynamos, would overcome this problem, for the αΩ process would occur in 
the stably stratified layer comprising the tachocline (Parker 1993).

Alternatively, the Babcock-Leighton mechanism may have an important role on the poloidal field 
regeneration. Differently from the mean α-effect, the Babcock-Leighton mechanism relies on the diffusion 
of the sunspots magnetic field, operating at the solar surface (Babcock 1961, Leighton 1969). However, the 
mechanism behind sunspot formation remains elusive (e.g. Guerrero and Käpylä (2011)), making it difficult 
to specify the exact nature of the Babcock-Leighton process in a model. In addition, magnetic pumping at 
the base of the convection zone provides an interesting complement to the Babcock-Leighton scenario (e.g. 
Guerrero and Gouveia Dal Pino (2008)).

Axisymmetric numerical models of the solar dynamo are widely used as a tool to investigate the relevance 
of the main effects supposed to govern the solar cycle (Charbonneau 2010). Many of the solar features are 
well reproduced by numerical models, but no agreement is achieved considering the particular causes. The 
variability of the solar cycle, for example, is generally explained either by stochastic forcing (Choudhuri 1992, 
Charbonneau and Dikpati 2000) or by dynamical nonlinearities (Bushby 2006). Alternatively, simple forms 
of time-delays arising from the spatial decoupling of the α and Ω operation places in the solar convection 
zone (like in the Babcock-Leighton case) are known to also yield long-term modulation of the solar cycles 
(Wilmot-Smith et al. 2006, Jouve et al. 2010), even reaching a chaotic behavior (Charbonneau et al. 2005). 
In this paper we use a 2D kinematic solar dynamo model merging concepts of the mean-field theory and the 
Babcock-Leighton mechanism, accounting for different magnetic field strength-limiting thresholds, in order 
to achieve solar-like long-term variability.

MODEL FORMULATION

To access the variability of the magnetic field in the kinematic context of the solar dynamo, in which the 
flow field is steady and prescribed, the problem reduces to solving the MHD induction equation for the 
magnetic field B

@B
@t  = r×(U×B) ‒r× (ηmr ×B), (1)

where U is the flow field and ηm the magnetic diffusivity. To a first approximation, the large-scale magnetic 
and flow fields can be represented as contributions of their large-scale mean and small-scale fluctuating 
parts, B = 〈B〉+b' and U = 〈U〉+u', respectively. Upon substitution of these quantities in equation (1), and 
proper averaging, we get the mean-field induction equation (Moffatt 1978), given by
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@〈B〉
@t  = r×(〈U〉 × 〈B〉) +r× (〈u' × b'〉) ‒ r× ηmr × 〈B〉, (2)

The term 〈u' × b'〉 corresponds to a mean electromotive force E arising from the interactions of 
turbulent motions with the small-scale magnetic field. It can thus be written in terms of a parameterization 
of the turbulent effects on the mean magnetic field as E = αB ‒ βr × 〈B〉. Substitution in the mean-field 
induction equation (2) gives

@B
@t  = r×(U × B) +r× (αB) ‒ r× ηr × B, (3)

in which the averaging brackets have been omitted, and will remain so throughout. The α term represents 
the turbulent magnetic helicity, due to cyclonic motions oriented by the Coriolis force and η = ηm+ β is now 
the effective magnetic diffusivity, covering both magnetic diffusion at the microscopic level and turbulent 
diffusion, respectively.

An additional important issue arises from working within the kinematic context: how should one deal 
with the feedback of the magnetic field on fluid motions (the Lorentz force)? Since the Navier-Stokes 
equation is not solved, this effect ought to be parameterized in the induction equation. This must be done in 
a way which enforces the saturation of the magnetic field, based on the equipartition of energy between its 
small-scale magnetic and turbulent kinetic components. Generally, in the mean-field context, the resulting 
quenching of the magnetic field is heuristically formulated as a decreasing function of its intensity,

α(B) = α0

1+(
B

Beq)
2 (4)

Beq being the equipartition magnetic field and α0 a typical value characterizing the α-effect. Studies of 
magnetoconvection on the solar interior give Beq ~ 104 G (Fan 2009), and lead to conjectures that a turbulent 
α-effect would not represent an effective dynamo mechanism (Cattaneo and Hughes 1996).

Alternatively to the conventional α-effect, Babcock (1961) and Leighton (1969) suggested that 
the diffusion of the magnetic field of sunspot pairs played a crucial role on the process of poloidal field 
regeneration. The bipolar sunspot regions are tilted in a way as the magnetic field of the leading spot, nearer 
the equator, diffuses and reconnects with the field of the leading spot at the other hemisphere, which has 
nearly always an opposite polarity. At the same time, the magnetic field of the following spot will also 
decay and connect with the polar magnetic field, which has opposite polarity. This process will at some 
point annihilate the flux in the polar region, causing a poloidal polarity reversal. In this case the poloidal 
and toroidal fields regeneration processes are spatially separated (recall Figure 1h to Figure 1j); means of 
transportation of the new polar surface magnetic flux generated by the Babcock-Leighton mechanism to the 
bottom of the convection zone is necessary. Facing this requirement, initially a meridional circulation flow 
was assumed in Babcock-Leighton dynamo modeling. As a matter of fact, a poleward meridional flow is 
indeed observed at the solar surface (Duvall Jr 1979). Numerical models comprising this additional physical 
ingredient are termed flux-transport dynamos and they are usually successful in reproducing the equatorward 
tendency of the toroidal field (Küker et al. 2001). In summary, the meridional flow not only acts as a means 
to transport the polar surface magnetic field down to the base of the convection zone where it is transformed 
into a toroidal field, but it drags the toroidal field towards the equator as well, yielding a solar-like behavior 
of the magnetic field. However, the meridional flow profile used in such models is questionable, for it 
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usually consists of a single meridional cell per hemisphere, with a return flow penetrating deep into the 
convection zone. From full MHD simulations, the resulting pattern of meridional circulation is thought to 
be far more complex, being divided into smaller cells in each hemisphere (e.g. Brun et al. (2004)).

Simulations of the rising of thin magnetic toroidal flux tubes from the base of the convection zone suggest 
that for matching the observed tilts, the flux tubes generating sunspots would need to have an initial magnetic 
field strength ranging from approximately 104 to 105 G. Stronger toroidal flux tubes tend to reach the solar 
surface with almost no tilt, while weaker flux tubes arise at too high latitudes (D’Silva and Choudhuri 1993), 
hence in contradiction with Joy’s law. The Babcock-Leighton mechanism should therefore depend upon the 
initial intensity of the toroidal flux tube at the base of the convection zone, just above the tachocline.

Despite the observations supporting the Babcock-Leighton mechanism, much discussion exists on 
whether it is the unique responsible for the poloidal field regeneration, an active but not unique component 
of this part of the cycle, or yet a minor contributor to the whole process. The first possibility is unlikely, as 
a dynamo based only on the Babcock-Leighton mechanism is not self-sustainable - it needs the formation 
of sunspots, and therefore operates only above critical toroidal magnetic field buoyancy values. A probable 
scenario is that an additional α-effect operates in the convection zone, and the resulting magnetic field is the 
combined product of both poloidal field regeneration processes.

Numerical simulations based on the Babcock-Leighton mechanism have the tendency to produce 
equatorially symmetric solutions, in opposition to what is observed in the Sun (Chatterjee et al. 2004). Recent 
results have shown that an α-effect located within a thin layer just above the tachocline is more successful at 
yielding equatorially antisymmetric solutions (Bonanno et al. 2002, Dikpati and Gilman 2001). In this study, 
we focus on this scenario for the location of the α-effect (although other options are possible, see for instance 
Käpylä et al. (2009)). Residual turbulent motions acting on toroidal flux tubes right above the tachocline, 
before these reach a critical strength and become buoyant, support such a disposition of the α-effect. This 
concept is applied in the present model, in addition to the Babcock-Leighton effect at the solar surface.

MATHEMATICAL DESCRIPTION

Under the assumption of axisymmetry, the magnetic and flow fields are written in terms of their poloidal 
and toroidal components in spherical coordinates (r, θ, ϕ) as

B(r, θ, t)    =    r × [Aϕ(r, θ, t)êϕ] + Bϕ(r, θ, t)êϕ, (5)
U(r, θ)    =    up(r, θ) + r sin θ Ω(r, θ)êϕ, (6)

in which Aϕ is the poloidal potential and Bϕ(r, θ, t)êϕ is the toroidal field. The steady flow profile U is given by the 
meridional circulation up and the differential rotation Ω. The poloidal-toroidal decomposition of the magnetic field 
enables a separation of the mean-field induction equation (3) into two partial differential equations for Aϕ and Bϕ,

@Aϕ
@t  + Rm

r sin θ  up · r(r sin θAϕ)    =    η~p(r
2 ‒ 1

r2 sin θ2)Aϕ

(7)+    Cαα(r, θ; Bϕ)Bϕ + CS S(r, θ; Bϕ
tc)Bϕ

tc,

@Bϕ
@t  + Rm r sin θr·(

up Bϕ
r sin θ)    =    η~t(r

2 ‒ 1
r2 sin θ2)Bϕ

+    1r  @η~t
@r  @(rBϕ)

@r  + CΩ r sin θ (r × Aϕ êϕ)·(rΩ). (8)



An Acad Bras Cienc (2014) 86 (1)

16 SABRINA SANCHEZ et al.

The appearance of the three numbers quantifying the strength of the processes discussed in the 
introduction, namely

CΩ    =    ΩeqR2/ηs,
Cα    =    α0R/ηs,
CS    =    S oR/ηs,

and of the magnetic Reynolds number,

Rm = uoR/ηs,

results from the nondimensionalization of the equations using the solar radius R as the characteristic length 
scale and the effective magnetic diffusion time R2/ηs as the characteristic time scale. Bϕ

tc is the toroidal 
field just above the tacholine; Ωeq, αo, So and uo are the rotation rate at the equator, the typical magnitudes 
of the poloidal source terms, and the peak velocity of the meridional flow at the surface. η~p and η~t are the 
normalized effective magnetic diffusivities for the poloidal and toroidal components, respectively. Note 
that the extra α-term that would arise in equation (7) has been neglected, as it is common in the solar case 
approximation to suppose that CΩ À Cα. The flow specifications, up and Ω are the same as the ones used in 
the reference work of Dikpati and Charbonneau (1999), and are shown in the left panels of Figure 2. In this 
paper, the tachocline will comprise the region from the top of the radiative zone rr = 0.6R, to the top of the 
region with the largest radial angular velocity gradients, rtc = 0.7R.

Figure 2 - Specifications of the model. Left: isocontours of Ω(r, θ) based on an analytical fit of the differential rotation profile from 
helioseismology data. Center: meridional circulation streamlines (full line - counterclockwise flow, dotted line - clockwise flow). 
Right top: α and Babcock-Leighton poloidal source radial profiles. Right bottom: effective magnetic poloidal (continuous line) and 
toroidal (dashed line) diffusivity radial profiles.
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It is worth noticing that the S term, representing the Babcock-Leighton poloidal regeneration process 
at the surface, has been added in an ad-hoc manner to equation (7). Unlike the α-term, it is non-local - it 
depends on the toroidal field at the tachocline. This comes from the latitudinal tilt given by Joy’s law being 
rather dependent on the initial magnetic field strength of the rising flux tube, therefore at the tachocline 
(D’Silva and Choudhuri 1993).

The α-effect in equation (7) must be suppressed for magnetic field strengths above a limiting value 
associated with energy equipartition. Therefore, the α-term will be written following equation (4), as

α(r, θ; Bϕ) = 
1

1+(
Bϕ

Beq)
2
 fα(r, θ), (9)

where Beq = 104 G and fα(r, θ) is a function of spatial coordinates given by

fα(r, θ) = 14 [1 + erf(
r ‒ r1

d1 )][1 ‒ erf(
r ‒ r2

d2 )]cos θ sin θ, (10)

where r1 = 0.675R, r2 = 0:725R and d1 = d2 = 0:01R. This function constrains the α-effect to a thin layer 
at the base of the convection zone, just above the tachocline, and to mid-latitudes. As mentionned above, 
other options are possible, but the detailed exploration of these is beyond the scope of the present study. 
(In passing, we tried the end-member case of a quasi-homogeneous distribution of α, which can produce a 
solar-like dynamo, but over a limited range of Cα, 1 <~ Cα <~ 3.) Similar conjectures apply to the Babcock-
Leighton S source term in equation (7), with the difference that it operates between lower and upper limiting 
values,

S(r, θ; Bϕ
tc

 ) = 14 [1+erf (Bϕ
tc

 
2 ‒ Bϕ

tc
 
2

min)][1‒ erf (Bϕ
tc

 
2 ‒ Bϕ

tc
 
2

max)] fS (r, θ). (11)

Here Bϕ
tc

min = 104 G, Bϕ
tc

max= 105 G and the radial and latitudinal distribution fS (r, θ) is given by

fS(r, θ) = 14 [1 + erf(
r ‒ r3

d3 )][1 ‒ erf(
r ‒ r4

d4 )]cos θ sin θ, (12)

where r3 = 0.95R, r4 = 1.0R and d3 = d4 = 0.01R, restricting the Babcock-Leighton mechanism to the near-
surface layers. The radial profiles of the α and S poloidal source terms are shown in the top right panel of 
Figure 2.

The effective diffusivity follows the concept of Chatterjee et al. (2004), who parameterize the suppression 
of turbulent diffusion by separating the diffusivity into a poloidal component ηp and a toroidal component ηt.

ηp = ηr + ηs 
1
2 [1 + erf(

r ‒ r5
d5 )], (13)

ηt = ηr + ηcz 
1
2 [1 + erf(

r ‒ r6
d6 )] + ηs 

1
2 [1 + erf(

r ‒ r7
d7 )], (14)

in which r5 = 0.7R, r6 = 0.72R, r7 = 0.95R and d5 = d6 = d7 = 0.025R. Such separation comes from the fact 
that the toroidal field, at least in the deeper layers, tends to be much more intense than the poloidal field, and 
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therefore more effective in suppressing turbulent diffusion. ηr is the diffusivity near the radiative zone, 
ηcz the diffusivity in the turbulent convection zone associated with the toroidal magnetic field, and ηs 
the diffusivity in the radial surface layers and for the weaker poloidal field. They are set in this study to 
ηr = 5 × 108 cm2/s, ηcz = 1×1010 cm2/s and ηs = 3 × 1011 cm2/s. The corresponding radial profiles are shown 
in the bottom right panel of Figure 2.

NUMERICAL SIMULATION

Given the physical ingredients described in the previous section, equations (7) and (8) are solved numerically 
over a regular grid in an annular meridional plane covering θ 2 [0, π] and r 2 [0.6, 1], that is, from slightly 
below the tachocline up to the solar surface. The boundary and initial conditions are the following: the inner 
boundary condition is set as to represent the radiative zone as a perfect conductor. An approximation of this 
condition gives that at rr = 0.6, Aϕ = Bϕ = 0 (Chatterjee et al. 2004). The outer boundary condition is that of a 
vacuum region, requesting the magnetic field to connect with a potential field in the exterior region (Dikpati 
and Charbonneau 1999). As for the initial condition, we use a dipolar field permeating the convective 
envelope. In this case, Aϕ = sin θ/r2 for R ≥ r ≥ 0.7R and zero elsewhere, whereas Bϕ = 0 everywhere.

The solution procedure was performed by an adaptation of the Parody code (Dormy 1997, Dormy et 
al. 1998, Aubert et al. 2008), based on a pseudo-spectral method. It rests on a spherical harmonic expansion 
of the angular dependence of the poloidal and toroidal scalars and finite differences in the radial direction. 
More details on the code, including benchmarks with published numerical solutions (Jouve et al. 2008), are 
presented in the Appendix. The results presented in the following were obtained with spectral truncation 
Lmax = 65, number of radial points Nr = 65 and a constant, non-dimensional time stepping size Δt = 5 × 10‒6.

RESULTS

On the basis of helioseismic data (Ωeq = 2π × 460.7 nHz), we fix CΩ = 4.7 × 104, in which case variations 
of the free parameters Cα, CS and Rm allow for a broad range of solutions. Meridional circulation measured 
at the solar surface at mid-latitudes displays an average value of 15 m/s. Considering Rm varying around 
this value, from 318 to 378, the minimum configuration for a proper dynamo solution consists of Cα =~ 2 and 
CS =~ 0.5. In order to access the solar representativeness of the solution, some observable aspects should be 
matched (Charbonneau 2010):

1. Cyclic polarity reversals with approximately 11 years periodicity;

2. Strong deep toroidal fields (~ 104 ‒ 105 G) at a 30° latitudinal belt migrating equatorward;

3. Poleward migration of the polar radial field (~ 10 ‒ 100 G);

4. Phase lag of π/2 between the deep mid-latitudinal toroidal and surface polar fields;

5. Antisymmetric coupling of the magnetic fields between the hemispheres;

6. Long-term variability of the solar cycle.

A useful way to analyze the solar semblance of the simulated results is to display the magnetic field 
in a time-latitude map and compare it with proper synoptic magnetograms and sunspot butterfly diagrams 
(Hathaway 2010). A reference solution of the model is displayed in this form in Figure 3, in which the 
surface polar field contours are superimposed with the grayscale map of the toroidal field just above the 
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tachocline (rtc = 0.7R). This case was chosen because it meets most of the obserational requirements listed 
above. Criterion 1, for example: the periodicity associated with the solar cycle is of 10.95 years. The main 
dependence of the periodicity resides on the strength of meridional circulation, a well-known characteristic 
of flux-transport dynamos (Dikpati and Charbonneau 1999). Using a similar model as the present one, 
Charbonneau et al. (2005) observed the persistent key part played by the meridional circulation in setting 
the cycle periodicity.

The magnetic field morphology presented in criteria 2 and 3 is also achieved, even though the polar 
strength of most of the solutions (peaking at 1,700 G of the reference case in Figure 3) is an order of 
magnitude higher than the observed one. A phase lag of approximately π/2 between poloidal and toroidal 
fields cited in criterion 4 is also a general property of flux-transport Babcock-Leighton models (Dikpati and 
Charbonneau 1999).

Figure 3 - Butterfly diagram of the dynamo solution corresponding to CS = 1.0, Cα = 8.0 and Rm = 318. The gray scale map 
represents the toroidal field at the tachocline, whereas high latitude black and white contours represent the radial field at the solar 
surface, with a maximum value of 1,700 G.

On the other hand, the parity requirement 5 is still an issue. Although accounting for an α-effect at a 
thin layer above the tachocline was thought to help yielding anti-symmetric solutions (Dikpati and Gilman 
2001, Bonanno et al. 2002), the parity coupling is not straightforward in this model. Actually, there does 
not seem to exist a clear preferred mode for the solutions: they vary between periods of symmetric, anti-
symmetric and out of phase modes. In the reference case, as it is noticeable in Figure 3, the activity within 
each hemisphere is slightly out of phase. This probably originates from the chaotic nature of the solutions. 
For higher CS and Cα, there is a tendency for the magnetic field to evolve independently in each hemisphere, 
with no stable phase lag.

Charbonneau et al. (2005) analyzed the general chaotic behavior in a Babcock-Leighton dynamo 
and ascribed its cause to time-delays connected with the spatial segregation of the toroidal and poloidal 
field regeneration processes. Long-term variability (recall item 6 above) is a consequence of a chaotic 
behavior. Figure 4 displays the evolution of the toroidal magnetic field energy at a certain latitude (toroidal 
magnetic field energy is generally used as a proxy for activity cycle amplitude). We observe frequent short periods 
of minimum activity with a duration of approximately 3 solar cycles – we typically get 8 of these every 1,000 yr. 
Moreover, the model also reveals periods of extended minimum activity, reminiscent of the Maunder Minimum, 
in which the cycle is apparently not fully developed, but persists with a kind of residual activity, lasting for 
approximately 500 years.
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The residual activity episode in Figure 4a suggests that there are two different regimes for the large-
scale magnetic field behavior. In the same figure, we show the evolution of the spatial distribution of the 
poloidal and toroidal magnetic fields in the meridional plane at different epochs, one during regular activity 
(Figure 4b) and another during the episode of solar quiescence (Figure 4c). During the normal activity 
period, the magnetic field is mainly large-scale. At the tachocline, a strong toroidal field is created by the 
shearing effect of differential rotation, from this toroidal field, a poloidal field is created at the solar surface 
by means of the Babcock-Leighton mechanism. The role of the meridional circulation in setting the timing 
of the solar cycle is clear: the flow transports the toroidal field at the botton of the convection zone towards 

Figure 4 - (a) Time series of the toroidal magnetic energy at the tachocline at 20° latitude for the reference solution. In addition to 
the clear modulation of the solar cycle note the presence of an extended period of minimum activity. (b) and (c) show the toroidal 
magnetic field (gray scale map) and poloidal potential (contours) on a meridional plane at different times (during a normal phase 
and a quiescent phase, respectively).
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the equator, which generates the solar-like orientation of the butterfly diagram (recall Figure 3). On the 
other hand, during the quiescent period (recall Figure 4c), the magnetic field is small-scale and the solar 
cycle is confined to the bottom of the convection zone. These differences point to a drastic change in the 
underlying dynamo mechanism. To investigate this further, we now analyze separatedly the α-effect and the 
Babcock-Leighton mechanism in two distinct dynamo models.

Figure 5 shows the toroidal magnetic energy time series of those two models. The poloidal and toroidal 
fields during half a solar cycle are also shown in the meridional planes. In the Babcock-Leighton case 
(Figure 5a), the solar cycle evolution is smooth and tends to display a persistent weak-strong amplitude 
bundling configuration (therefore with twice the cycle period). This feature, resembling the observed solar 
pattern known as the Gnevyshev-Ohl rule, is also a consequence of the time delays inherent to the Babcock-
Leighton mechanism (Charbonneau et al. 2007). The meridional plots of the magnetic field in Figure 5b 
show that B is large scale, which matches the overall description of the normal activity period of the 
reference model, depicted in Figure 4b. In the case of a pure Babcock-Leighton scenario, the toroidal field 
shows a moderate level of antisymmetry about the equator.

The situation is different in the pure α-effect case, shown in Figures 5c and 5d: the typical amplitude of 
any given cycle is much lower than in the pure Babcock-Leighton scenario, the cycle period is about twice as 
long, and there are additional high frequency oscillations superimposed to the solar cycle. Figure 5d shows 
that in contrast with the situation of a Babcock-Leighton dynamo, the field is mostly small-scale, in agreement 
with the appearance of higher frequencies in the α-effect model time-series (see the power spectra in 5c).

Aware of the different behaviors concerning the different poloidal field regeneration processes, it is 
possible that the period of minimum activity involves the preponderance of the tachocline α-effect over the 
Babcock-Leighton mechanism. In such a case, lower initial poloidal fields would result in the generation 
of toroidal field below the buoyancy instability limit, leading to few sunspot formations. The long-term 
solar cycle variability would then be mainly driven by the tachocline α-effect, generating weak toroidal 
fields during periods of minumum activity, but being able to restart the Babcock-Leighton mechanism 
when the upper threshold of toroidal field strength is achieved. This situation is reminiscent of observed 
minimum activity periods, such as the Maunder Minimum. In addition, note that this long-lasting quiescent 
situation is rather rare in our model: only twice did we observe quiescent periods lasting for more than 500 
years in our 20,000 year long integration (short-lived quiescent periods are more frequent, see above). It 
is also worth mentioning that because of the decoupling of the magnetic field between hemispheres, the 
minimum activity episode of Figure 4a neither starts nor ends simultaneously in the North and in the South. 
In this case, the southern hemisphere enters the minimum activity phase approximately 200 years after the 
northern hemisphere.

Most of the mean-field kinematic solar dynamo simulations able to reproduce the minimum activity 
periods rely either on the introduction of stochastic forcings (Charbonneau 2005), or on the somehow 
arbitrary manipulation of the meridional flow and/or Babcock-Leighton poloidal sources (e.g. Karak 
(2010)). Here, on the account of the results we presented, we may argue that the α-effect located at the 
tachocline effectively replaces the stochastic forcing in producing long-lasting phases of minimum activity.

CONCLUSIONS

In view of the not self-sustainable character of a solar dynamo relying only on the Babcock-Leighton 
mechanism for poloidal field regeneration, we have considered an additional α-effect operating in a thin 
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Figure 5 - Characteristic behavior of the dynamo with (a) only Babcock-Leighton poloidal source (CS = 4.0) at the surface and (c) 
α-effect (Cα = 8.0) at the tachocline, for Rm = 378, showing the toroidal magnetic energy at the tachocline at 20° latitude and its 
power spectral. Similarly as in Figure 4, (b) and (d) show the magnetic field at a meridional plane for each case.

layer above the tachocline, originating from the turbulent effects on magnetic flux tubes just above a critical 
buoyancy level. Accounting for different limiting ranges of magnetic field on the operation of each effect, 
concerning their different natures, we have obtained a dynamo solution reproducing the basic solar magnetic 
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field dynamic features, namely: cyclic reversals with a ~ 11 year periodicity, equatorward migration of the 
activity belt, poleward migration of the polar radial field, proper phase lag between both, and long-term 
variability resembling the solar one.

Appropriate antisymmetric magnetic coupling between the hemispheres remains an issue, even if the 
location of the α-effect at the tachocline had been suggested as a way to solve the parity problem. In fact, 
the hemispheres appear to behave in a rather dissociated way, not showing any preferred relaxation mode. 
The decoupling may originate from the chaotic nature of the solution, making the magnetic field B evolve 
independently in each hemisphere. Further investigations on the parity topic are needed, possibly relying 
upon the joint spherical harmonic analysis of the modelled B and that of the B observed at the surface of the 
Sun (see e.g. Stenflo and Vogel (1986) and Derosa et al. (2012)).

Our study spontaneously presents a Maunder-like grand minimum which, in comparison with 
other studies based on similar mean-field kinematic dynamo models, does not require the addition 
of stochastic forcing to the right-hand side of the dynamo equations. We conclude by suggesting that 
grand minima periods could be caused by an intermittent phase of the solar dynamo, during which the 
sole deep and weak α-effect is responsible for the regeneration of the poloidal field. Why the transition 
from a Backbock-Leighton dominated regime to an α-effect dominated regime occurs remains a matter 
of investigation.
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RESUMO

Modelos do dínamo solar baseados no mecanismo de Babcock-Leighton obtiveram sucesso em reproduzir algumas 
das principais características da dinâmica do campo magnético do Sol. No entanto, considerando que tal mecanismo 
opera somente a partir de um limite mínimo do campo magnético, os modelos não proveem um processo apropriado de 
regeneração do campo que caracterize um dínamo autossustentável. Neste trabalho consideramos a existência de um 
efeito concomitante com o cenário disposto pelo modelo de Babcock-Leighton em um modelo numérico axisimétrico 
de campo médio. Diferentes fatores de limitação da intensidade do campo foram usados para os dois processos 
de regeneração do campo poloidal. Excetuando-se o critério da anti-paridade do campo magnético, as principais 
características do campo magnético solar foram reproduzidas: reversão cíclica, migração ao equador dos intensos 
campos toroidais em médias latitudes, deslocamento aos pólos do campo magnético polar na superfície, e a relação 
de anti-fase entre estes. A variabilidade de longo período das soluções exibe em alguns casos épocas duradouras de 
mínimo de atividade magnética e posterior recuperação, como no Mínimo de Maunder. Tendo como base a observação 
de uma atividade residual durante os períodos de mínima atividade, sugerimos que tais períodos são causados por uma 
predominância do efeito α sobre o mecanismo de Babcock-Leighton na regeneração do campo poloidal.

Palavras-chave: dínamo solar, ciclo solar, manchas solares, magnetohidrodinâmica.
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APPENDIX

PARODY CODE - MEAN FIELD BENCHMARKING

The Parody code used in this work was originally proposed for full 3D MHD dynamo simulations (ACD 
code, benchmarked in Christensen et al. (2001), see Dormy et al. (1998) and Aubert et al. (2008)). The 
magnetic field is decomposed according to

B = r × r × (Bp r) + r ×  (Bt r), (15)

and the scalar potentials further expanded on a spherical harmonic basis

Bp,t = 
Lmax

∑
`=1

Mmax

∑
m=1

Bp,t,`
m(r, t) Y`

m(θ, ϕ). (16)

The radial dependence is treated by a second-order finite-differencing scheme. Time integration uses a 
Crank-Nicholson scheme for diffusion terms and an Adams-Bashforth scheme of order 2 for the nonlinear 
terms. The actual equations to be solved are the radial curl and radial curl of the curled induction equation 
(1). Further adaptation to the axisymmetric (Mmax = 0) mean-field scenario included a change of the magnetic 
boundary conditon at the inner boundary, the specification of a steady flow in terms of a differential rotation 
and a meridional circulation, the construction of the proper diffusivity profiles and the addition of the α and 
S source terms to the right-hand side of the induction equation. The perfectly conducting inner boundary 
condition implies setting Bp = 0 and @(rBt) = @r = 0 at the inner boundary.

The code was tested by comparing its predictions with the published reference solutions of a community 
mean-field benchmark (Jouve et al. 2008). The goal here is to compute critical dynamo numbers and 
cycle frequencies for different dynamo models, involving either an αΩ scenario (cases A and B, differing 
only in the prescribed diffusivity) or a Babcock-Leighton scenario (case C). Table I displays the values 
obtained with our code against the reference ones. The butterfly diagrams for the supercritical cases SB and 
SC (which incorporate an α-quenching) are displayed in Figure 6.


