Impact of meteorological and social events on human-excreted contaminant loads in raw wastewater: From daily to weekly dynamics
Thomas Thiebault, Laëtitia Fougère, Emilie Destandau, Maxime Réty, Jérémy Jacob

To cite this version:

HAL Id: insu-02125305
https://hal-insu.archives-ouvertes.fr/insu-02125305
Submitted on 10 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Impact of meteorological and social events on human-excreted contaminant loads in raw wastewater: from daily to weekly dynamics

Thomas Thiebaulta*, Laëtitia Fougèreb, Emilie Destandaub, Maxime Rétyb,c, Jérémy Jacobd

a EPHE, PSL University, UMR 7619 METIS (SU, CNRS, EPHE), 4 place Jussieu, F-75005, Paris, France

b Univ Orleans, CNRS, ICOA, UMR 7311, 45067 Orleans, France

c Univ Orleans, CNRS, BRGM, Institut des Sciences de la Terre d’Orléans (ISTO), UMR 7327, 45071 Orleans, France

d Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198, Gif-sur-Yvette, France

*To whom correspondence should be addressed. E-mail: thomas.thiebault@ephe.psl.eu Phone: +33 (0) 1 44 27 59 97
Abstract

The temporal dynamics of the wastewater influent loads of 25 drug target residues (DTR, both pharmaceuticals and illicit drugs) was assessed during 84 consecutive days. This monitoring scale enables longer temporal patterns than weekday/weekend patterns to be explored. In this study, we focus on day to day variations and the potential statistical correlation of each DTR analyzed in order to better understand the potential forcings that lead to the load variation of DTRs (alone or in clusters). The weekly patterns based on the weekly loads of DTRs were also analyzed and the impact of social and meteorological events on their variations was investigated.

Two cold events occurred during the monitoring period and were associated with the highest loads of analgesics and non-steroidal anti-inflammatory drugs, as well as the lowest loads of stimulants. During the Easter holidays, a significant decrease in some year-long medication as well as analgesics was found, consistent with the demographic decrease within the catchment during this period. Lastly, a good correlation between the academic calendar and the loads of stimulants was found, emphasizing the overrepresentation of students in the consumption of recreational drugs.

This study furnishes new insights in order to better understand the variations in DTR loads in wastewater influents, beyond the weekday/weekend pattern and the seasonal effect. Further investigations remain necessary, especially a real-time monitoring of the population figures within the catchment in order to improve our understanding of these results.
1. Introduction

The occurrence of drug target residues (DTRs) of pharmaceutically active compounds and illicit drugs in numerous environmental compartments (Da Silva et al., 2011; Pal et al., 2013; Tamtam et al., 2008) raises serious concerns about their potential hazard for living beings (Brodin et al., 2013; Richmond et al., 2018). Hence, a significant part of the current literature focuses on both assessing the removal of organic contaminants in classical wastewater treatment plants (Subedi and Kannan, 2014; Thiebault et al., 2017a; Verlicchi et al., 2013), and on optimizing their removal based on tertiary treatments (Altmann et al., 2015; Rattier et al., 2014; Thiebault et al., 2016).

However, wastewater treatment plant influents (WWI) could also represent a tremendous source of information, due to the link between their chemical composition and the excretion of various chemical compounds by the population in the catchment (Castiglioni et al., 2014; Gracia-Lor et al., 2017a; Kasprzyk-Hordern and Baker, 2012). Several studies have demonstrated the consistency of such analyses on illicit drugs and pharmaceutically active compounds in order to back-calculate the consumption of the population (Baker et al., 2014; Jones et al., 2014; van Nuijs et al., 2009).

In the case of illicit drugs, this type of analysis reduces the uncertainty of classical consumption studies based on sociological surveys (Baz-Lomba et al., 2016; Ort et al., 2014), even if ethical questions remain prominent (Lancaster et al., 2019). This new scientific discipline has been called wastewater-based epidemiology and currently investigates not only chemicals consumed as pharmaceuticals, but also passive exposure to other markers such as industrial chemicals and pyrethroid pesticides (Choi et al., 2018; Lopardo et al., 2019; Rousis et al., 2017b).

While analyses of passive exposure provide useful information about the chemical quality of the environment (air, soil, water, etc.) (Rousis et al., 2017a), analyses of chemicals consumed as pharmaceuticals are useful to determine the behavior of a target population (Causanilles et al.,
Many studies have been carried out to characterize this type of specific behavior, especially from a geographical point of view, on a regional to a worldwide scale (Nefau et al., 2013; Thomas et al., 2012; Vuori et al., 2014; Yan et al., 2019). As a result, a significant amount of data is now available to distinguish different consumption behaviors around the world, but few studies have focused on the temporal dynamics of human-excreted pollutants. Among these temporal dynamics the weekly pattern of stimulants (i.e. cocaine, ecstasy) that are significantly more excreted/consumed during the weekend than on weekdays is nevertheless well-established (Gatidou et al., 2016; Papageorgiou et al., 2016; van Nuijs et al., 2011). Beyond this pattern, studies have especially focused on special events, such as sport events, in order to assess the specific behavior associated with this type of event (Gerrity et al., 2011; Sodré et al., 2017), or on the seasonality in the use of antibiotics or anti-influenza drugs (Azuma et al., 2013; Coutu et al., 2013; Golovko et al., 2014). However, no studies have explored the daily variations in pharmaceutically active compounds and illicit drugs, and the impact of external parameters on these daily loads. An initial exploration is the recent study by O’Malley et al. (2019) which found a relationship between latitude, temperature and the use of organic UV filters. Hence, in the present study, we propose to assess the external forcings that could impact the daily/weekly evolution of the loads of 25 DTRs (both illicit drugs and pharmaceuticals) which were analyzed in WWI during 84 consecutive days in 2016. Based on the knowledge of some variations in the catchment (i.e. holidays, temperature) and intrinsic variations in the WWI parameters, this study aims to advance our understanding of the temporal dynamics of DTR loads during long term monitoring by: (i) characterizing the statistical correlation between DTR loads, (ii) assessing the correlation between classical WWI parameters and DTR loads and (iii) determining the impact of external forcings on DTR load variations.
2. Material and methods

2.1. Sample collection and general setting

WWI were collected each day during 84 consecutive days, between March 21st and June 11th 2016 except on March 31st, providing a set of 83 samples. Sampling consisted of a flow-enslaved composite with a sampling of 50 mL every 30 m³ of WWI between 0h00 and 23h59. This corresponds to a mix of 167 samples per day for the mean flow value. The chemical parameters of WWI during the study are given in Table S1. Among them, we focused especially on the daily variations in chemical oxygen demand (COxD), suspended solids (SS) and total phosphorus (TP) due to the greater number of analyses (n=24). Mean temperature values were retrieved from the Météo-France database (www.meteofrance.fr). The exact emplacement of the investigated WTP will not be disclosed in this study, in accordance with the request of the local authorities and ethical guidelines (Hall et al., 2012; Prichard et al., 2014).

The same dataset was used as in our previously published paper which aimed to characterize the consumption of pharmaceuticals and illicit drugs within the catchment (Thiebault et al., 2017b). In the present article, the data processing focuses on the temporal dynamics rather than on the back-calculation of consumption.

2.2. Chemical Reagents

Standards for acetaminophen (ACM), atenolol (ATE), bezafibrate (BZB), carbamazepine (CBZ), codeine (COD), diclofenac (DCF), ibuprofen (IBP), ketoprofen (KET), metoprolol (MET), oxazepam (OXA), salicylic acid (SCA), sulfamethoxazole (SUL), tramadol (TRA) and trimethoprim (TMP) were purchased from Sigma-Aldrich with a purity > 98%. The standards for 6-monoacetylmorphine (6MAM), amphetamine (AMP), benzoylecgonine (BZE), buprenorphine
(BUP), cocathylene (CET), cocaine (COC), heroin (HER), 3,4-methylene-dioxy-N-methyamphetamine (MDMA), methadone (METD), morphine (MOR) and 11-nor-delta-9-hydroxytetrahydrocannabinol (THC) were purchased from LGC Standards. Extraction and separation solvents, methanol (MeOH) and acetonitrile (AcN) were purchased from Fisher-Scientific, assuming an analytical grade (purity up to 99.95%).

2.3. Sample Preparation

After collection, WWI were filtered with glass-fiber filters (GF/F, Whatman) prior to solid-phase extraction (SPE). SPE was carried out using Chromabond HR-X cartridges (6 mL x 500 mg, Macherey-Nagel). Cartridges were conditioned with 6 mL of MeOH followed by 6 mL of ultra-pure water. Then, the cartridges were filled with 250 mL of WWI prior to flushing with 6 mL of ultra-pure water before drying for 30 minutes under vacuum. Finally, elution of DTR was performed with 6 mL of MeOH before drying under nitrogen flow and storage at -10°C.

2.4. Quantification and validation

The quantification and validation procedures were already presented in detail (Thiebault et al., 2017b). The equipment and analytical procedures are detailed in the supplementary material. Quantification performances are given in Table 1. Further information on the analytical setup can be found in Table S2.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>DTR</th>
<th>Matrix Effect ± SD (%)</th>
<th>Recovery Ratio ± %SD (%)</th>
<th>MDL ng.L⁻¹</th>
<th>MQL ng.L⁻¹</th>
<th>Linearity</th>
<th>Instrument Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intra-day (%)</td>
<td>Inter-day (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUL</td>
<td>Sulfamethoxazole</td>
<td>91 ± 1.58</td>
<td>79.7 ± 9.00</td>
<td>0.2</td>
<td>0.5</td>
<td>0.9998</td>
<td>2.1</td>
</tr>
<tr>
<td>TMP</td>
<td>Trimethoprim</td>
<td>109 ± 0.43</td>
<td>71.4 ± 3.81</td>
<td>0.1</td>
<td>0.4</td>
<td>0.9999</td>
<td>2.8</td>
</tr>
<tr>
<td>NSAIDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBP</td>
<td>Ibuprofen</td>
<td>108 ± 4.28</td>
<td>78.9 ± 3.63</td>
<td>0.9</td>
<td>2.8</td>
<td>0.9772</td>
<td>6.8</td>
</tr>
<tr>
<td>DCF</td>
<td>Diclofenac</td>
<td>188 ± 0.40</td>
<td>62.9 ± 2.00</td>
<td>0.3</td>
<td>0.8</td>
<td>0.9994</td>
<td>2.4</td>
</tr>
<tr>
<td>KET</td>
<td>Ketoprofen</td>
<td>123 ± 1.73</td>
<td>67.4 ± 5.36</td>
<td>0.6</td>
<td>1.9</td>
<td>0.9998</td>
<td>4.6</td>
</tr>
</tbody>
</table>
Table 1: Analytical parameters and performance of the selected contaminants with NSAIDs for non-steroidal anti-inflammatory drugs, SD the standard deviation, MDL and MQL the method detection limit and method quantification limit respectively

<table>
<thead>
<tr>
<th></th>
<th>Compound</th>
<th>Quantity</th>
<th>SD (µg)</th>
<th>Relative standard deviation (%)</th>
<th>MDL (µg)</th>
<th>MQL (µg)</th>
<th>RSD (%)</th>
<th>MDL/MQL</th>
<th>MQL/MQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Salicylic Acid</td>
<td>188 ± 0.70</td>
<td>22.1 ± 0.924</td>
<td>0.4</td>
<td>1.3</td>
<td>0.9997</td>
<td>2.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>ACM</td>
<td>Acetaminophen</td>
<td>349 ± 0.29</td>
<td>99.6 ± 9.99</td>
<td>0.6</td>
<td>1.7</td>
<td>0.9998</td>
<td>4.6</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATE</td>
<td>Atenolol</td>
<td>117 ± 1.38</td>
<td>68.3 ± 3.56</td>
<td>0.3</td>
<td>0.8</td>
<td>0.9998</td>
<td>2.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>MET</td>
<td>Metoprolol</td>
<td>113 ± 1.67</td>
<td>79.4 ± 2.62</td>
<td>0.1</td>
<td>0.2</td>
<td>0.9998</td>
<td>2.4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>OXA</td>
<td>Oxazepam</td>
<td>168 ± 1.42</td>
<td>103.5 ± 1.15</td>
<td>2.3</td>
<td>6.4</td>
<td>0.9994</td>
<td>2.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>CBZ</td>
<td>Carbamazepine</td>
<td>142 ± 0.48</td>
<td>101.1 ± 4.75</td>
<td>1.6</td>
<td>4.6</td>
<td>0.9975</td>
<td>1.0</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>B2B</td>
<td>Bezafibrate</td>
<td>112 ± 2.79</td>
<td>80.5 ± 6.09</td>
<td>0.5</td>
<td>1.3</td>
<td>0.9998</td>
<td>3.1</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACM</td>
<td>Metoprolol</td>
<td>113 ± 1.67</td>
<td>79.4 ± 2.62</td>
<td>0.1</td>
<td>0.2</td>
<td>0.9998</td>
<td>2.4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>B2B</td>
<td>Bezafibrate</td>
<td>112 ± 2.79</td>
<td>80.5 ± 6.09</td>
<td>0.5</td>
<td>1.3</td>
<td>0.9998</td>
<td>3.1</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Opioids and derivatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOR</td>
<td>Morphine</td>
<td>108 ± 1.05</td>
<td>52.3 ± 5.14</td>
<td>3.1</td>
<td>8.9</td>
<td>0.9996</td>
<td>6.1</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>6MAM</td>
<td>6-Acetylmorphine</td>
<td>171 ± 3.78</td>
<td>59.7 ± 4.72</td>
<td>1.0</td>
<td>2.8</td>
<td>0.9996</td>
<td>1.6</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>HER</td>
<td>Heroin</td>
<td>112 ± 2.56</td>
<td>68.9 ± 6.72</td>
<td>6.4</td>
<td>17.3</td>
<td>0.9937</td>
<td>9.7</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>METD</td>
<td>Methadone</td>
<td>235 ± 0.69</td>
<td>65.8 ± 13.6</td>
<td>2.2</td>
<td>7.8</td>
<td>0.9985</td>
<td>3.8</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>Codeine</td>
<td>111 ± 0.59</td>
<td>58.1 ± 2.88</td>
<td>0.5</td>
<td>1.4</td>
<td>0.9998</td>
<td>6.8</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>BUP</td>
<td>Buprenorphine</td>
<td>241 ± 2.50</td>
<td>53.9 ± 12.4</td>
<td>0.8</td>
<td>2.6</td>
<td>0.9988</td>
<td>10.1</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>TRA</td>
<td>Tramadol</td>
<td>171 ± 1.54</td>
<td>99.0 ± 2.46</td>
<td>2.1</td>
<td>6.5</td>
<td>0.9997</td>
<td>3.9</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Stimulants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC</td>
<td>Cocaine</td>
<td>80 ± 2.23</td>
<td>78.0 ± 5.47</td>
<td>1.6</td>
<td>4.9</td>
<td>0.9989</td>
<td>8.9</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>BZE</td>
<td>Benzoylecgonine</td>
<td>109 ± 1.36</td>
<td>82.8 ± 3.15</td>
<td>1.8</td>
<td>5.4</td>
<td>0.9996</td>
<td>4.3</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>CET</td>
<td>Cocaethylene</td>
<td>096 ± 1.54</td>
<td>83.6 ± 3.59</td>
<td>0.6</td>
<td>2.0</td>
<td>0.9996</td>
<td>6.6</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>MDMA</td>
<td>Ecstasy</td>
<td>108 ± 0.47</td>
<td>72.0 ± 11.5</td>
<td>1.0</td>
<td>3.2</td>
<td>0.9996</td>
<td>5.6</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>AMP</td>
<td>Amphetamine</td>
<td>105 ± 0.14</td>
<td>73.5 ± 9.42</td>
<td>1.6</td>
<td>4.6</td>
<td>0.9975</td>
<td>5.8</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>

The three analytical runs (30 samples for each) were conducted at different times. The between-run drift was also determined, by comparing the calibration curves and analyzing the same sample in two different runs. Relative standard deviation was determined by analyzing the same sample three times. SPE recovery values were calculated for each compound by comparing the concentration of a standard with and without SPE (at 0.2 and 50 µg.L⁻¹ respectively). Matrix effect was assessed for each
compound by comparing the concentration of standards spiked in ultra-pure water and spiked in the WWI matrix. All further details can be found in Table 1.

2.5. Processing of results

Concentrations were converted into mass load (load) in order to take into account the irregularity of the flow. The load of each DTR in WWI each day was calculated as follows:

\[
\text{Load} = 10^3 \times C \times F
\]

with the load of DTR in g.day\(^{-1}\), \(C\), the concentration in µg.L\(^{-1}\), and \(F\), the flow in m\(^3\).day\(^{-1}\)

Heatmap, correlation matrix and pairwise \(p\)-values were performed using the packages corrplot and FactoMineR of the R software (Lê et al., 2008). Statistical analyses were performed on normalized load and raw load values. The Pearson correlation was used to assess both the correlation matrix and \(p\)-values.

3. Results and Discussion

Hereafter, daily loads will be used to assess the statistical correlation between DTRs themselves or with some classical WWI parameters. In order to enhance the statistical reliability of the correlation, DTRs were grouped in 6 clusters based on their theoretical therapeutic use (except for THC which is here considered as a daily-consumed compound in accordance with previous studies). The six clusters are: Analgesics, which resulted from the addition of ACM and SCA loads, Antibiotics from the addition of SUL and TMP, Non-steroidal anti-inflammatory drugs (NSAIDs) from the addition of DCF, IBP and KET loads, Opioids from the addition of COD, BUP, METD, MOR, OXA and 6MAM loads, Others from the addition of ATE, BZB, CBZ, MET, OXA and THC loads and Stimulants from the addition of BZE, CET, COC and MDMA loads.

In a second phase, loads will be presented in boxplots for each French calendar week (from Monday to Sunday) of the monitoring period.
3.1. Daily variations of DTRs

Among the DTRs analyzed, HER (as DTR) and AMP are not shown in Figure 1, nor in the rest of the study because they were never detected. The statistical correlation between normalized daily loads of each DTR is presented in Figure 1. This presentation as a heatmap highlights the statistical correlation and justifies clustering the DTRs in several statistical groups.

From a clustering point of view, the four stimulants (i.e. COC, BZE, CET and MDMA) constitute a distinct statistical group. This can be explained by the very weak correlation between these DTRs and other compounds if we except the non-statistically significant correlation between COC and...
MOR. Hence, stimulants exhibit a different daily pattern in comparison with other DTRs, largely generated by the noticeable increase in their loads during weekends (Thiebault et al., 2017b). This weekly pattern is the most significant for stimulants thus resulting in the constitution of this cluster. This appears consistent with their use as recreational drugs, in comparison with other DTRs.

Among the other DTRs, the statistical clusters are not especially related to the therapeutic classes of DTR. For example, the most statistically significant cluster includes ACM, THC, KET, DCF and IBP (Figure 1), i.e. a cluster that includes one analgesic, all the three NSAIDs and one illicit drug. However, these DTRs are both highly consumed in the catchment area (Thiebault et al., 2017a, 2017b), and their daily loads seem to be impacted by the same forcings. This cluster is completed with METD and BZB, which are both year-long medications and their excretion pattern appears to be close to that of convenience DTRs such as ACM and IBP.

Based on this correlation plot, it is therefore difficult to distinguish between year-long medications such as BZB, MET, ATE and the use of painkillers such as ACM, SCA and IBP, which are occasionally consumed. The significant consumption of the latter appears to result in daily load variations that are comparable to those of year-long medication.

The daily loads of the two antibiotics, SUL and TMP, are significantly correlated (Figures 1 and S1). In order to assess the temporal dynamics of these two DTR, their daily load variations are plotted in Figure 2. The significant statistical correlation between the loads of SUL and TMP is obvious from Figure 2, and both DTRs were previously reported to have the highest loads amongst the DTRs analyzed (Thiebault et al., 2017b), resulting in a linear regression determination coefficient of 0.39 (Figure S1). This can be explained by the fact that these two compounds are often associated in a single medicinal product (Dan et al., 2013). There is a perfect fit between the
two curves throughout the monitoring period, except between 04/23 and 05/02. During this period, the SUL load was significantly lower than expected.

Figure 2: Daily loads of TMP (blue circles) and SUL (red triangles)

This punctual absence of correlation was unexpected since SUL and TMP are consumed in association. It could result from variations in the respective stability of these compounds during their transport through sewers.

Figure 3: Daily loads of COC (red triangles) and BZE (blue circles)
COC and BZE are relevant DTRs to assess the co-evolution of their loads as BZE is the main metabolite of COC and is considered as more stable than COC (McCall et al., 2016). During the monitoring period, BZE loads were higher than those of COC, in agreement with the literature on the subject (Ort et al., 2014; van Nuijs et al., 2009). However, the ratio between BZE and COC was not constant throughout the monitoring period, as displayed in Figure 3. The loads of both BZE and COC were very similar during the first few weeks but then a significant discrepancy between the two can be observed. This increasing discrepancy indicates some variations in the WWI composition that could impact the in-sewer stability of COC (which is more sensitive to degradation than BZE as described by Gheorghe et al. (2008)) and simultaneously increases the concentration of its metabolite BZE, whereas their excretion rate remains stable (Gracia-Lor et al., 2016).

In order to verify this hypothesis and also to better constrain the origin of the variation in DTR loads, a correlation matrix was performed between therapeutic class loads and classical WWI parameter loads recorded during the study. The results are presented in Table 2.

Table 2: Correlation coefficients describe the statistical relationship between cumulative normalized loads of each therapeutic class and normalized loads of several classical wastewater parameters, namely Chemical Oxygen demand (COxD), Suspended Solids (SS) and Total Phosphorus (TP). *, **, *** correspond to p-values < 0.05, 0.01 and 0.001 respectively, n=24.

<table>
<thead>
<tr>
<th></th>
<th>Analgesics</th>
<th>Antibiotics</th>
<th>Others</th>
<th>Opioids</th>
<th>Stimulants</th>
<th>COxD</th>
<th>SS</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAIDs</td>
<td>0.79***</td>
<td>0.32</td>
<td>0.67***</td>
<td>0.40</td>
<td>-0.10</td>
<td>-0.25</td>
<td>-0.16</td>
<td>-0.21</td>
</tr>
<tr>
<td>Analgesics</td>
<td>0.23</td>
<td>0.61*</td>
<td>0.39</td>
<td>-0.04</td>
<td>-0.07</td>
<td>-0.00</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>Antibiotics</td>
<td>0.29</td>
<td>0.42</td>
<td>-0.57</td>
<td>-0.42</td>
<td>-0.39</td>
<td>-0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>0.26</td>
<td>-0.00</td>
<td>-0.50</td>
<td>-0.44</td>
<td>-0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioids</td>
<td></td>
<td></td>
<td>-0.18</td>
<td>-0.15</td>
<td>-0.02</td>
<td>-0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulants</td>
<td></td>
<td></td>
<td></td>
<td>0.27</td>
<td>0.26</td>
<td>-0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COxD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.89***</td>
<td>0.88***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.82***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two clusters emerge from this correlation matrix. First, a very significant positive correlation is found between TP, SS and COxD, indicating that the daily variations in these three classical
parameters are correlated. Then, NSAIDs, Analgesics and Others loads are also significantly
correlated, indicating that several external forcings impact their daily variations. However, no
correlation was found between the daily loads of DTRs and those of classical WWI parameters
(Table 2). As a result, the daily variations in DTR loads are expected to be different from the
variations in the operating conditions of the sewer system alone.

3.3. Weekly variations of DTR loads

Overall, the scientific literature seeking to improve the understanding of the temporal dynamics of
DTRs in WWI has focused on the daily dynamics, and especially the weekday/weekend pattern.
However, several forcings on these loads, such as meteorological or social events, may also present
a weekly pattern. We therefore focus in this section on weekly variations, and especially those that
are statistically significant.

3.3.1. Social and meteorological events in the catchment during the monitoring period

During the monitoring period, several social and climatic events with a potential weekly effect
occurred. Weeks 14 and 15 were the Easter holidays (from school to university). According to
official figures, the number of university students in the catchment is approximately 15,000 and
accounts for ~ 20 % of the total catchment population (i.e. 70,000). The mobility of French people
during holidays was assessed by a recent report (Houbian, 2010), which revealed that between 10
and 35 % of people are likely to go on holiday outside the catchment (the targeted area is not
especially touristic).

Week 17 and the beginning of week 18 were the examination period at the university, followed by
the end of the university year during week 21 (except for students who failed the first session).
From a meteorological point of view, the monitoring period was characterized by heavy rainfall
episodes during weeks 21 and 22 (Figure S2). This heavy rainfall period resulted in the mix of
rainwaters with wastewaters, although the sewer system is supposed to be unitary, due to leaks.

Hence, the WWI flow was strongly impacted by rainfall during weeks 21 and 22.

A precise calendar with each specific event is presented in Figure S3.

The temperature within the catchment increased regularly between March and June, which is expected under such latitudes. However, during week 17, a cold snap occurred, resulting in significantly lower mean temperatures during week 17 in comparison with weeks 16 and 18 (Figure 4).
3.3.2. Analgesics

ACM and SCA were the two most abundant DTRs detected during this study. Their cumulative loads, grouped as “Analgesics”, ranged from 194.7 to 887.5 g.day\(^{-1}\). A significant decrease in the loads of Analgesics was observed between weeks 12, 13 and 14. A significant increase was then observed between weeks 15 and 16, before marked variations between weeks 19, 20 and 21 (Figure 4).

The Analgesic loads during the Easter holidays (weeks 14 and 15) were the lowest and are statistically significant in comparison with the previous and following weeks. Hence, the decrease in these loads can be interpreted as a significant demographic decrease in the catchment during the vacation. This decrease is also visible in the significant decrease of the flow values during weeks 14 and 15 (Figure 4). Similarly, the two highest weekly loads were found during weeks 12 and 17,
corresponding to the two coldest weeks of the monitoring period, even if the pattern is systematically visible for each analgesic (Figure 5). However, meteorological conditions may significantly impact the excretion of these compounds within the catchment, resulting from a relative increase in their consumption during cold episodes (Roumie and Griffin, 2004). Lastly, the pronounced disturbance in the WWI flow during the heavy rainfall events (i.e. weeks 21 and 22, Figure S2) strongly impacted both ACM and SCA loads (Figure 5), with a sudden increase in week 21 followed by a sudden decrease in week 22. These variations are unexpected at this time of the year, but major modifications in the operating conditions in the sewers due to the mix with rainwaters could be the main reason for these variations.

3.3.2. NSAIDs

The weekly loads of NSAIDs result from the addition of DCF, IBP and KET loads. Among them, KET is the most abundant DTR, representing 65% of the whole load on average. Significant variations were found in NSAID loads, with higher loads during weeks 12 and 17 in comparison with weeks 13 and 16 respectively, and a lower load during week 22 in comparison with weeks 21 and 23 (Figure 4). The latter case is comparable to that observed for Analgesics and can be related to the strong rainfall events, which disturbed the operating conditions in the sewer system. Concerning NSAID loads during weeks 12 and 17, it is worthwhile noting that they coincided with the two coldest weeks of the monitoring period. Hence, these cold weeks appear to favor the excretion of NSAIDs in the catchment, resulting in a significant increase during these weeks for IBP and KET (Figure S4). The use of this type of medication as both a painkiller and for anti-inflammatory purposes is probably the main reason for the excretion (i.e. consumption) increase during cold events (ter Laak et al., 2010).

3.3.3. Antibiotics
This cluster is composed by SUL and TMP, between which the significant correlation has already been discussed (Figure 2). Whereas the analysis of individual compounds does not show any statistically significant variations (except between week 17 and 18 for SUL, Figure S5), their cumulative loads display a significant decrease between week 13 and 14 and a significantly higher load in week 21 in comparison with weeks 20 and 22 (Figure 4). The former pattern can be attributed to the beginning of the Easter holidays in week 14, as previously discussed on Analgesics. For the latter, the disturbance generated by rainfall events is yet again the only logical explanation that we can propose.

3.3.4. Others

This group comprises year-long pharmaceuticals such as CBZ, MET, ATE, BZB and OXA, and one illicit drug, THC, which is considered to be mainly consumed year-long. A significant variation can be observed between weeks 17 and 18 (Figure 4). From a general point of view, the loads of this cluster globally increase during the monitoring period, although this type of evolution is unexpected based on their posology. A demographic shift due to the end of the university year could be a possible explanation (Vatovec et al., 2016). However, no correction of the population was performed here. Looking at the load evolution of single compounds, this global increase is not common and is not statistically significant. Yet, both CBZ and THC present a pattern impacted by the Easter holidays, whereas the loads of ATE, BZB and MET, like the other therapeutic classes, are only affected by the strong rainfall events (Figure S6). This different impact of social and meteorological events on the weekly load variations of DTRs that are presumably consumed identically (i.e. all year long) raises questions about the sociological profile of such consumers. However, the present study did not provide any clues to elucidate this issue.

3.3.5. Opioids
The weekly loads of opioids were calculated by summing the loads of COD, TRA, 6MAM, BUP, METD and MOR. These compounds have several different therapeutic purposes. 6MAM is an exclusive DTR of heroin consumption, whereas MOR results from both licit and illicit uses (Baker et al., 2014). COD and TRA are both used for their analgesic properties and can be used (partially) in association with analgesics such as ACM. Finally, METD and BUP are two substitutes for illicit substances. In view of these differences, we will focus on the pattern of individual loads rather than cumulative ones. TRA and BUP loads did not exhibit any significant pattern throughout the monitoring period (Figure S7). MOR and COD appear to be impacted both by the Easter holidays and the cold snap during week 17, as previously described for NSAIDs and Analgesics (Figure 4). For COD, this pattern can be explained by its consumption in association with ACM (i.e. COD was significantly correlated with ACM and SCA, Figure 1), whereas for MOR this pattern is more surprising. Another surprising significant variation was observed for 6MAM, with higher loads during the Easter holidays. Due to the very weak loads of 6MAM (i.e. the lowest among the analyzed DTRs, between 0.1 and 73 mg.day\(^{-1}\)), any hypothesis can only be speculative.

3.3.6. Stimulants

Consumption of this type of illicit drugs is considered to be related to recreational uses. Hence, the daily loads of Stimulants (i.e. the addition of BZE, COC, CET and MDMA loads) exhibit a completely different pattern from that of the other clusters (Figure 1).
Figure 6: Loads of BZE, COC, MDMA and CET, for each sampled week. The line within the box marks the median, boundaries indicate the 25th and 75th percentiles, error bars indicate the maximum and minimal value in ± 1.5 σ variations and circles indicate individual values outside this range. Gray lines mark statistically significant variations with p-values < 0.05, 0.01 and 0.001 for *, ** and *** respectively.

For example, a significant increase in BZE and COC loads occurred during the Easter holidays, as well as a significant increase at the end of the examination study period, especially for MDMA (Figure 6).

Even if CET can be considered as a metabolite of COC, its excretion necessitates the consumption of both ethanol and COC. As a result, the offset between these two DTRs is not surprising. However, due to the very weak CET loads and poor weekly variations, no further conclusions can...
be drawn about this DTR. In the same way, BZE is the main metabolite of COC (Figure 3), and during the first weeks of the monitoring period, the variations in these DTRs were very close. From week 18, the weekly loads of BZE decreased whereas no variation occurred in the COC weekly loads. This could suggest that although BZE and COC can both serve as DTRs to estimate the consumption of cocaine, their potential is not equivalent. The greater stability of BZE makes it more reliable for use as a DTR.

From week 18 on, a general but statistically non-significant decrease in all stimulants was observed. The use of these substances seems to be correlated with the academic calendar, and students are known to be among the consumers of such substances (van der Poel et al., 2009). This result is especially interesting and makes a new type of contribution to our understanding of the temporal dynamics of Stimulants, beyond the weekday/weekend pattern.

4. Conclusion

Twenty-five DTRs were monitored during 84 consecutive days to assess daily and weekly load variations as a function of external forcings in the catchment. Findings show that the daily variations of stimulants are very different from those of the other DTRs analyzed. The impact of the pronounced increase during weekends is probably the most important factor in this statistical clustering. The loads of Analgesics and NSAIDs also exhibit a very significant correlation, emphasizing the presence of external factors that could lead to their consumption/excretion within the catchment. Thus, both meteorological (e.g. cold snap) and social (e.g. holidays) events involve sudden and significant variations. Other therapeutic classes such as Opioids are less concerned by this type of temporal pattern. A good fit between the academic calendar and the loads of Stimulants was found, consistent with the overrepresentation of students in the consumption of recreational drugs.
This type of monitoring improves our understanding of the impact of external forcings on the consumption behavior (i.e. temperature, academic calendar) or mobility of people out of the catchment (i.e. holidays). However, a strong disturbance of the loads was observed during heavy rainfall events. The mixing between wastewaters and rainwaters considerably modified the loads of DTRs in WWI without any logical pattern. Such results suggest that while this study provides initial insights into the temporal dynamics of DTRs in WWI, further work remains necessary to deepen our comprehension of daily load variations.

Acknowledgements

The authors gratefully acknowledge Cedric Morio and Olivier Cantaloube for sampling authorization and Pascale Moret for both the analysis of physico-chemical parameters of wastewater influents and the sample delivery. Sara Karolak is thanked for providing illicit drug standards. This work was supported by the French national program EC2CO-Biohefect Golden Spike and the Labex VOLTAIRE (NR-10-LABX-100-01) is acknowledged for providing a grant to M.R.

References

Thiebault, T., Boussafir, M., Le Milbeau, C., 2017a. Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant: mass balance, fate and
26