

Re-assessing the European lithium resource potential – A review of hard-rock resources and metallogeny

Blandine Gourcerol, Eric Gloaguen, Jérémie Melleton, Johann Tuduri, Xavier Galiègue

▶ To cite this version:

Blandine Gourcerol, Eric Gloaguen, Jérémie Melleton, Johann Tuduri, Xavier Galiègue. Re-assessing the European lithium resource potential – A review of hard-rock resources and metallogeny. Ore Geology Reviews, 2019, 109, pp.494-519. 10.1016/j.oregeorev.2019.04.015. insu-02115174

HAL Id: insu-02115174 https://insu.hal.science/insu-02115174

Submitted on 30 Apr 2019

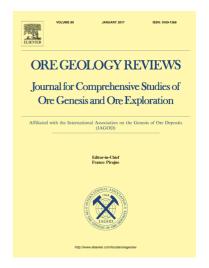
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Re-assessing the European lithium resource potential – A review of *hard-rock* resources and metallogeny

B. Gourcerol, E. Gloaguen, J. Melleton, J. Tuduri, Xavier Galiegue


PII: S0169-1368(18)30801-1

DOI: https://doi.org/10.1016/j.oregeorev.2019.04.015

Reference: OREGEO 2903

To appear in: Ore Geology Reviews

Received Date: 20 September 2018 Revised Date: 15 April 2019 Accepted Date: 23 April 2019

Please cite this article as: B. Gourcerol, E. Gloaguen, J. Melleton, J. Tuduri, X. Galiegue, Re-assessing the European lithium resource potential – A review of *hard-rock* resources and metallogeny, *Ore Geology Reviews* (2019), doi: https://doi.org/10.1016/j.oregeorev.2019.04.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Re-assessing the European lithium resource

potential – A review of hard-rock resources

3 and metallogeny

- 4 B. Gourcerol^{a,b*}, E. Gloaguen^c, J. Melleton^b, J. Tuduri^c, Xavier Galiegue^a
- 5 ^a Laboratoire d'Economie d'Orléans, Université d'Orléans, UMR7322 Faculté de Droit d'Economie et
- 6 de Gestion Rue de Blois BP 26739 45067 ORLEANS Cedex 2, France
- ^b BRGM, F-45060 Orléans, France
- 8 ° ISTO, UMR 7327, Université d'Orléans, CNRS, BRGM, F-45071 Orléans, France
- 9 *Corresponding author: gourcerol.blandine@gmail.com

10 Graphical Abstract

11 Highlights:

- Lithium is not rare in Europe and is well represented in different orogenic settings;
- A pre-existing Li-rich source is required for Li-enrichment processes;
- Lithospheric thickening may reflect a favorable process for concentrating Li;
- Extensional geodynamical settings appear favorable for Li enrichment.
- 16 **Keywords**: lithium, metallogeny, pegmatite, Europe, resources

17

12

18 Abstract

- 19 Lithium, which is an excellent conductor of heat and electricity, became a strategic metal in the past
- decade due to its widespread use in electromobility and green technologies. The resulting significant
- 21 increase in demand has revived European interest in lithium mining, leading several countries to
- 22 assess their own resources/reserves in order to secure their supplies. In this context, we present for the
- 23 first time a geographically-based and geological compilation of European lithium hard-rock
- occurrences and deposits with their corresponding features (e.g., deposit types, Li-bearing minerals, Li
- concentrations), as well as a systematic assessment of metallogenic processes related to lithium
- 26 mineralization. It appears that lithium is well represented in various deposit types related to several
- 27 orogenic cycles from Precambrian to Miocene ages. About thirty hard-rock deposits have been
- 28 identified, mostly resulting from endogenous processes such as lithium-cesium-tantalum (LCT)
- 29 pegmatites (e.g., Sepeda in Portugal, Aclare in Ireland, Läntta in Finland), rare-metal granites (RMG;

30	Beauvoir in France, Cinovec in the Czech Republic) and greisen (Cligga Head, Tregonning-
31	Godolphin, Meldon in the UK and Montebras in France). Local exogenous processes may result in
32	significant Li- enrichment, such as jadarite precipitation in the Jadar Basin (Serbia), but they are rarely
33	related to economic lithium grades such as in Mn-(Fe) deposits, or in bauxite. We also identified major
34	common parameters leading to Li enrichment: 1) a pre-existing Li-bearing source; 2) the presence of
35	lithospheric thickening, which may be a favorable process for concentrating Li; 3) a regional or local
36	extensional regime; and 4) the existence of fractures acting as channel ways for exogenous processes.
37	Furthermore, we point out the heterogeneity of knowledge for several orogenic settings, such as the
38	Mediterranean orogens, suggesting either a lack of exploration in this geographical area, or significant
39	changes in the orogenic parameters.

1. Introduction

Over the past decade, lithium has become a strategic metal due to its physical and chemical properties, being the lightest solid element and an excellent conductor of heat and electricity. This makes it an excellent candidate for electromobility and green technologies, such as Li-ion batteries and other energy-storage devices (Armand and Tarascon, 2008; Tarascon, 2010; Ziemann et al., 2012; Manthiram et al., 2017). As a result, Li demand has increased significantly and a "lithium rush" is currently happening world wide (e.g., Roskill Information Services Ltd., 2016). In this context, the identification and assessment of lithium mineral resources and -reserves is a crucial step, as is understanding lithium metallogeny, a major subject for discovering new mineral resources.

Historically, two distinct deposit types are identified: 1) *brine* deposits in which the lithium grade is about 0.1% Li₂O; and 2) *hard-rock* deposits where the lithium grade generally varies from 0.6 to 1.0% Li₂O hosted by various Li-bearing minerals (Kesler et al., 2012; Mohr et al., 2012).

The brine-deposit type refers to relatively recent (mostly Quaternary), enclosed, tectonically active basins that contain Li-rich lacustrine evaporites. These are produced by high evaporation rates in an arid to hyper-arid climate and/or by various water inputs such as groundwater and spring water circulation (e.g., Ericksen and Salas, 1987; Bradley et al., 2013). In these deposits, the Li source and enrichment processes are specific to each brine. However, the most accepted model is the weathering of felsic rocks and/or local hydrothermal activity driven by a magmatic heat source through active channel pathways (Bradley et al., 2013; Hofstra et al., 2013). In North America, several deposits have been identified within the Basin and Range extensional province of the western United States, including the Clayton Valley and the Great Salt Lake (e.g., Bradley et al., 2013). In South America and more particularly on the Puna Plateau, brine deposits, referred to as *salars*, cover an area of about 400,000 km² from northern Argentina and northern Chile to western Bolivia (Ericksen and Salas,

1987) named the "lithium triangle". In this area, several lithium deposits have been identified and a	are
operated by major mining companies including SCL/Chemetall and SQM/Tianqi Lithium Corp. In	
China, the Qinghai-Tibet plateau is a favorable setting for lithium deposits, as illustrated by the	
Qaidam (e.g., Shengsong, 1986; Yu et al., 2013) and Zabuye basins, from which some brines are	
exploited by governmental mining companies.	A

Hard-rock deposits comprise several styles of Li mineralization in magmatic and/or sedimentary rocks, related to both endogenous (magmatic) and exogenous (re-concentration by weathering, or supergene alteration and transport) processes. They can contain widespread varieties of Li-bearing minerals, such as Li-micas, Li-pyroxenes, Li-silicates, Li-phosphates, etc. (Table 1). Among them, hectorite (Li-bearing clay) from the Kings Valley, Nevada (e.g., Glanzman et al., 1978; Kesler et al., 2012) and jadarite (Li-bearing borosilicate) from Serbia (Stanley et al., 2007; Rio Tinto, 2017, Stojadinovic et al., 2017) represent potential world-class deposits, whereas spodumene-bearing lithium-cesium-tantalum (LCT) pegmatites in the Greenbushes (Australia) have been mined for decades by Talison Lithium Ltd. and others (e.g., Mudd and Jowitt, 2016).

Lithium production historically has been dominated by Australia (e.g., Greenbushes deposits), South America (*Salar de Atacama*) and China (Zabuye, Qaidam Lakes). Thus, of the 36.5 kt Li metal produced in 2016, 39% came from Australia, 32.8% from Chili, 15.6% from Argentina and 5.5% from China. Portugal, the first Li producing European country, represents only 1.3% of world production, especially for the ceramics and glass industry (BRGM, 2017). However, lithium exploration increased significantly (e.g., Roskill Information Services Ltd., 2016), leading other countries in the European Community (France, Austria, Czech Republic, Spain, Finland...) to assess their own mineral resources and –reserves, in order to evaluate their global competitiveness in the lithium industry.

Hereafter, we provide a key to understanding the geological context of lithium in Europe from a hard-rock perspective. To this end, we made a systematic, geographically- and geologically-based compilation of lithium occurrences, significant mineral showings and/or deposits, with their corresponding Li-deposit types, Li-bearing minerals and Li concentrations. For the first time, we present an overview and quantification of identified European Li deposit types and features, and their distribution in the different orogenic settings of Europe. A major effort was made to constrain metallogenetically the Li endowments in order to highlight potential processes (endogenous and exogenous) causing Li enrichment, and to introduce potential prospective regions. The resulting dataset may be used in future studies for constraining the possible relationships between Li-rich geothermal brines, surficial waters and Li-rich basement rocks.

96	2. Overview of hard-rock lithium deposit types in Europe
97	A compilation of lithium occurrences and -deposits was made by collecting information from various
98	geological survey organizations, exploration and mining companies, and scientific research projects
99	and related publications. This resulted in an up-to-date quantification of the European lithium
100	potential, considering only hard-rock ore types, identifying 527 lithium occurrences, projects and
101	deposits (provided as electronic supplementary material). This was almost five times more than the
102	previous Mineral4EU-ProMine (http://minerals4eu.brgm-rec.fr/) inventory (Cassard et al., 2015).
103	In addition, mineral resource and -reserve and -production data were gathered from available
104	published data by exploration and mining companies, such as technical and annual reports, from data
105	repositories (e.g., https://sedar.com) and from governmental surveys. Note that the data from England,
106	France and, locally, Germany are based on historical (before 1995), non-compliant CRIRSCO
107	(Committee for Mineral Reserves International Reporting Standards) compliant estimates.
108	We emphasize that lithium deposits related to seawater, and geothermal- and oilfield brines are not
109	considered in this study.
110	According to our compilation (and previous ones, e.g., Christmann et al., 2015), two distinct
111	categories of lithium deposits and occurrences are found in Europe. They are: 1) Magmatic-related
112	(Fig. 1A, B, C) deposits; and 2) Sedimentary/hydrothermal-related deposits (Fig. 1D).
113	2.1 Magmatic-related deposits
114	2.1.1 Rare-metal granites
115	Rare-metal granites (RMG; Černý et al., 2005) are felsic, peraluminous to peralkaline intrusive
116	rocks that host magmatic disseminated mineralization. They occur as very small, mostly subsurface,
117	granitic plugs, typically less than 1 km³, such as the Beauvoir RMG in France (Raimbault et al., 1995;
118	Fig. 1A). According to their geochemistry and geodynamic setting, three main types (Linnen and
119	Cuney, 2005; Černý et al., 2005) are recognized:
120	1) Peralkaline RMG have very high contents of F, REE, Y, Zr, Nb, related to anorogenic
121	settings; their Li content is relatively moderate (up to a few 1000 ppm) and is mainly illustrated by
122	zinnwaldite and polylithionite occurrences (Tables 1, 2). This type is not documented in Europe;
123	2) Metaluminous to peraluminous, low- to intermediate-phosphorus RMG with high
124	concentrations of Nb, Ta, Sn, that occur in both post- and an-orogenic geodynamic settings. The Li
125	content again is moderate (up to a few 1000 ppm) and is mostly related to zinnwaldite. Examples
126	include Cinovec (Fig. 1C), Podlesi (Fig. 2A), the Sejby and Homolka granites in the Czech Republic,
127	the Chavence and Les Châtelliers granites in France (Table 2; Černý et al., 2005 and references

128

therein);

129	3) Peraluminous, high-phosphorus RMG with strong enrichment in Ta, Sn, Li and F, occurring
130	in a continental-collision setting. In this RMG type, Li concentrations can be high, from 0.5% to 1.0%
131	Li ₂ O, and occurring as lepidolite, Li-rich muscovite and amblygonite-montebrasite series, such as at
132	Beauvoir (Figs. 1A, 2B), Montebras (Fig. 2C) and the Richemont rhyolite dike in the French Massif
133	Central, and Argemela in Portugal (Table 2; Černý et al., 2005 and references therein).
134	2.1.2 LCT Pegmatites
135	With the exception of some rare giant Precambrian occurrences, lithium-cesium-tantalum (LCT)
136	pegmatites (e.g., London, 2008, 2018; Černý and Ercit, 2005) are relatively small-sized (a few m³ to
137	<1/2 km³; Fig. 1B), coarse-grained and/or aplitic igneous rocks of granitic composition.
138	Geochemically, Li-rich LCT pegmatites are similar to peraluminous high-phosphorus RMG. They are
139	the result of crystallization of fluid-rich melts, enriched in various amounts of incompatible elements,
140	such as Li, Ta, Sn, Rb, Be, Nb and Cs, and strongly depleted in REEs, close to chondritic values
141	(London, 1995, 2005, 2008, 2018; Černý and Ercit, 2005; Černý et al., 2012; Linnen et al., 2012).
142	Pegmatites can form under various P/T conditions (Table 3) representing various classes (e.g.,
143	Černý, 1989, 1990; Černý et al., 2012). They are generally clustered in kilometer-size pegmatite fields
144	(e.g., the Ambazac pegmatite field, Deveaud et al., 2013; Silva et al., 2018), and occur as dikes and/or
145	sills (e.g., Emmes pegmatite, Finland, Eilu et al., 2012; Gonçalo pegmatite field, Portugal, Ramos et
146	al., 1994) or lenticular bodies (e.g., Bohemian pegmatites, Melleton et al., 2012). Contacts with host-
147	rock range from relatively sharp to progressive, depending on the nature of the host and the depth of
148	emplacement. Host-rocks are mainly metasedimentary and/or metavolcanic rocks metamorphosed
149	from lower greenschist to amphibolite facies (Černý, 1992) as well as granite intrusions (e.g.,
150	Gonçalo, Ambazac).
151	LCT pegmatites show heterogeneous textures and compositions, and are composed of variable
152	amounts of quartz, plagioclase, potassium feldspar, micas, with various amounts of garnet, tourmaline,
153	apatite and (usually) accessory Li-bearing minerals - locally rock-forming - such as spodumene,
154	petalite, etc. Although not systematically observed, LCT pegmatites generally show layering and/or
155	concentric zoning. Lithium-bearing minerals, including spodumene, petalite, the amblygonite-
156	montebrasite group, lepidolite (Figs. 2D, E), eucryptite, elbaite and the lithiophilite-triphylite group
157	are commonly found in pegmatite bodies, whereas cookeite and holmquistite occur mainly in the
158	pegmatite aureole, or as secondary minerals (e.g., cookeite after petalite). Note that eucryptite may
159	reflect the alteration of primary spodumene. Li ₂ O content varies as a function of the LCT pegmatite
160	subtype and the Li-bearing minerals themselves (Table 3), ranging from 0.5 to 1.5%.
161	Mixed niobium-yttrium-fluorine (NYF)-LCT pegmatites are known from Norway (e.g.,
162	Birkeland, Frikstad, Skripeland) and Ukraine (Volodarsk-Volynsky). In Norway, pegmatite fields such
163	as Evie-Iveland show a typical initial NVF chemical signature, but are depleted in RFFs and F in

164	replacement areas. Moreover, the replacement zones show a "cleavelandite signature" as well as
165	chemical and mineralogical LCT features, including beryl, columbite group minerals and tourmaline
166	(Černý, 1991a, b). Lithium-ore tonnages or grades are not reported for these pegmatites.
167	2.1.3 Greisen
168	Greisen deposits (e.g., St Austell, UK; Cinovec, CZ) result from a high-temperature hydrothermal
169	transformation of fractionated granitic intrusions (pegmatites, granites) with their upper part being a
170	porous muscovite-quartz assemblage at the granite/host-rock contact. They can occur as multi-stage
171	swarms crosscutting Sn-W quartz veins (e.g., Černý et al., 2005; Štemprok et al., 2005; Launay et al.,
172	2018), or may form up to 100-m thick units with irregular to sheet-like bodies. Li is mainly hosted in
173	micas, such as Li-rich muscovite, lepidolite, zinnwaldite, and amblygonite-montebrasite group
174	minerals. Peraluminous RMG and metaluminous intrusions are favorable rock types for the
175	development of such deposit types (Fig. 1C), whereas fractionated granites appear to be unrelated with
176	significant Li endowment. Thus, the Li ₂ O content in the greisen around the world-class Panasqueira W
177	deposit (Portugal) is only about 732 ppm (Bussink, 1984), whereas Li ₂ O values from the Erzgebirge
178	province (e.g., Štemprok et al., 2005; Jarchovský, 2006) vary from 80 to 3100 ppm for greisen of the
179	RMG Vykmanov and Schnöd granites.
180	Quartz, cassiterite, wolframite, micas, topaz, tourmaline, sericite and chlorite are common in
181	greisen, showing vertical and horizontal zoning. Alteration is generally shown by kaolinization,
182	tourmalinization, feldspathization (microclinization and/or albitization) and greisenization forming
183	haloes around the granitic body. REE enrichment may occur and is indicated by precipitation of
184	monazite, xenotime and other REE-rich minerals.
185	Note that this deposit type can be related to both magmatic and hydrothermal processes. Here, we
186	consider a "granite-related" classification even though hot hydrothermal fluids are involved.
187	Co-products commonly consist of industrial minerals, such as feldspar, quartz and kaolin (e.g.,
188	Beauvoir, France); Sn and W are of first interest, Be, Ta, In, Sc, Rb representing potential byproducts.
189	2.1.4 Quartz-montebrasite hydrothermal veins
190	Several authors (e.g., Martín-Izard et al., 1992; Roda-Robles et al., 2016) reported the existence of
191	quartz-montebrasite hydrothermal veins associated with leucogranitic cupolas in the central part of the
192	Central Iberian Zone in Spain (e.g., Valdeflores, Barquilla, Golpejas, El Trasquilón) and Portugal
193	(e.g., Argemela area and Massueime).
194	Hosted by granites or metasedimentary rock of the Schist-Metagreywacke Complex, these
195	veins are generally <1 m thick and fill fracture sets. They contain a high proportion of quartz and few
196	minerals such as K-feldspars and micas (Roda-Robles et al., 2016). Accessory minerals such as Nb-Ta
197	oxides, cassiterite and sulfides are common, and Li-bearing minerals consist of the montebrasite-

198 199	amblygonite series (Table 1). Note that only few Li ₂ O values are reported for these occurrences (i.e., 0.45% Li ₂ O on average for the Argemela mine, PANNN, 2017) and, except for the Argemela mine,
200	such deposits appear to be relatively uneconomic in view of their small size.
200	
201	2.1.5 Tosudite mineralization related to gold deposits
202	An occurrence of Li-bearing tosudite in the the Châtelet gold deposit (France) was reported in several
203	studies (Braux et al., 1993; Piantone et al., 1994); Li ₂ O values range from 142 to 920 ppm. These
204	authors suggested that the Li is related to late hydrothermal fluid circulation, itself related to the RMG
205	emplacement in the northern part of the French Massif Central.
206	2.2 Sadimentary/hydrothermal/gunargene denogita
206	2.2 Sedimentary/hydrothermal/supergene deposits
207	These types include deposits related to either sedimentary rocks affected (or not) by hydrothermal
208	processes, or surficial rocks affected by supergene weathering.
209	2.2.1 Jadar deposit type
210	In 2004, Rio Sava (a subsidiary of the Rio Tinto mining corporation) discovered the Jadar Basin in
211	Serbia, now considered as a "non-conventional" world-class lithium deposit through the occurrence of
212	the mineral jadarite (Stanley et al., 2007), a lithium boron silicate (Table 1). The basin consists of a
213	relatively large (>20 kilometers long) intramontane lacustrine (paleo)-evaporite basin composed of
214	dolomite, marble, various siliciclastic sedimentary rocks, pyroclastic units and notable oil shales
215	(Obradovic et al., 1997). The mineralization is hosted in a 400 to 500 m thick Miocene sedimentary
216	unit dominated by calcareous claystone, siltstone, sandstone and clastic rocks, unconformably
217	overlying a Cretaceous basement composed of various metasedimentary rocks, limestone, sandstone
218	and granite, including Miocene intrusions (Fig. 1D).
219	The lithium and borate mineralization occurs as 1.5 to 35 m thick stratiform lenses of three
220	gently dipping tabular zones covering a surface area of 3 by 2.5 km. The ore is composed of jadarite-
221	bearing siltstone and mudstone with locally interbedded sodium borate lenses (i.e., ezcurrite, kernite,
222	borax; Fig. 1D). Jadarite occurs as 1-10 mm white and rounded grains, nodules or concretions in the
223	siltstone or mudstone matrix that contains various amounts of calcite, dolomite, K-feldspar, rutile,
224	albite, pyrite, muscovite and ilmenite (Fig. 2F; Rio Tinto, 2017; Stanley et al., 2007). In 2017, the
225	mineral resources were reported as 135.7 Mt of ore at a grade of 1.86% Li_2O and 15.4% B_2O_3 (Rio
226	Tinto, 2017), representing a giant deposit of 2.524 Mt of Li ₂ O.
227	2.2.2 Mn-(Fe) deposits
228	Among the various types of host-rocks for Li-bearing minerals in Europe, the small-scale and
229	discontinuous Mn-Fe-rich sedimentary units (e.g., Drosgol Mine in Scotland and Clews Gill in
230	England), exploited in the 19th century for their Fe and Mn contents, are a favorable site for secondary

Li-oxides such as lithio	phorite (Table 1). Stratigraphically, they can be subdivided into two distinct
units: 1) a reddish silici	iclastic host rock, mainly pelite, shale and/or sandstone, enhanced in Mn and Fe
relative to the average s	shale composition; and 2) discontinuous Mn lenses or layers (coticules). The
minerals include crypto	omelane, goethite, hematite and other manganese oxides including Li-rich
lithiophorite, chalcopha	anite and pyrolusite.
-	
_	ent in lithiophorite is relatively low (1.23 wt.% for Li ₂ O versus 55 wt.% for
,,	economic lithium grade. However, its occurrence is relatively important in
view of the sedimentary	y and European histories (cf. Section 3 hereafter).
2.2.3 Bauxite dep	posits
Similar to the Mn-Fe do	eposit type, bauxite deposits can contain various amounts of lithiophorite,
cookeite (Table 1) and	tosudite (Li-rich gibbsite; Nishyama et al., 1975). Lithiophorite is the most
common Li-bearing ma	inganese oxide mineral in karst bauxites. It occurs in several localities, such as
the Halimba, Fenyöfö a	and Kincsesbanya deposits in Hungary, where aluminum and gallium in bauxite
deposits were exploited	I from the 1950s to recently (Anderson, 2015).
Al and Mn are	of first interest in this deposit type. The presence of lithiophorite and local
	chment, though this is not systematically evaluated. However, values of up to
	xite are known from China (Wang et al., 2013) and the USA (Tourtelot and
Brenner-Tourtelot, 197	
2.2.4 Other lithi	ium deposit types
A few other deposit typ	es show relatively minor anomalous lithium contents, including:
1) Mississippi-Valley t	ype (MVT) deposits that include some lithiophorite (Usingen, Germany), and
2) Aalenian black shale	s from the Dauphinois region, Isère, France, where cookeite is disseminated in
black shale and in tensi	on gashes crosscutting the shales (Jullien and Goffé, 1993). For the latter
occurrence, values (He	nry et al., 1996) are in the range of 9 to 1 847 ppm Li ₂ O with an average of
441 ppm Li ₂ O (n=10).	These lithium occurrences are symptomatic for local conditions allowing minor
enrichment, implying the	hat they are not economically significant regarding their Li content.
2.3 Lithium reson	urces and reserves
In Europe, lithium reso	urces and reserves have been estimated or evaluated according to a CRIRSCO
(i.e., Committee for Mi	neral Reserves International Reporting Standards) reporting system, or based
on historical evaluation	s, for only 35 sites (Table 4). Thirsteen occurrences in England, Ireland, France
and Germany, such as l	Beauvoir, Montebras, St Austell or Aclare, were evaluated before systematic
reporting was establish	ed, and their mineral-resource and -reserve estimates are mostly based on
historic evaluations by	geological survey organizations. Fifteen projects, including Jadar, are defined
in the Australian JORC	classification; one project (Zinnwald) was defined in the European PERC; one

project (Alberta I) is defined in the Canadian NI43-101 system; Four projects in Ukraine are defined in an unknown system (Table 4); and one project is defined in the United Nations Framework Classification (UNFC). This list reflects the active exploration of lithium in Europe.

However, most of these deposits report mineral resources and only five specify reserve values, indicating that a feasibility study was carried out. This generally includes a study of potential processing and metallurgical-treatment methods, resulting in an economically feasible recovery of lithium from the various Li-bearing minerals.

In order to compare the Li-content in known Li-deposits, the sum of ore production + ore reserves + ore resources has been converted into contained Li₂O (ore tonnage x ore grade) for each deposit. These deposits were then categorized and classified into categories A, B, C, D and E¹ according to their commodities and their reported mineral resources and -reserves (Table 4), following the system of the European ProMine database (Cassard et al., 2015). Note that we consider only the A, B, C and D categories as (potential) lithium deposits (Table 4), which corresponds to 28 deposits.

Among them, three deposits are identified as category Å, including the Cinovec (Czech Republic), St Austell (UK) greisen and the Jadar deposit (Serbia). However, the historical estimate by the British Geological Survey for the St Austell deposit may be unrealistic, as it was based on extraction from an area of about 92.5 km² on the edges of protected landscape zones (British Geological Survey, 2016).

Lithium occurrences appear to be well distributed in Europe. However, the Iberian area and Finland regroup most of the identified lithium deposits (Table 4), indicating that these countries are relatively active in lithium exploration and suggesting that they have a strong Li-potential.

3. Lithium metallogeny in Europe throughout the Earth's evolution

In Europe, several orogenic events throughout geological history are associated with lithium mineralization. In this section, we assess and contextualize the lithium mineralization to orogenic features in order to establish—if possible—potential metallogenetic settings.

As a reminder, Europe's landmass results from a long geological history spanning 3.6 billion years, including the assemblage of numerous continental blocks. The European lithosphere can be broadly divided into two large regions: 1) The old East European Craton, partly covered by weakly deformed Phanerozoic and Meso- to Neo-Proterozoic rift and platform successions, mostly located in eastern and north-eastern Europe; and 2) A thinner, dominantly Phanerozoic, lithosphere, accreted to

 1 Category refers to: Category A \geq 1,000,000 t Li₂O; 1,000,000 t \geq Category B \geq 100,000 t Li₂O; 100,000 t \geq Category C \geq 50,000 t Li₂O; 50,000 t \geq Category D \geq 5,000 t Li₂O; Category E < 5,000 t Li₂O, based on the sum of production + reserves + resources.

295	the East European Craton during Palaeozoic and younger orogenies, mostly in Western Europe (e.g.,
296	Gee et al., 2006; Artemieva and Thybo, 2013).
297	3.1 Hard-rock lithium mineralization in European Archean to Paleo-Proterozoic terranes
298	3.1.1 The Ukrainian Shield (3.5 to 1.9 Ga)
299	The Ukrainian Shield forms an assembly of Precambrian crystalline megablocks that is 900 km long
300	and 60-150 km wide in the central part of the country (Fig. 3A). This area is fault-bounded by the
301	younger Dnister-Fore Black Sea and the Dniprovsko-Donnetska metallogenic provinces, and was
302	affected by three distinct magmatic events at ca. 3.2, 2.6 and 1.9 Ga (Vinogradov and Tugarinov,
303	1961), which may have been partly coeval with the Svecofennian magmatism (2.1 to 1.8 Ga).
304	Several Li-rich deposits and occurrences are reported, such as: 1) the spodumene- and petalite-
305	subtype of lithium-cesium-tantalum (LCT) pegmatites that occur in the Dnester-Bug (Podolia) and
306	Azov Megablocks (e.g., Krutaya Balka, Nadyia); and 2) zinnwaldite and lepidolite occurrences in
307	mixed miarolitic niobium-yttrium-fluorine (NYF)-LCT pegmatites (e.g., Volodarsk-Volynsky) and
308	rare-metal granites (RMG), such as the Perzhanskoe ore district) in the Northern Volyn Megablock
309	(Kvasnista et al., 2016).
310	Although these lithium occurrences are known, only very little information is available. This
311	makes their evaluation, regarding metallogenic settings and geological context from a European
312	perspective, very difficult.
313	3.1.2 The Svecofennian orogenic belt (2.1 to 1.8 Ga)
314	The Svecofennian orogenic belt (Fig. 3) is part of the Columbia/Nuna supercontinent accretion that
315	took place from 2.1 to 1.8 Ga (Zhao et al., 2002). It consists of magmatic-arc accretionary phases
316	joining the juvenile Svecofennian arc terrane to the Archean Karelia Craton (Nironen, 1997) along the
317	Luleå-Kuopio thrust zone (Fig. 3; Zhao et al., 2002).
318	Prior to the Svecofennian orogen, continental break-up of the Karelian Province led to the
319	formation of an ocean basin and deposition of sedimentary units such as the 1.92 Ga Pohjanmaa schist
320	belt. Initial accretion started at 1.91 Ga and ended at 1.87 Ga, followed by large-scale extension in a
321	back-arc setting (1.87-1.84 Ga) shown by psammites/pelites and intruded by granites and mafic dikes
322	(Korja et al., 2006). An oblique continent-continent collision occurred from 1.87 to 1.79 Ga, illustrated
323	by the advancing accretion of retro-arc fold-and-thrust belts with alkaline bimodal magmatism (e.g.,
324	Lahtinen et al., 2009). Significant lithospheric thickening, local migmatization and formation of S-type
325	granites in southern Finland and central Sweden occurred as well. Finally, gravitational collapse ended
326	the orogen between 1.79 and 1.77 Ga. Two major amphibolite grade metamorphic events are recorded
327	at 1.88-1.87 Ga (Lecomte et al., 2014) and 1.83 to 1.80 Ga (Eilu et al., 2012).

328	Within this geological framework, lithium mineralization took place in metasedimentary and
329	metavolcanic units along major fault and shear zones. They are dated as relatively late, between 1.8 to
330	1.79 Ga (Fig. 3, Table 5; e.g., Alviola et al., 2001), post-dating local migmatization. They include the
331	ca. 1.88-1.86 Ga Vaasa Migmatite Complex on the margins of the Evijärvi belt (Suikkanen et al.,
332	2014), and the ca. 1.84-1.82 Ga late-orogenic migmatizing microcline granites in southwestern
333	Finland (Kurhila et al., 2005), and appear coeval with the regional amphibolite-grade metamorphism.
334	The mineralization occurs as LCT pegmatite fields, such as the Kaustinene and Somero-Tammela
335	fields (Fig. 3). The Kaustinene one occurs in the 1.92 Ga Pohjanmaa schist belt comprising the Länttä,
336	Syväjärvi and Outovesi deposits, which are albite-spodumene pegmatites owned by Keliber Oy. In the
337	Somero-Tammela region (Fig. 3), the petalite/spodumene Luolamaki, Hirvikallio and Kietyömaäki
338	LCT pegmatites, owned by Nortec Minerals Corp., are hosted in the Hame belt that consists of
339	metavolcanic rock intercalated with metagreywacke and metapelite. In these pegmatites, petalite was
340	formed first and later converted to spodumene, suggesting a temperature decrease at constant pressure
341	during crystallization that involved rapid cooling of the terranes (Eilu et al., 2012). Triphylite is
342	reported from several LCT pegmatites, mainly in Sweden.
343	3.1.3 The Sveconorwegian orogenic belt (1140 to 850 Ma)
344	Part of the Grenvillian orogeny, the Sveconorwegian orogenic belt is related to the collision between
345	Fennoscandia and an undetermined major plate (likely Amazonia), which contributed to the Rodinia
346	supercontinent assemby (e.g., Li et al., 2008). The orogen spans from 1140 to 850 Ma, amalgamating
347	Mesoproterozoic (1750-1500 Ma) lithotectonic units separated by major shear zones (Bingen et al.,
348	2008a, b); according to these authors, the orogen can be divided into several tectonic phases. Among
349	these, the Arendal phase (1140-1080 Ma) marks the collision between the Idefjorden and Telemarkia
350	terranes (Fig. 3). This initial phase was related to closure of an oceanic basin, and subsequent accretion
351	of a volcanic arc and a high-grade metamorphic event (ca. 1140-1125 Ma). The Adger phase (1050-
352	980 Ma) corresponded to oblique continent-continent collision, and underthrusting and
353	burial/exhumation of the Idefjorden Terrane (Fig. 3). This phase was contemporaneous with crustal
354	thickening of the Telemarkia Terrane, when widespread syn-collisional magmatism was followed by
355	high-grade metamorphism. Finally, the Dalane phase (970-900 Ma) corresponded to gravitational
356	collapse, associated with post-collisional magmatism, and formation of a gneiss dome and core
357	complex (930-920 Ma) with low-pressure/high-temperature metamorphism.
358	In this context, lithium mineralization occurred within polymetamorphic Paleoproterozoic
359	amphibolite gneiss, gabbroic amphibolite and metadiorite, mainly within the Idefjorden and Telemark
360	terranes. In the latter, the Evje-Iveland pegmatite field, recognized as the largest one (Fig. 3; e.g.,
361	Birkeland and Frikstad), comprises over 400 pegmatite bodies. These were dated at ca. 909±14 Ma
362	(Scherer et al., 2001; Table 5), appear to be unrelated to granites, but are coeval with late regional

363	partial melting and crustal collapse. Among these NYF pegmatites, several indicate a late-magmatic
364	event shown by a REE-depleted replacement zone consisting of "cleavelandite", amazonite, quartz and
365	muscovite, suggesting overprinting of a LCT magma onto pre-existing NYF pegmatite bodies (Černý,
366	1991a,b). Lepidolite and zinnwaldite are reported from these pegmatites, which are considered as
367	mixed NYF-LCT pegmatites, although the Li enrichment is related to the replacement zones.
368	3.2 Hard-rock lithium mineralization in European Neoproterozoic to Neogene terranes
369	3.2.1 The Cadomian orogenic belt (620-540 Ma)
370	In Europe, the Cadomian orogeny is characterized by a continental magmatic arc, which occurred
371	during the Ediacaran along the rim of the West African Craton and resulted in opening of the Rheic
372	Ocean between the Avalonia and Armorica microplates, respectively associated with the Laurentia and
373	Gondwana supercontinents. This took place from Cambrian to Ordovician (Fig. 4; e.g., Linnemann et
374	al., 2008; Nance et al., 2012).
375	A notable relic of this event is the occurrence of discontinuous Cambrian-Early Ordovician
376	Mn-(Fe) rich metasedimentary rocks in Scotland, Wales, the Lake District of England, Belgium and
377	Germany (Fig. 4; Kroner and Romer, 2013). Here, Li-bearing minerals such as lithiophorite can occur.
378	Such occurrences are restricted to the Avalonian Shelf, constrained by the Rheic suture in the south,
379	and were formed by weathering of the Cadomian continental magmatic arc at the edge of the peri-
380	Gondwana plate in an extensional regime (Romer et al., 2011). They were formed during the first
381	stage of the orogeny (ca. 590-570 Ma) and are not stratigraphically correlative, but can be found along
382	the Avalonia Shelf from Nova Scotia through the Government Point Formation of the sedimentary
383	Goldenville Group (Canada; White, 2008) to Poland. Kroner and Romer (2013) suggested that coeval
384	and similar deposits may be found in the southern part of the Ossa Morena Zone (Spain).
304	and similar deposits may be found in the southern part of the Ossa Morena Zone (Spain).
385	3.2.2 The Caledonian orogenic belt (475-380 Ma)
386	The Caledonian orogeny was a series of tectonic events related to the closure of the Iapetus Ocean
387	(McKerrow et al., 2000), reflecting Ordovician-Silurian oblique interactions between the Laurentian
388	(Scotland), Avalonia (Ireland) and Baltica terranes. The initial Grampian phase (475-460 Ma)
389	consisted, at the north end of the Iapetus Ocean, of collision between the Laurentian continental
390	margin and an intra-ocean island arc complex. This resulted in the emplacement of S-type granites in
391	the NW highlands of Scotland and was followed by oblique subduction under the Laurentian (north),
392	Avalonian (south) and Baltica (east) terranes (Fig. 5A). In the Late Silurian (425 Ma), the Iapetus
393	Ocean was closed and continents collided with the Laurentian Terrane along the Iapetus Suture Zone
394	(Fig. 5A). Widespread calc-alkaline magmatism occurred from ca. 425 to 380 Ma as a post-subduction
395	event (Miles et al., 2016), related to orogen-wide sinistral transtension induced by subsequent episodes
396	of lithospheric extension during the Early Devonian (Brown et al. 2008).

397	In this Caledonian context, LCT pegmatites are known from Scotland and Ireland. In Scotland
398	the Glenbuchat pegmatite lies in the northern part of the Iapetus Suture Zone, hosted by Dalradian
399	metasedimentary rocks of the Grampian Terrane. It consists of lepidolite and elbaite rich pegmatite
400	(Fig. 5B; Jackson, 1982). The Dalradian Inzie Head gneiss and Grampian granite are associated with
401	the <i>ca.</i> 470 Ma Grampian migmatization (Johnson et al., 2001).
402	In Ireland, the ca. 412 Ma Leinster LCT pegmatite field (Table 5; Barros, 2017) that includes
403	the spodumene Aclare and Molyisha pegmatites, shows a relatively late time of formation (Fig. 5B).
404	The pegmatite field is hosted by the <i>ca.</i> 417-405 Ma poly-phase Tullow Lowlands pluton (Fritschle,
405	2016) along the East Carlow Deformation Zone and includes up to 60 wt.% spodumene (Luecke,
406	1981). Thus, their emplacement may be related to a transtensional regime in this late orogenic process.
407	3.2.3 The Variscan orogenic belt (400-250 Ma)
408	The European Variscan orogen extends from southern Iberia to northeastern Bohemia, forming a
409	3000 km long and 700-800 km wide belt. It results of Late Paleozoic convergence and collision of the
410	Gondwana (south) and Laurasia-Baltica (north) megacontinents along the Variscan Front (Fig. 6),
411	involving several intermediate microcontinents and closures of oceanic domains (e.g., Matte, 1986,
412	1991).
413	The earliest continental collision started locally in the Early Devonian (385-380 Ma) with
414	migmatization and related anatexis of continental crust, as well as exhumation of Late Silurian rocks
415	along a regional deformation event. In the Middle-Late Devonian (360-350 Ma), arc and back-arc
416	magmatism occurred in the northern Gondwana margins and Central Armorican Domain, attesting of
417	southward subduction and subsequent closure of the Rheic Ocean (Fig. 6; Faure et al., 2005). This
418	event was associated with a variable pressure-temperature metamorphic and deformation event. Late
419	Visean synorogenic extension related to a synorogenic collapse of the inner zones occurred along NW-
420	SE stretching and 333 to 326 Ma migmatization (Faure et al., 2005). Finally, post-orogenic collapse
421	took place around 300 Ma. It was coeval with N-S extension, development of intramontane coal basins
422	and ca. 306 Ma local migmatization (Faure et al., 2005). These events appear to have been
423	diachronous throughout the Variscan orogeny.
424	Considerable amounts of granitic intrusions and several districts of RMG/greisen and LCT
425	pegmatite deposits illustrate the Variscan orogeny. At the scale of the belt, such deposit types are
426	relatively late in the orogeny, coeval with crustal extension together with regional partial melting and
427	melt emplacement. Thus, in the Bohemian Massif, the easternmost part of the European Variscan belt
428	(Fig. 6), greisen and RMG are common in the Saxothuringian and Teplá-Barrandian zones consisting
429	of Neoproterozoic basement (e.g., Matte et al., 1991). The Moldanubian area contains mainly LCT
430	pegmatites (e.g., Cháb et al. 2010, Ackerman et al., 2017), which appear to be spatially related to
431	migmatitic domes and shear zones. According to Melleton et al. (2012), two ages of pegmatite

432	emplacement were identified, including an independent orogenic stage in the Bohemian Massif with
433	LP-HT regional metamorphism related to significant reheating and anatexis; they note that the
434	emplacement of LCT pegmatite here is the oldest known magmatic event of the Variscan orogeny.
435	In France, the northwestern part of the Massif Central is a favorable area for rare-element
436	magmatic bodies (Marignac and Cuney, 1999). This province can be divided into three distinct deposit
437	types (Table 5): 1) rare-metal granite such as the 317±6 Ma Beauvoir and the 314±4 Ma Montebras
438	(Aubert, 1969; Cuney et al., 1992, 2002); 2) rare-metal rhyolite represented by the 313±3 Ma
439	Richemont rhyolite (Raimbault and Burnol, 1998); and 3) LCT pegmatites such as the Mont
440	d'Ambazac rare-element pegmatite field (e.g., Raimbault et al., 1995; Deveaud et al., 2013). The latter
441	includes the 309±5 Ma lepidolite-subtype LCT Chédeville pegmatite, which postdates the 324±4 Ma
442	host granite (Hollinger et al., 1986) and appears to be sub-synchronous with local partial melting
443	(315±4 and 316±4 Ma; Gébelin et al., 2009) and with shearing (La Marche shear zone: 316±5 to
444	312±2 Ma, Gébelin et al., 2007, 2009). This east-west La Marche fault system, located in the northern
445	part of the Limousin, appears to have been a key-control on magmatic activity (Cuney et al., 2002).
446	The Galicia-Trás-os-Montes Zone (GTOMZ) and the Central Iberian Zone (CIZ) in the Iberian
447	Variscan belt host widespread LCT pegmatite fields. At least five main mineralized pegmatite fields
448	are recognized in the former from north to south: Forcarei-Lalín, Serra de Arga, Barroso- Alvão, La
449	Fregeneda-Almendra and Gonçalo-Guarda. In the CIZ, the 326±3 Ma Argemela granite is the only
450	RMG known from Iberia (Charoy and Noronha 1991; 1996). The average age of intrusion of LCT
451	pegmatites in the GTOMZ is 310±5 Ma, whereas in the CIZ and in the southern GTOMZ the ages are
452	younger: 301±3 Ma (Melleton et al., 2011), 295.1±4.1 Ma and 296.4±4.1 Ma (Roda-Robles et al.,
453	2009; Vieira, 2010). Moreover, late quartz-montebrasite hydrothermal veins are reported from several
454	areas in the CIZ (e.g., Roda-Robles et al., 2016).
455	Finally, in the Austroalpine unit of the Eastern Alps, Permian LCT spodumene-bearing pegmatites
456	are known (e.g., Thöni and Miller, 2000; Ilickovic et al., 2017). These pegmatites appear to be coeval
457	with lithospheric extension, causing crustal basaltic underplating, HT and LP metamorphism, as well
458	as intense magmatic activity (Schuster and Stüwe, 2008).
459	3.2.4 The Mediterranean and circum-Mediterranean orogens (Mesozoic-2.5 Ma)
460	Several styles of lithium mineralization are contemporaneous with the circum-Mediterranean and
461	Mediterranean Tethys mountain belts, such as the Carpathians Mountains or the Egean Domain, which
462	resulted from oceanic closure and collision of the European continental foreland (Bohemian Massif)
463	with the African promontory of the Adriatic microplate (Fig. 7). Rifting of the Alpine Tethys and its
464	subsequent subduction underneath the Adriatic margin, followed by continent-continent collision,
465	promoted widespread magmatic activity through time, as well as the development of related orogens
466	such as the Carpathians Mountains.

467	The initial continental rifting of the Alpine Tethys and its related magmatism occurred from the
468	Middle to Late Triassic in the eastern part of the Mediterranean domain (Bertotti et al., 1999; Schmid
469	et al., 2008). In the central Alpine-Carpathian-Dinaridic orogenic system, ca. 242 Ma Li-phosphate
470	pegmatites occur in the Brissago area (Switzerland; Vignola et al., 2008); these authors suggested that
471	the pegmatites formed from partial melting of the Early Permian Ivrea gabbro.
472	This tectono-magmatic event was followed by development of the Adriatic passive margin in the
473	Middle Jurassic (Bertotti et al., 1999; Schmid et al., 2008) in an extensional tectonic regime, and later
474	by the subduction of the Tethys oceanic lithosphere beneath the Adriatic margin from Cretaceous to
475	Late Paleogene. This crustal shortening led to the final consumption of the Neotethys Ocean
476	associated with widespread calk-alkaline magmatism in the Carpathian arc (Fig. 7; Schmid et al.,
477	2008) and formation of the Apennines in Italy. Meanwhile, Jurassic to Cretaceous bauxite deposits
478	with lithiophorite are reported from Hungary and Greece (Fig. 7), suggesting a tropical climate during
479	this period.
480	In the external domain of the Dauphinois zone (French Alps), an Eocene greenschist metamorphic
481	event led to the formation of cookeite-bearing formations and -tension gashes within Aalenian black
482	shales (Fig. 7). According to Jullien and Goffé (1993), the Li was sourced from the metasediments that
483	themselves resulted from erosion of the continental crust.
484	Within the Central Alps (i.e., Penninic Zone), a kilometer-scale east-west extensional area occurs
485	with several Oligocene-Miocene LCT pegmatites in the Vigezzo, Bodengo and Codera areas. They are
486	Tertiary (Fig. 7; 30 to 20 Ma, Guastoni et al., 2014; Romer et al., 1996) and show a beryl-phosphate
487	affinity with elbaite and columbite as potential accessory minerals (Guastoni et al., 2014, 2016).
488	Finally, extensional collapse and back-arc extension promoted development of the Miocene
489	Pannonian and the Jadar basins within the Alpine-Carpathian-Dinarides domain along several late
490	Oligocene-Miocene detachment zones (Jolivet et al., 2009; Menant et al., 2018; Stojadinovic et al.,
491	2017) and in response to rapid slab roll-back (Simić et al., 2017; Stojadinovic et al., 2017). Basin
492	formation was accompanied by calc-alkaline magmatism with a paroxysm of silicic volcanism during
493	the early and middle Miocene (Kovács et al., 2007). Rapid exhumation of metamorphic rocks caused
494	episodic migmatization as well as related magmatism (Bergell intrusion; Beltrando et al., 2010).
495	Within the northern part of the Apennines, the <i>ca.</i> 6.7-6.9 Ma (Ferrara and Tonarini, 1985) LCT
496	pegmatites from Elba Island are famous for their gem-quality elbaites.

498	4. Interpretation and discussion
499	Considering all lithium occurrences in Europe, one of the first observations regarding their distribution
500	is their apparent clustering (Figs. 3, 4, 5, 6, 7). This clustering defines pegmatite and/or RMG fields
501	with similar ages of emplacement, suggesting a relatively coeval magmatic activity related to common
502	endogenous processes. Furthermore, the Li-rich sedimentary basins such as Jadar reflect late
503	sedimentary/hydrothermal Li re-concentration through exogenous processes. Endogenous processes
504	related to lithium mineralization
505	We have identified several Li-magmatic events through time as illustrated by RMG, greisen and LCT
506	pegmatites (Table 5; Figs. 3, 4, 5, 6, 7, 8), ranging from Paleoproterozoic to Miocene. These events
507	occurred during times of collisional orogeny, including the Svecofennian (2.1-1.8 Ga; Fig. 3),
508	Sveconorwegian (1140-850 Ma; Fig. 3), Caledonian (490-390 Ma; Fig. 5), Variscan (400-250 Ma;
509	Fig. 6) and Mediterranean (Mesozoic-2.5 Ma; Fig. 7) orogenies. These events were mainly related to
510	supercontinent formation, as observed elsewhere by Bradley (2011). Accordingly, in the Svecofennian
511	orogen, LCT pegmatite ages are 1.8-1.79 Ga This suggests relatively late emplacement in the orogenic
512	cycle that postdated arc accretion and the first regional metamorphism, and might be related to crustal
513	thickening as well as to a late amphibolite-facies metamorphic event.
514	During the Sveconorwegian orogen, emplacement of Li-rich pegmatites (910-906 Ma) appears
515	coeval with the late Dalane phase (970-900 Ma), corresponding to gravitational collapse and post-
516	collisional magmatism, as well as the formation of a gneiss dome and core complex related to low
517	pressure/high temperature metamorphism. The Scottish and ca. 412 Ma LCT pegmatites from Ireland,
518	which are part of the Caledonian orogenic belt, appear coeval with crustal thickening and post-
519	subduction magmatism.
520	In the Variscan belt, RMG (Beauvoir, Montebras and Richemon, France; Argemela, Portugal;
521	St Austell, UK), greisen (Cligga Head, Tregonning-Godolphin, Meldon, UK; Dlha Dolina, Slovakia;
522	Montebras, France; Krasno-Konik, Krupka, Czech Republic) and various LCT pegmatites (Table 5,
523	Fig. 6) are widely distributed (Fig. 8). Their ages suggest mostly emplacement during the Late
524	Carboniferous (Table 5) reflecting highly fractionated magmatic events throughout the European core
525	related to a post-collisional stage ending the Variscan orogeny sensu stricto (Fig. 6, Table 5; e.g.,
526	Bonin, 1998; Chen et al., 1993; Cuney et al., 2002; Melleton et al., 2012; Neace et al., 2016).
527	Moreover, from the internal to the external orogenic domains Li-magmatism appears to be
528	diachronous, indicating southward prograding Li-rich magmatic activity traversing the entire belt. In
529	the internal zones (France, Germany, Czech Republic and NW Iberia) RMG, greisen and LCT
530	pegmatites were mostly emplaced between 320 and 307 Ma corresponding to the Bavarian phase (330-
531	315 Ma; Finger et al., 2007) in the Bohemian Massif and to synorogenic collapse and NW-NE
532	stretching in the French Massif Central (320-310 Ma). In the external zones (UK, parts of Spain and

533	Portugal), similar deposits tended to be emplaced around 305 and 301 Ma (excluding the <i>ca.</i> 326 Ma
534	Argemela granite) suggesting late-orogenic magmatism (Melleton et al., 2015). Finally, deposits
535	belonging to the Gemeric unit in the Western Carpathians of Slovakia, as well as the Austroalpine
536	pegmatites of the Eastern Alps that form the extreme margins of the belt, indicate Permian ages coeval
537	with regional partial melting (Finger et al., 2003, Petrik et al., 2014; Ilickovic et al., 2017).
538	Thus, it appears that the emplacement of RMG, greisen and LCT pegmatites was relatively late in
539	the orogenic cycle and may have been coeval with continent-continent collision, commonly postdating
540	arc accretion. It could also be related to crustal thickening (Alviola et al., 2001), a favorable setting for
541	crustal peraluminous melt (Cuney et al., 1992; 2002) through wall-rock assimilation, the unmixing of
542	restite, and/or internal fluid circulation related to convective fractionation (Lehmann, 1994; Martin and
543	De Vito, 2005).
544	Importantly, it also appears that the reported greisen were developed from RMG, suggesting that
545	most of the greisen associated with fractionated S-type peraluminous granite may not show significant
546	$Li\ contents.\ The\ formation\ model\ involves\ early\ exsolution\ of\ an\ F-CO_2-H_2O-rich\ aqueous\ phase\ from$
547	the granitic magma, along with fluid/rock interactions leading to dissolution/precipitation and re-
548	concentration of incompatible elements, such as Li, F, Sn, W, etc., within the greisen (Heinrich, 1990).
549	Here: 1) miarolitic cavities are common and reflect volatile saturation; and 2) a decrease in rock
550	volume and increase of porosity are reported. In the 321.5±3 Ma Cinovec deposit, dissolution of the
551	protolithionite—formed during magmatic intrusion—and precipitation of zinnwaldite during
552	greisenization have led led to remobilization of Li into its final host mineral (Johan and Johan, 2005).
553	4.2 Exogenous processes related to lithium occurrences
554	Several Li-occurrences in Europe reflect a concentration of lithium in sedimentary rocks through
555	various exogenous processes, such as hydrothermal circulation and/or erosion and transport. Thus,
556	distinct occurrence types can be distinguished.
557	4.2.1 Jadar deposit type
558	The Jadar deposit type is exclusively Neogene (Oligocene to Pliocene), based on available data. The
559	existence of several other isolated intramontane lacustrine evaporite basins is suggested in Serbia
560	(Fig. 8) as well as in Bosnia, such as the Valjevo-Mionica or Lopare basins from where jadarite was
561	reported. Interestingly, the subsurface of these basins includes LCT pegmatite and Cretaceous to
562	Miocene granitic intrusions, suggesting local lithium enrichment in the basement (Stojadinovic et al.,
563	2017). These basins were formed during the late stage of the Dinadiric orogeny (Fig. 7), coeval with
564	the extensional collapse and back-arc extension due to Carpathian slab retreat (Simić et al., 2017).
565	Jadarite precipitation is poorly constrained. Some authors suggested that interaction between
566	clastic sedimentary rocks and the surrounding brine—possibly involving hydrothermal devitrification

567 568	and hydration of andesitic-dacitic pyroclastic material or alteration of clay minerals—may contribute to its precipitation (Stanley et al., 2007; Stojadinovic et al., 2017).
569	4.2.2 Mn-(Fe) deposits
570 571	Two distinct periods of Mn-(Fe) precipitation in Europe are described here. A first group of deposits in Scotland, Wales (e.g., Drosgol Mine), England (Clews Gill), Belgium (Ottré, Beez) and Germany
572	(Harz) is Cambrian to Early Ordovician in age (Fig. 8; Waldron et al., 2011; Romer et al., 2011),
573	representing a notable relic of the Cadomian orogeny (650-550 Ma; Fig. 4). They are exclusively
574	located in the Avalonian plate, constrained by the Rheic Suture, and are formed from weathering of
575	the Cadomian magmatic arc of the Gondwana plate, as suggested by Nd and Sr isotopes (Romer et al.,
576	2011). Interestingly, in Europe, the Cadomian orogeny was subsequently reworked during the
577	Caledonian and Variscan orogenies (Zelazniewicz et al., 1997; Melleton et al., 2012).
578	The second group is mainly found in Hungary, where the Eplény and Urkut Mn deposits are
579	Jurassic in age (Polgari et al., 2005; Figs. 7, 8). These deposits are associated with marine sedimentary
580	rocks mainly composed of bioclastic limestone and black shale.
581	The Li-bearing mineral lithiophorite, as most Mn- and Fe-oxides, was formed from secondary
582	fluid circulation in the host rock (Nicholson and Anderton, 1989). Romer et al. (2011) suggested that
583	the lithium component derived from chemical weathering of continental crust and was originally
584	concentrated in siliciclastic or carbonate rocks. Thus, late hydrothermal fluid circulation may have
585	$remobilized \hbox{\it —and still remobilizes} \hbox{\it —the Li_2O content via dissolution/precipitation processes} \ , \ thus$
586	helping the precipitation of Li-bearing oxides under oxidizing conditions. Moreover, several authors
587	pointed out their distribution along regional faults that are favorable sites for fluid circulation, such as
588	the Candwr Fault in Wales (Cotterell et al., 2009) and the Red Gill Fault in the UK (Clark, 1963).
589	4.2.3 Bauxite deposits
590	Li-bearing minerals in bauxite deposits are Cretaceous in Hungary (D'argenio and Mindszenty, 1986)
591	and Jurassic to Cretaceous in Greece where they are located along the northern shores of the
592	Mediterranean Sea (Bardossy, 1982).
593	In Hungary, these deposits are stratiform where bedrock is a non-uniform karst carbonate rock,
594	in which the bauxite horizons are relatively large. The Halimba mining district is one of the largest,
595	with bauxite thickness varying from 1 to 40 m. Here, the Li-bearing mineral lithiophorite originated
596	from secondary fluid circulation through the host rock (Bardossy, 1982) forming Mn-rich layers in

epi- and supergene crusts. Cookeite is also reported from these deposits (Bardossy, 1982).

597

4.3	Discussion	of rar	e-metal	magma	formation
T.5	Discussion	orrai	C-IIICtai	magma	101 IIIatio

 There are currently two distinct models of rare-metal magma formation. The first one involves the escape of late-stage melts ending the crystallization of huge highly fractionated felsic magma chambers (e.g., Jahns and Burnham, 1969; London, 1992). One of the major arguments for this model is the regional zoning of pegmatite bodies in the margins of supposed parent granites (e.g., Cameron et al., 1949; Černý et al., 2005). An example is the Fregeneda-Almendra pegmatite field where crystal-fractionation modelling and geochronology support a magmatic origin (Vieira 2011; Roda-Robles et al., 2016). Moreover, the widespread presence of pegmatites and RMG in granites (e.g., London, 1992; Černý et al., 2005) suggests a granite-related origin (e.g., Roda-Robles et al., 2016).

However, some aspects disagree with this model, suggesting a second model that involves low-grade partial melting of crustal sequences (e.g., Norton, 1973; Zasedatelev, 1977; Stewart, 1978; Melleton et al., 2011; Müller et al., 2015; Bongiolo et al., 2016). In southern Ireland, geochemical evidence points to the absence of a relationship between the LCT-spodumene Aclare pegmatite field and the surrounding Tullow Lowlands and Blackstairs plutons that are part of the Leinster Granite. This absence concerns their capacity of generating a residual pegmatite melt (Barros et al., 2016). These authors suggested a separate partial-melting event for both units, although the intrusion of the granitic unit may have triggered anatexis of the surrounding sedimentary rocks.

In the French Massif Central, the Monts d'Ambazac pegmatite field has δ^7 Li mica values that are consistent with a crustal metasedimentary source. It is also coeval with evidence of a partial-melting event, excluding the influence of magmatic fractionation from the nearby St Sylvestre granite in the formation of pegmatites. It also demonstrates that strong Li enrichment in pegmatite is not related to a fractionation process (Deveaud et al., 2015). In the Bohemian Massif and in Austria, LCT pegmatite fields are also supposed to be formed by partial melting processes (Melleton et al., 2012).

Thus, a model of partial melting during anatexis of sedimentary rock (evaporites, cookeite-bearing metapelite, Li-rich metasedimentary rock, or Li-rich Ordovician orthogneiss, etc.) may be applied (Fig. 10), involving coeval emplacement for S-type granite (e.g., Kontak et al., 2002) and nearby LCT pegmatite, but not promoting a "parental" relationship. Moreover, micas, garnet and staurolite, which are widespread in metasedimentary rock, are seen as a potential source for lithophile elements such as Li (London, 2005, 2018). For instance, in the Brissago-Valle di Ponte area (Switzerland-Italy), poorly fractionated LCT phosphate pegmatites are suspected to be derived from local partial melting of kinzigites during high-temperature metamorphism (Vignola et al., 2008). At the European scale, various Li-bearing minerals are reported from pegmatites, including Li-micas, lepidolite, spodumene and petalite, involving variations in the fluxing content (F, B and P) of the magmatic fluid (Roda-Robles et al., 2010), as well as varying P/T conditions (e.g., spodumene versus petalite; London, 1986, 1990). These variations are also seen in the Scandinavian orogenies, where zonation of Li-bearing

633	minerals is highlighted: 1) the Svecofennian LCT pegmatites are associated with Li-silicate and Li-
634	phosphate minerals; but 2) the Sveconorwegian LCT pegmatites show a Li-phyllosilicate affinity.
635	4.4 From source to sink
636	As suggested above, several parameters may control the lithium mineralization locations in Europe.
637	The observed clustering of endogenous lithium deposits such as LCT pegmatites, RMG and/or greiser
638	may involve a crustal anomaly (>20 ppm; Rudnick and Gao, 2004), or a Li "pre-concentration" related
639	to paleoenvironmental sedimentation conditions (e.g., type of basin, host rock, climate) and/or post-
640	deposition processes (weathering, basin-fluid circulation in the crust), more generally preserved along
641	a paleo passive-margin (Fig. 9; Romer and Kroner, 2015).
642	In any case, this involves the existence of a primary Li-source that can be of magmatic origin,
643	such as erosional material from a continental magmatic arc and related Mn(-Fe) deposits and
644	lithiophorite occurrences. Another possibility is a sedimentary origin, such as the Schist-
645	Metagreywacke Complex in the Galicia-Trás-Os-Montes Zone (Roda-Robles et al., 2016), or the
646	Pohjanmaa schist belt in Finland and related LCT pegmatites (Eilu et al., 2012). In that respect,
647	significant lithospheric thickening may be favorable for concentrating Li in a specific location (Eilu et
648	al., 2012). The occurrence of several types of Li mineralization in the French Massif Central (Fig. 6;
649	LCT pegmatite, greisen, RMG, Li-bearing tosudite) forming clusters may suggest a possible common
650	Li-source (Cuney and Barbey, 2014). Moreover, a recent isotopic $\delta^7 Li$ study of pegmatites (Deveaud,
651	2015; Deveaud et al., 2015), suggested that beryl-columbite and lepidolite-petalite LCT pegmatites
652	from the Monts d'Ambazac show a distinct crustal contribution, indicating that Li-rich sources may
653	contribute to "secondary" lithium deposits if suitable processes are involved.
654	The timing of fluid circulation appears to be another important feature for Li-concentration,
655	whether related to a regional or to a local extensional regime in an orogenic cycle (Figs. 9, 10; e.g.,
656	Eilu et al., 2012; Jolivet et al., 2009; Melleton et al., 2015; Stojadinovic et al., 2017; Menant et al.,
657	2018). Sedimentary/hydrothermal lithium deposits are thus mainly related to regional extension
658	(rifting or back-arc extension; Kroner and Romer, 2013; Simić et al., 2017; Stojadinovic et al., 2017),
659	whereas magmatic-related lithium deposits are associated with local decompression and/or
660	transtension strike-slip deformation in late continent-continent orogenic cycles, leading to the
661	formation of a volatile-rich melt (Fig. 10). According to Kontak et al. (2002), this melt may cause
662	over-pressuring and/or hydro-fracturing, resulting in the formation of dilatant zones and related
663	fracture sets. Remarkably, sedimentary rocks enriched in Li during an extensional regime (e.g., Jadar
664	Basin) may be a favorable Li source during a subsequent magmatic event. Unfortunately, a lack of
665	data makes it impossible to confirm this hypothesis.
666	Finally, the distribution of Li-occurrences is strongly influenced by the location and geometry of
667	fracture sets (Figs. 9, 10; Deveaud et al., 2012, Deveaud, 2015; Silva et al., 2018). High permeability

668	fractured zones seem to act as favorable channels for: 1) The emplacement of LCT pegmatite or RMG			
669	from evolved magma; or 2) Hydrothermal fluid circulation through sedimentary successions (Jadar			
670	Basin, lithiophorite occurrences in Aalenian black shales) leading to secondary Li-bearing mineral			
671	(lithiophorite, cookeite) precipitation. A recent geostatistical study showed that most pegmatites occur			
672	less than 500 m from a fault system (Deveaud et al, 2013).			
673	4.5 Grade assessment of and tonnage estimation			
674	4.5.1 Data quality			
675	When regarding the available dataset, several problems are obvious. The differences in knowledge and			
676	definition of mineral resources and reserves vary between historical data (St Austell, Beauvoir), JORC			
677	(Jadar project) and NI43-101 (Alberta I project). Historical data estimates predate the CRIRSCO			
678	system (before 1995; www.crirsco.com). They are based on drilling campaigns managed by geological			
679	surveys and related subsidiaries. Such data may lead to under- or over-estimates. Figure 11 shows that			
680	projects and occurrences are distributed homogeneously despite their reference system (historical data			
681	in italics versus CRIRSCO system in bold). Note that mineral resources from the St Austell deposits			
682	appear to be strongly anomalous from the main population (Fig. 11, Table 4); they are unrealistic for			
683	environmental and societal reasons, and probably not economically viable regarding ore grades. For			
684	these reasons, the St Austell data are not used in the following sections. The JORC system, however,			
685	may exclude some commercially sensitive information, such as mineral reserves if mineral resources			
686	(Table 4), which is not allowed with the NI43-101 report. However, these points do not affect the			
687	mineral resources comparison on which our estimates are based.			
688	As mentioned above, thirsteen projects in England (Meldon), Ireland (Aclare), France (Beauvoir,			
689	Montebras), Germany (Altenberg) and Ukraine were evaluated before setting up a "reporting system",			
690	as such mineral resource and -reserve estimates refer to historical evaluations. These data represent			
691	only 5% of the entire dataset (Table 4). Fifteen projects were defined in the Australian JORC system			
692	(e.g., Wolfsberg, Austria); one project (Zinnwald, Germany) in the European PERC; one in the			
693	Canadian NI43-101 system (e.g., Alberta I project which comprises Presqueria deposit, Spain) and one			
694	project is defined in the United Nation Framework Classification (UNFC; Alijo deposit).			
695	However, we think that, despite the apparent discrepancies between reference systems, our dataset			
696	is a good starting point for estimating the European Li hard-rock potential (Figs. 11, 12).			
697	Moreover, Li-bearing minerals in lithiophorite and Li-chlorite occurrences in sedimentary			
698	deposits—bauxite, Mn-(Fe), MVT and Li-bearing clay deposits—were not systematically described,			
699	as Li was not of first interest at the time. This was the case in Spain, France and Turkey, and may hide			
700	significant local Li grades, as in China (Wang et al., 2013) and USA (Tourtelot and Brenner-Tourtelot,			
701	1977). Available data from bauxite deposits in China show that the average Li grade is very low			

702	(2045 ppm Li ₂ O; Wang et al, 2013). The same is true for Li-bearing shales in the Dauphinois area,		
703	France, where the average Li content is 949.34 ppm Li ₂ O (Henry et al., 1996). Accordingly, these		
704	occurrences can hardly be considered as potential Li deposits regarding their ore grade.		
705	Based on the available dataset, 8,839,750 t of Li ₂ O (Table 4) are presently reported in Europe		
706	from various deposit types and related to various Li-bearing minerals.		
707	Furthermore, our study does not cover lithium in seawater, whose average content has been		
708	estimated at 0.17 ppm (Fasel and Tran, 2005; Yaksic and Tilton, 2009), nor that potrentially contained		
709	in oilfields (e.g., Pechelbronn in France) and geothermal brines (e.g., the South Crofty deposit in the		
710	UK; Cornish Lithium/Strongbow). Such potential lithium sources are difficult to quantify due to fluid		
711	mixing, dilution and/or movement (Houston et al., 2011), but research is ongoing (e.g., Eramet-		
712	IFPEN), as are potential resource estimates from such sources.		
713	4.5.2 Range of ore grade and tonnage		
714	At the deposit scale, metric tons of ore and average grades (Fig. 11, Table 4) of European hard-rock		
715	lithium deposits are relatively competitive compared to the world-class LCT pegmatites from the		
716	Greenbushes in Australia and Whabouchi in Canada, which are representative examples of such Li-		
717	deposits. In detail, the Proterozoic Ukrainian pegmatites show similar grades and tonnages, whereas		
718	Variscan pegmatites host lower tonnages. Thus, as pointed out before, significant differences in Li		
719	content are seen among the various orogens. Interestingly, the Svecofennian, Sveconorwegian and		
720	Variscan orogenies, which involved supercontinent accretion, continent-continent collision and		
721	notable late lithospheric thickening, resulted in richer lithium deposits than the Cadomian, Caledonian		
722	and Alpine orogenies. This suggests that processes involving extensive crustal anatexis from		
723	lithospheric thickening lead to significant Li enrichment (Černý, 1991a, b). For the Apine orogen, the		
724	dearth in Li deposits could be related to a present-day deep erosional level, as indicated by the		
725	presence of few LCT pegmatites emplaced at the highest structural levels, highlighted by miarolitic		
726	(Guastoni et al., 2014, 2016) features (MI class of Černý and Ercit, 2005).		
727	It also appears that greisen and RMG containing mainly Li-micas (lepidolite, zinnwaldite, Li-		
728	muscovite) and Li-phosphates, may contain relatively higher tonnages, but lower grades, than the LCT		
729	pegmatites, which contain mainly spodumene- and petalite-dominated Li-bearing minerals (Figs. 11,		
730	12). This is, first, a function of deposit size: pegmatites are narrow and well constrained whereas		
731	greisen and RMG can form kilometer-scale cupolas and may have deep roots (e.g., Beauvoir). Second,		
732	the type of Li-bearing mineral, within which the Li ₂ O content may vary significantly (Table 1), is		
733	another major parameter, illustrated by spodumene versus zinnwaldite.		
734	Finally, in addition to the above points, ore grade can be controlled by several other parameters.		
735	These include the geochemistry of fluxing fluids (F, B and P), different crystallization parameters and		

736	P-T conditions (spodumene versus petalite; Černý and Ferguson, 1972), and variable degrees of			
737	fractionation (Li-phosphate occurrences against amblygonite-montebrasite or triphylite-sicklerite-			
738	ferrisicklerite series; Černý, 1991b). All these may affect the number and type of Li-bearing minerals,			
739	as well as their mineral size and relative abundance, and therefore the overall Li content.			
740	4.6 Perspectives			
741	As emphasized by this study, lithium in hard-rock deposits is not rare in Europe and well distributed			
742	within Proterozoic to Cenozoic orogens (Fig. 8). The Variscan orogeny (Fig. 6) shows the most			
743	important Li-content (more than 60% of the identified deposits in Table 4) in various deposit types			
744	(greisen, RMG, pegmatite). The oldest orogens mainly contain LCT pegmatites (Figs. 3, 5) that tend to			
745	cluster, potentially because of successive orogenic reworking. However, only very few studies report			
746	lithium occurrences related to young Mediterranean orogens, suggesting either a lack of exploration or			
747	a significant difference between the Variscan and Alpine orogenies.			
748	As for jadarite occurrences, greenfield exploration in Balkan countries such as Serbia and Bosnia			
749	may identify latent deposits related to lacustrine evaporite basins. Currently, this area is relatively			
750	underexplored and several exploration and mining companies showed recent interest in acquiring			
751	permits, such as the Australian firm South East Asia Resources, recently renamed Jadar Lithium.			
752	Regarding Li-production, LCT pegmatites that generally have high lithium grades and low			
753	tonnages could be rapidly in production as Li-extraction processes for spodumene are operational.			
754	Greisen and RMG, which have low Li grades and high tonnages, will take somewhat longer to reach			
755	production as the extraction processes of Li-bearing micas must be demonstrated at deposit scale.			
756				
757	5. Conclusions			
758	This review of Li hard-rock lithium metallogeny in Europe demonstrates that a wide range of deposit			
759	types, including endogenous (LCT pegmatites, RMG, greisen) and exogenous (Jadar, bauxite)			
760	processes, is involved. The lithium is contained in various Li-bearing minerals, such as spodumene,			
761	lepidolite and zinnwaldite, which are related to different orogenies through time. A favorable			
762	geodynamic setting for endogenous magmatic lithium accumulation comprises a late orogenic process,			
763	commonly postdating arc accretion, coeval with continent-continent collision, and related to local			
764	crustal thickening. A post-orogenic extensional setting is favorable for exogenous processes that can			
765	concentrate lithium into a deposit.			
766	At present, 27 potential hard-rock deposits have been identified in Europe. The sum of such Li			
767	resources is estimated at 8,839,750 t of Li ₂ O. Their production may secure, in part, European lithium			
768	requirements in the near future.			

769	Our inventory also reflects the heterogeneity in knowledge regarding lithium occurrences. This is		
770	due to a relative lack of interest in lithium until recently and suggests that new targets might be		
771	defined in the foreseeable future through active ongoing exploration.		
772			
773	6. Acknowledgements		
774 775	We gratefully acknowledge Drs. Mali H., Uher P., and Ilickovic T. for their assistance regarding European occurrence locations. We also thank Matevž Novak from the Geological Survey of Slovenia		
776	for the use of the jadarite picture. This study was funded by the French Centre for Excellence		
777	Voltaire* - LABEX VOLTAIRE (Geofluids and VOLatils, Earth, Atmosphere - Resources and		
778	Environment) in collaboration with the French geological survey (BRGM) and the Economic		
779	Laboratory of Orléans University (LEO). We thank two anonymous reviewers and Dr. Seltmann for		
780	their constructive comments that greatly helped to improve the manuscript. Dr. H.M. Kluijver edited		
781	the final English version of the MS.		
782			
783	7. References		
784	Ackerman L., Haluzová E., Creaser R.A., Pašava J., Veselovský F., Breiter K., Erban V., and Drábek		
785	M., 2017. Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re-		
786 787	Os geochronology of molybdenite; Mineralium Deposita, Vol. 52, 651-662. https://doi.org/10.1007/s00126-016-0685-5.		
788	Alviola R., Mänttäri I. Mäkitie H., and Vaasjoki, M., 2001. Svecofennian rare-element granitic		
789	pegmatites of the Ostrobothnia region, western Finland: their metamorphic environment and time of		
790	intrusion; In Svecofennian granitic pegmatites (1.86-1.79 Ga) and quartz monzonite (1.87 Ga), and		
791	their metamorphic environment in the Seinäjoki region, western Finland, Mäkitie H. (eds.); Geological		
792	Survey of Finland. Special Paper 30, 9-29.		
793	Anderson S.T., 2015. The mineral Industry of Hungary; <i>In</i> 2012 Yearbook, Hungary, USGS Science		
794	for a changing world, 8p.		
795	Armand M., and Tarascon J.M., 2008. Building better batteries; Nature, Vol.451, 652-657.		
796	Artemieva I.M., Thybo H. and, Kaban M.K., 2006. Deep Europe today: geophysical synthesis of the		
797	upper mantle structure and lithospheric processes over 3.5 Ga; Memoirs of the Geological Society of		
798	London, Vol. 32, 11-41.		
799	Artemieva I.M., and Thybo H., 2013. EUNAseis: A seismic model for Moho and crustal structure in		
800	Europe, Greenland, and the North Atlantic region, Tectonophysics, Vol. 609, 97-153.		

- Aubert G., 1969. Les coupoles granitiques de Montebras et d'Echassières (Massif Central français) et
- la genèse de leurs minéralisations en étain, lithium, tungstène et béryllium; Mémoire BRGM, 46,
- 803 345pp.
- Bardossy G., 1982. Karst bauxites, Bauxite deposits on carbonate rocks; *In* Developments in economic
- geology, Elseiver Scientific publishing company (eds.), Vol.14, 442p.
- 806 Barros R., 2017. Petrogenesis of the Leinster LCT (Li-Cs-Ta) pegmatite belt in southeast Ireland; PhD
- Thesis, University College Dublin, Ireland, 287 p.
- Barros R. and Menuge J.F., 2016. The origin of spodumene pegmatites associated with the Leinster
- granite in southeast Ireland; The Canadian Mineralogist, Vol. 54, 847-862
- 810 Beltrando M., Frasca G., Compagnoni R., and Vitale-Brovarone A., 2012. The Valaisian controversy
- 811 revisited: multi-stage folding of a Mesozoic hyper-extended margin in the Petit St. Bernard pass area
- 812 (Western Alps); Tectonophysics, Vol. 579, 17-36.
- Bergh S.G., Corfu F., Priyatkina N., Kullerud K. and Myhre P.I., 2015. Multiple post-Svecofennian
- 814 1750-1560 Ma pegmatite dykes in Archean-Paleoproterozoic rocks of the West Troms Basement
- 815 Complex, North Norway: Geological significance and regional implications; Precambrian Research,
- 816 Vol. 266, 425-439.
- 817 Bertotti G., Seward D., Wijbrans J., Ter Voorde M., and Hurford A.J., 1999. Crustal thermal regime
- prior to, during, and after rifting: a geochronological and modelling study of the Mesozoic South
- Alpine rifted margin; Tectonics, Vol. 18, 185-200.
- Bongiolo E.M., Renac C., d'Almeida de Toledo Piza P., da Silva Schmitt R., and Sampaio Mexias A.,
- 821 2016. Origin of pegmatites and fluids at Ponta Negra (RJ, Brazil) during late- to post-collisional stages
- 822 of the Gondwana Assembly. Lithos, 240–243, 259–275.
- 823 Bonin, B., 1998. Orogenic to non-orogenic magmatic events: Overview of the Late Variscan
- magmatic evolution of the Alpine Belt; Turkish Journal of Earth Sciences, Vol. 7; 133-143.
- Bousquet R., Schmid S.M., Zeilinger G., R., Rosenberg C., Molli G., Robert C., Wiederkehr M., and
- Rossi P., 2012. Tectonic framework of the Alps, Scale 1:1,000,000; Commission for the Geological
- Map of the World.
- Bradley D.C., Munk L., Jochens H., Hynek S., and Labay K., 2013. A preliminary deposit model for
- lithium brines; U.S. Geololical Survey, Open File Report 2013-1006, 9.
- Bradley D.C., 2011. Secular trends in the geologic record and the supercontinent cycle; Earth-Science
- 831 Reviews, Vol. 108, 16-33.

- Braux C., Piantone P., Zeegers H., Bonnemaison M., and Prévot J.C., 1993. Le Châtelet gold-bearing
- arsenopyrite deposit, Massif Central France: Mineralogy and geochemistry applied to prospecting;
- Applied Geochemistry, Vol. 8, 339-356.
- Breiter, K., Korbeloca Z., Chladek S., Uher P., Knesl I., Rambousek P., Honig S., and Sesulka V.
- 2017. Diversity of Ti-Sn-W-Nb-Ta oxide minerals in the classic granite-related magmatic-
- 837 hydrothermal Cinovec/Zinnwald Sn-W-Li deposit (Czech Republic); European Journal of Mineralogy,
- 838 Vol. 29, 727-738.
- BRGM, 2017. Le lithium (Li) éléments de criticité, fiche de synthèse sur la criticité des matières
- minerals le lithium; Mineral Info, 8 p.
- British Geological Survey, 2016. Lithium; Minerals UK, Mineral profile, 39 p.
- Bussink R.W., 1984. Geochemistry of the Panasqueira tungsten-tin deposit, Portugal; PhD thesis,
- University of Utrecht, The Netherlands, 170 p.
- Cameron E.N., Jahns R.H., McNair A.H. and Page L.R., 1949. Internal structure of granitic
- pegmatites. Economic Geology Monograph 2, 115 p.
- Cassard D., Bertrand G., Billa M., Serrano J.J., Tourlière B., Angel J.M., and Gaal G., 2015. ProMine
- Mineral Databases: New tools to assess primary and secondary mineral resources In 3D, 4D and
- Predictive Modelling of Major Mineral Belts in Europe, Weihed P., (ed.); Mineral Resource Reviews,
- 849 DOI 10.1007/978-3-319-17428-0 2
- 850 Černý P., 1992. Regional zoning of pegmatite populations and its interpretation; Mitteilungen der
- Österreichischen Mineralogischen Gesellschaft, Vol. 137, 99-107.
- 852 Černý P., 1991a. Rare-element granitic pegmatites. Part 1: Anatomy and internal evolution of
- pegmatite deposits; Geoscience Canada, Vol. 18, 49-67.
- 854 Černý P., 1991b. Rare-element granitic pegmatites. Part 2: Regional to global environments and
- petrogenesis; Geoscience Canada, Vol. 18, 68-81.
- 856 Černý P., 1990. Distribution, affiliation and derivation of rare-element granitic pegmatites in the
- 857 Canadian Shield; Geologische Rundschau, Vol. 79, 183-226.
- 858 Černý P., 1989. Characteristics of pegmatite deposits of tantalum; *In* Lanthanides, Tantalum and
- Niobium, Möller P., Černý P., and Saupé F., (eds.); Society for Geology applied to Mineral deposits,
- Special Publication 7, Springer-Verlag, 192-236.

- černý P. and Ercit T.S., 2005. The classification of granitic pegmatites revisited; The Canadian
- 862 Mineralogist, Vol. 43, 2005-2026.
- Černý P., and Ferguson R.B., 1972. The Tanco pegmatite at Bernic Lake, Manitoba. IV. Petalite and
- Spodumene relations; The Canadian Mineralogist, Vol. 11, 660-678.
- černý P., London D. and Novák M., 2012. Granitic pegmatites as reflections of their sources;
- 866 Elements, Vol. 8, 289-294.
- 867 Cháb J., 2010. Outline of the geology of the Bohemian Massif: The basement rocks and their
- Carboniferous and Permian cover; Czech Geological Survey, Prague, 295 p.
- Charles N., Tuduri J., Guyonnet D., Melleton J., and Pourret O., 2013. Rare earth elements in Europe
- and Greenland: a geological potential? An overview; Mineral Deposit Research for a high-Tech
- World, 12th SGA Biennial meeting, Vol. 4, 4 p.
- 872 Charoy B., and Noronha F., 1996. Multistage growth of rare-element, volatile-rich microgranite at
- Argemela (Portugal); Journal of Petrology, Vol. 37, 73-94.
- Charoy B., and Noronha F., 1991. The Argemela granite-porphyry (Central Portugal): the subvolcanic
- expression of a high-fluorine, rare-element pegmatite magma; In Source, Transport and deposition for
- 876 metals, Pagel M., and Leroy J.L., (Eds.), 741-744.
- 877 Christman P., Gloaguen E., Labbé J.F., Melleton J., and Piantone P., 2015. Global lithium resources
- and sustainability issues; In Lithium Process Chemistry, Resources, Extraction, Batteries and
- 879 Recycling, Chagnes A. and, Switowska J., (eds.); Elsevier, 1-40.
- 880 Clark L., 1963. The geology and pretrology of the Ennerdale granophyre. Its metamorphic aureole and
- associated mineralization; PhD thesis, University of Leeds, England, 324 p.
- Cotterell T., 2009. Supergene manganese mineralization associated with the Camdwr fault in the
- 883 Central Wales orefield; Journal of the Russell Society, Vol.12, 15-25.
- Cuney M. and Autran A., 1987. Objectifs généraux du projet GPF Echassières n°1 et résultats
- essentiels acquis par le forage de 900 m sur le granite albitique à topaze-lépidolite de Beauvoir; In:
- 886 Cuney M. and Autran A. (Eds), Echassières. Le forage scientifique d'Echassières: une clé pour la
- 887 compréhension des mécanismes magmatiques et hydrothermaux associés aux granites à métaux rares;
- Mémoire Géologie de la France (GPF) 1, 7-24.
- 889 Cuney M., and Barbey P., 2014. Uranium, rare metals, and granulite-facies metamorphism;
- 890 Geoscience Frontiers, Vol. 5, 1-17.

- 891 Cuney M., Marignac C. and Weisbrod A., 1992. The Beauvoir topaz-lepidolite albite granite (Massif
- 892 Central, France): The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization; Economic Geology,
- 893 Vol. 87, 1766-1794.
- Cuney M., Alexandrov P., Le Carlier de Veslud C., Cheilletz A., Raimbault L., Ruffet G. and Scaillet
- 895 S., 2002. The timing of W-Sn –rare metals mineral deposit formation in the Western Variscan chain in
- their orogenic setting: the case of the Limousin area (Massif Central, France); *In* The Timing of Major
- Ore Deposits in an Evolving Orogeny, Blundell D.J., Neubauer E. and Von Quadt A. (eds); Geological
- 898 Society, London, Special Publications, Vol. 204, 213-228.
- Dakota Minerals Ltd., 2017. Sepeda Largest Pegmatite-Hosted JORC Lithium Resource in Europe;
- 900 ASX announcement, 20 February 2017; press release, 29 p.
- D'Argenio B., and Mindszenty A., 1986. Cretaceous bauxites in the tectonic framework of the
- 902 Mediterranean; Rendiconti della Società Geologica Italiana di Mineralogia e Petrologia, Vol. 9, 257-
- 903 262.
- 904 Deveaud S., Millot R., and Villaros A., 2015. The genesis of LCT-type granitic pegmatites, as
- illustrated by lithium isotopes in micas; Chemical Geology, Vol. 411, 97-101.
- Deveaud S., 2015. Caractérisation de la mise en place des champs de pegmatites à éléments rares de
- 907 type LCT Exemples représentatifs de la chaine Varisque; PhD thesis, University of Orléans, France,
- 908 350 p.
- 909 Deveaud S., Gumiaux C., Gloaguen E., and Branquet Y., 2013. Spatial statistical analysis applied to
- 910 rare-elements LCT pegmatite fields: An original approach to constrain fault-pegmatites-granites
- 911 relationships; PEG 2013, 6th International Symposium on Granitic Pegmatites, Program with abstract,
- 912 36.
- Deveaud S., Gumiaux C., Gloaguen E., and Branquet Y., 2013. Spatial statistical analysis applied to
- 914 rare-element LCT type pegmatite fields: An original approach to constrain faults-pegmatites-granites
- 915 relationships; Journal of Geosciences, Vol. 58, 163-182.
- Eilu P., Ahtola T., Äikäs O., Halkoaho T., Heikura P., Hulkki H., Iljina M., Juopperi H., Karinen T.,
- Kärkkäinen N., Konnunaho J., Kontinen A., Kontoniemi O., Korkiakoski E., Korsakova M.,
- 918 Kuivasaari T., Kyläkoski M., Makkonen H., Niiranen T., Nikander J., Nykänen V., Perdahl J.A.,
- Pohjolainen E., Räsänen J., Sorjonen-Ward P., Tiainen M., Tontti M., Torppa A., and Västi K., 2012.
- 920 Metallogenic areas in Finland; Geological Survey of Finland, Special Paper 53, 207-342.
- 921 Ericksen G.E., and Salas R., 1987. Geology and resources of salars in the central Andes; U.S.
- 922 Geological Survey, Open File Report. 88–210, 51.

- 923 Ertl A., Schuster R., Hughes J.M., Ludwig T., Meyer H.P., Finger F., Dyar M.D., Ruschel K.,
- 924 Rossman G.R., Klötzli U., Brandstätter F., Lengauer C.L., and Tillmanns E., 2012. Li-bearing
- 925 tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria; European
- 926 Journal of Mineralogy, Vol. 24, 695-715.
- 927 Fasel D., and Tran M.Q., 2005. Availability of lithium in the context of future D-T fusion reactors;
- 928 Fusion Engineering and Design, Vol. 75-79, 1163–1168.
- 929 Faure M., Bé Mézène E., Duguet M., Cartier C., and Talbot J.Y., 2005. Paleozoic tectonic evolution of
- 930 Medio-Europa from the example of the French Massif Central and Massif Armoricain; Journal of the
- 931 Virtual Explorer, Vol. 19, 26 p.
- 932 Ferrara G., and Tonarini S., 1985. Radiometric geochronology in Tuscany: Results and problems;
- 933 Rendiconti della Società Italiana di Mineralogia e Petrologia, Vol. 40, 111-124.
- 934 Fritschle T., 2016. Age and origin of late Caledonian granites and Ordovician arc magmatic rocks in
- Ireland and the Isle of Man; PhD thesis, University College, Dublin, Ireland, 359 p.
- Finger F., Gerdes A., Janousek V., René M., and Riegler G., 2007. Resolving the Variscan evolution
- of the Moldanubian sector of the Bohemian Massif: The significance of the Bavarian and the Moravo-
- 938 Moldanubian tectonometamorphic phases; Journal of Geosciences, Vol. 52, 9-28.
- 939 Finger F., Broska I., Haunschmid B., Hrasko L., Kohút M., Krenn E., Petrík I., Riegler G., Cassiterite
- 940 U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite
- 941 systems: The classic Erzgebirge Tin Province (Saxony and Bohemia) Eletron-microprobe dating of
- 942 monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian
- rifting event subsequent to Variscan crustal anatexis; International Journal of Earth Sciences, Vol. 92,
- 944 86-98.
- 945 Gallego Garrido M., 1992. Las mineralizaciones de Li asociadas a magmatismo ácido en Extremadura
- y su encuadre en la Zona Centro-Ibérica; PhD thesis, Universidad Complutense, Madrid, Spain, 342 p.
- 947 Garfunkel Z., 2015. The relations between Gondwana and the adjacent peripheral Cadomian domain-
- constrains on the origin, history and paleogeography of the peripheral domain; Gondwana Research,
- 949 Vol. 28, 1257-1281.
- 950 Gébelin A., Roger F., and Brunel M., 2009. Syntectonic crustal melting and high-grade metamorphism
- 951 in a transpressional regime, Variscan Massif Central, France; Tectonophysics, Vol. 477, no 3–4,
- 952 229-43. https://doi.org/10.1016/j.tecto.2009.03.022.
- 953 Gébelin A., Brunel M., Monié P., Faure M., and Arnaud N., 2007. Transpressional tectonics and
- 254 Carboniferous magmatism in the Limousin, Massif Central, France: Structural and 40Ar/39Ar
- 955 Investigations; Tectonics, Vol. 26, 2, 27 p. https://doi.org/10.1029/2005TC001822.

- 956 Gee D.G., Bogolepova O.K., and Lorenz H., 2006. The Timanide, Caledonide and Uralide orogens in
- 957 the Eurasian high Arctic, and relationships to the palaeo-continents Laurentia, Baltica and Siberia; *In*
- 958 European Lithosphere of Dynamics, Gee D.G. and Stephenson, R.A. (Eds): Geological Society,
- 959 London, Memoirs, 32, 507–521.
- Glanzman R.K., McCarthy Jr. J.H., and Rytuba J.J., 1978. Lithium in the McDermitt Caldera, Nevada
- 961 and Oregon; Energy, Vol. 3, 347-353.
- Guastoni A., Pozzi G., Secco L., Schizza M., Pennacchioni G., Fioretti A.M. and, Nestola F., 2016.
- 963 Monazite-(Ce) and xenotime-(Y) from an LCT, NYF tertiary pegmatite field: evidence from a regional
- study in the Central Alps (Italy and Switzerland); The Canadian Mineralogist, Vol. 54, 863-877.
- Guastoni A., Pennacchioni G., Pozzi G., Fioretti A.M., and Walter J.M., 2014. Tertiary pegmatite
- dikes of the Central Alps; The Canadian Mineralogist, Vol. 52, 191-219.
- 967 Heinrich C.A., 1990. The chemistry of hydrothermal tin (-tungsten) ore deposition; Economic
- 968 Geology, Vol. 85, 457-481.
- Henry C., Burkhard M., and Goffré B., 1996. Evolution of synmetamorphic veins and their wallrocks
- 970 through a Western Alps transect: No evidence for large-scale flow. Stable isotope, major- and trace-
- element systematics; Chemical Geology, Vol. 127, 81-109.
- Hofstra A.H., Todorov T., Mercer C., Adams D., and Marsh E., 2013. Silicate melt inclusion evidence
- 973 for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of
- 974 the Western United States: Implications for the origin of lithium-rich brines; Economic Geology,
- 975 Vol. 108, 1691-1701.
- 976 Hollinger P., Cuney M., Friedrich M., and Turpin L., 1986. Age carbonifère de l'unité de Brame du
- 977 complexe granitique peralumineux de Saint-Sylvestre (NO du Massif Central) défini par les données
- 978 isotopiques U-Pb sur zircon et monazite; Académie des Sciences, Comptes rendus, series II, Vol. 303,
- 979 1309-1314.
- 980 Houston J., Butcher A., Ehren P., Evans K., and Godfrey L., 2011. The evaluation of brine prospects
- and the requirement for modifications to filing standards; Economic Geology, Vol. 106, 1225-1239.
- 982 Ilickovic T., Schuster R., Mali H., Petrakakis K., Schedl A., and Horschinegg M., 2016. Spodumene
- 983 bearing pegmatites in the Austroalpine unit (Eastern Alps): New field observations and
- 984 geochronological data; GeoTirol, Abstract with Poster, 138.
- 985 Ilickovic T., Schuster R., Mali H., Petrakakis K., and Schedl A., 2017. Spodumene bearing pegmatites
- 986 in the Austroalpine unit (Eastern Alps): Distribution and new geochronological data; Geophysical
- 987 Research Abstracts, EGU2017-7235, Vol. 19, Program with Abstract.

- Jackson B., 1982. An occurrence of gem quality elbaite from Glenbuchat, Aberdeenshire, Scotland;
- 989 Journal of Gemmology, Vol. 2, 121-125.
- Jahns R.H., and Burnham C.W. 1969. Experimental studies of pegmatites gneiss: A model for the
- derivation and crystallization of granitic pegmatities; Economic Geology, Vol. 64, 843-864.
- Jarchovský T., 2006. The nature and genesis of greisen stocks at Krasno, Slavkovsky les area
- 993 western Bohemia, Czech Republic; Journal of the Czech Geological Society, Vol. 51, 16 p.
- Johan Z., and Johan V., 2005. Accessory minerals of the Cinovec (Zinnwald) granite cupola, Czech
- 995 Republic: Indicators of petrogenetic evolution; Mineralogy and Petrology, Vol. 83, 113-150.
- Jolivet L., Faccenna C., and Piromallo C., 2009. From mantle to crust: Stretching the Mediterranean;
- 997 Earth and Planetary Science Letters, Vol. 285, 198-209.
- Johnson T.E., Hudson N.F.C., and Droop G.T.R., 2001. Melt segregation structures within the Inzie
- 999 Head gneisses of the northeastern Daldarian; Scottish Journal of Geology, Vol. 37, 59-72.
- Jullien M., and Goffé B., 1993. Occurrences de cookéite et de pyrophyllite dans les schistes du
- Dauphinois (Isèe, France) Conséquences sur la répartition du métamorphisme dans les zones extemes
- alpines. Schweiz; Mineralogy and Petrology, Vol. 73, 357-363.
- 1003 Kesler S.E., Gruber P.W., Medina P.A., Keoleian G.A., Everson M.P., and Wallington T.J., 2012.
- Global lithium resources: relative importance of pegmatite, brine and other deposits; Ore Geology
- 1005 Reviews, Vol. 48, 55-69.
- 1006 Kohút M., and Stein H., 2004. Re-Os molybdenite dating of granite-related Sn-W-Mo mineralisation
- at Hnilec, Germeric Superunit, Slovakia; Mineralogy and Petrology, Vol. 85, 117-129.
- Koistinen T., Stephens M.B., Bogatchev V., Nordgulen Ø., Wennerström M., and Korhonen J., 2001.
- Geological Map of the Fennoscandian Shield, Scale 1:2,000,000; Espoo, Geological Survey Finland;
- 1010 Geological Survey Norway, Geological Survey Sweden, Ministry of Natural Resources of Russia,
- 1011 Moscow.
- 1012 Kontak D.J., Dostal J., Kyser T.K. and Archibald D.A., 2002. A petrological, geochemical, isotopic
- and fluid inclusion study of 370 Ma pegmatite-aplite sheets, Peggys Cove, Nova Scotia, Canada; The
- 1014 Canadian Mineralogist, Vol. 40, 1249–1286.
- 1015 Korja, A., Lahtinen, R. and Nironen, M. 2006. The Svecofennian orogen—a collage of
- microcontinents and island arcs; *In* European Lithosphere Dynamics, Gee D.G., and Stephenson R.A.
- 1017 (Eds.); Geological Society, London, Memoirs, Vol. 32, 561–578.

- 1018 Kovács I., Csontos L., Szabó C., Bali E., Falus G., Benedek K., and Zajacz Z., 2007. Paleogene-Early
- Miocene igneous rocks and geodynamics of the Alpine-Carpathian-Pannonian-Dinaric region: An
- integrated approach; Geological Society of America Special Paper 41, 93 p.
- 1021 Kroner U., and Romer R.L., 2013. Two plates Many subductions zones: The Variscan orogeny
- reconsidered; Gondwana Research, Vol. 24, 298-329.
- Kulp J.L., Kologrivov R, Engels J., Catanzaro E.J., Neumann H., and Nilssen B., 1963. Age of the
- Tordal, Norway pegmatite a correction; Geochimica et Cosmochimica Acta, Vol. 27, 847-848.
- Kuusela J., Ahtola T., Koistinen E., Seppänen H., Hatakka T., and Lohva J., 2011. Report of
- investigations on the Rapasaaret lithium pegmatite deposit in Kaustinene-Kokkola, Western Finland;
- 1027 GTK Southern Finland Office, 42/2011, 65 p.
- Kurhila M., Vaasjoki M., Mänttäri I., Rämö T., and Nironen M., 2005. U-Pb ages and Nd isotope
- 1029 characteristics of the late orogenic, migmatizing microcline granites in southwestern Finland; Bulletin
- of the Geological Society of Finland, Vol. 77, 105-128.
- Kvasnista V.N., Silaev V.I., and Smoleva I.V., 2016. Carbon isotopic composition of diamonds in
- 1032 Ukraine and their probable polygenetic nature; Geochemistry International, Vol. 54, 948-963.
- Lahtinen R., Korja A., Nironen M., and Heikkinen P., 2009. Palaeproteroizoic accretionary processes
- in Fennoscandia; Geological Society of London, Special Publications, Vol. 318, 237-256.
- 1035 DOI: 10.1144/SP318.8
- Launay G., Sizaret S., Guillou-Frottier L., Fauguerolles C., Champallier R., and Gloaguen E., 2019.
- 1037 Dynamic permeability related to greisenization reactions in Sn-W ore deposits: Quantitative
- petrophysical and experimental evidence; Geofluids, Vol. 2019, 23p.
- Lecomte A., Cathelineau M., Deloule E., Brouand M., Peiffert C., Loukola-Ruskeeniemi K.,
- 1040 Pohjolainen E., and Lahtinen H., 2014. Uraniferous bitumen nodules in the Talvivaara Ni-Zn-Cu-Co
- deposit (Finland): Influence of metamorphism on uranium mineralization in black shales; Mineralium
- 1042 Deposita, Vol. 49, 513-533.
- Lehmann B., 1994. Granite-related rare-metal mineralization: a general geochemical framework; *In*
- Metallogeny of Collisional Orogens, Seltmann, Kämpf and Möller (eds.); Czech Geological Survey,
- 1045 Prague, 342-349.
- Lindroos A., Romer R.L., Ehlers C., and Alviola R., 1996. Late-orogenic Svecofennian deformation in
- 1047 SW Finland constrained by pegmatite emplacement ages; Terra Nova, Vol. 8, 567-574.
- 1048 Linnemann U., Pereira F., Jeffries T.E., Drost K., and Gerdes A., 2008. The Cadomian orogeny and
- the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U-

- 1050 Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs);
- 1051 Tectonophysics, Vol. 461, 21-43.
- Linnemann U., Pereira F., Jeffries T.E., Drost K., and Gerdes A., 2007. The continuum between
- 1053 Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U-Pb zircon
- dating and analysis of plate-tectonic setting (Saxo-Thuringian Zone, NE Bohemian Massif, Germany);
- 1055 In The Evolution of the Rheic Ocean: from Avalonian–Cadomian Active Margin to Alleghenian–
- Variscan Collision, Linnemann U., Nance D., Kraft P., and Zulauf G. (Eds.); Geological Society of
- 1057 America, Boulder, Colorado, 61-96.
- Linnen R.L., van Litchtervelde M., and Černý P., 2012. Granitic pegmatites as sources of strategic
- 1059 metals; Elements, Vol. 8, 275-280.
- Linnen R.L., and Cuney M., 2005. Granite-related rare-element deposits and experimental constraints
- on Ta-Nb-W-Sn-Zr-Hf mineralization; *In* Rare-Element Geochemistry and Mineral Deposits, Linnen,
- 1062 R.L. and Samson, I.M. (Eds.), Vol. 17, Geological Association of Canada Short Course Notes, 45-68.
- Lima A., 2000. Estrutura, Mineralogia e Génese dos Filões Aplitopegmatíticos com Espodumena da
- Região do Barroso-Alvão (Norte de Portugal); PhD thesis, University of Porto, Portugal, and INPL,
- 1065 Nancy, France, 270 p.
- London D., 2018. Ore-forming processes within granitic pegmatites; Ore Geology Reviews, Vol. 101,
- 1067 349-383.
- London D., 2008. Pegmatites; The Canadian Mineralogist Special Publication Vol. 10, 347 pp.
- 1069 London D., 2005. Granitic pegmatites An assessment of current concepts and directions for the
- 1070 future; Lithos, Vol. 80, 281-303.
- London D., 1995. Geochemical features of peraluminous granites, pegmatites, and rhyolites as source
- of lithophile metal deposits; Mineralogical Association of Canada Short Course Handbook, Vol. 23,
- 1073 175-202.
- London D., 1992. The application of experimental petrology to the genesis and crystallization of
- granitic pegmatites; The Canadian Mineralogist, Vol. 77, 129-145.
- London D., 1990. Internal differentiation of rare element pegmatites; A synthesis of recent research;
- 1077 Geological Society of America, Special Paper 246, 35-50.
- London D., 1986. Magmatic –hydrothermal transition in the Tanco rare-element pegmatite: Evidence
- from fluid inclusions and phase-equilibrium experiments; American Mineralogist, Vol. 71, 376-395.
- Lucke W., 1981. Lithium pegmatites in the Leinster Granite (southeast Ireland); Chemical Geology,
- 1081 Vol. 34, 195-233.

- Lulzac Y., and Apolinarski F., 1986. Inventaire du territoire métropolitain les minéralisations à étain,
- tantale et lithium de Tréguennec (Finistère), état des connaissances au 31 mars 1986; BRGM Report
- 1084 86 DAM 011 OP4, 37 p.
- Manthiram A., Yu X., and Wang S., 2017. Lithium battery chemistries enabled by solid-state
- electrolytes; Nature Reviews Materials, Vol. 2, 16103.
- Matte P., 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe;
- 1088 Tectonophysics, Vol. 196, 309-337.
- Matte P., Maluski H., Rajlich P., and Franke W., 1990. Terrane boundaries in the Bohemian Massif;
- 1090 Result of a large scale Variscan shearing; Tectonophysics, Vol. 177, 151-170.
- Matte P., 1986. La chaîne varisque parmi les chaînes paléozoïques péri atlantiques, modèle d'évolution
- et position des grands blocs continentaux au Permo-Carbonifère; Bulletin de la Société géologique de
- 1093 France, II, 9-24.
- Marcoux E., 2017. Mines et ressources minérales en Armorique; Société de l'industrie minérale,
- 1095 472 p. ISBN 978-2-91-835001-9
- Marignac C., and Cuney M., 1999. Ore deposits of the French Massif Central: Insight into the
- metallogenesis of the Variscan collision belt; Mineralium Deposita, Vol. 34, 472-504.
- Martín-Izard A., Reguilón R., and Palero F., 1992. Cassiterite U-Pb geochronology constrains
- magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge Tin
- Province (Saxony and Bohemia) Martínez Catalán J.R., 1990. A non-cylindrical model for the
- 1101 northwest Iberian allochthonous terranes and their equivalents in the Hercynian belt of Western
- 1102 Europe; Tectonophysics, Vol. 179, 253–272.
- Martin R.F., and De Vito C., 2005. The patterns of enrichment in felsic pegmatites ultimately depend
- on tectonic setting: The Canadian Mineralogist, Vol. 43, 2027–2048.
- 1105 McKerrow W.S., MacNiocaill C., and Dewey J.T., 2000. The Caledonian orogeny redefined; Journal
- of the Geological Society, London, Vol. 157, 1149–1154.
- 1107 Melleton J., Gloaguen E., and Frei D., 2015. Rare-elements (Li-Be-Ta-Sn-Nb) magmatism in the
- European Variscan belt, a review; SGA 2015: Ressources minérales dans un monde durable, Nancy,
- 1109 France.
- 1110 Melleton J., Gloaguen E., Frei D., Novák M., and Breiter K., 2012. How are the emplacement of rare-
- element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian Domain
- of the Variscan Bohemian Massif Czech Republic; The Canadian Mineralogist, Vol. 50, 1751-1773.

- Melleton J., Gloaguen E., Frei D., Lima A., 2011. U-Pb dating of columbite-tantalite from Variscan
- rare- elements granites and pegmatites; Mineral. Mag, Vol. 75, 1452 p.
- 1115 Menant A., Jolivet L., Tuduri J., Loiselet C., Bertrand G., and Guillou-Frottier L., 2018. 3D
- subduction dynamics: A first-order parameter of the transition from copper- to gold-rich deposits in
- the eastern Mediterranean region; Ore Geology Reviews, Vol. 94, 118-135.
- 1118 Miles A.J., Woodcock N.H., and Hawkesworth C.J., 2016. Tectonic controls on post-subduction
- 1119 granite genesis and emplacement: The Late Caledonian suite of Britain and Ireland; Gondwana
- 1120 Research, Vol. 39, 250-260.
- Mohr S., Mudd G.M., and Giurco D.P., 2012. Lithium resources and production: Critical assessment
- and global projections; Minerals, Vol. 2, 65-84.
- Mudd G.M., and Jowitt S.M., 2016. From mineral resources to sustainable mining the key trends to
- unlock the Holy Grail; In Proceedings of the Third AusIMM International Geometallurgy Conference
- 1125 (GeoMet) 2016, pp 37–54 (The Australasian Institute of Mining and Metallurgy: Melbourne).
- Müller A., Ihlen P.M., Snook B., Larsen R.B., Flem B., Bingen B., and Williamson B.J. 2015. The
- chemistry of quartz in granitic pegmatites of Southern Norway: Petrogenetic and economic
- implications. Economic Geology 110, 1737–1757.
- Murphy J.B., Keppie J.D., Nance R.D., and Dostal J., 2010. Comparative evolution of the Iapetus and
- Rheic oceans: A North American perspective; Gondwana Research, Vol. 17, 482-499.
- Nance R.D., Gutiérrez-Alonso G., Keppie J.D., Linnemann U., Murphy J.B., Quesada C., Strachan -
- 1132 R.A., and Woodcock N.H., 2012. A brief history of the Rheic Ocean; Geoscience Frontiers, Vol. 3,
- 1133 125-135.
- Neace E.R., Nance R.D., Murphy J.B., Lancaster P.J., and Shail R.K., 2016. Zircon La-ICPMS
- geochronology of the Cornubian Batholith, SW England; Tectonophysics, Vol. 681, 332-352.
- Nicholson K., and Anderton R., 1989. The Dalradian rocks of the Lecht, NE Scotland: Stratigraphy,
- faulting, geochemistry and mineralization; Transactions of the Royal Society of edinburgh; Earth
- 1138 Sciences, Vol. 80, 143-157.
- Nironen M., 1997. The Svecofennian Orogen: A tectonic model; Precambrian Research, Vol. 86, 21-
- **1140** 44.
- Nishyama T., Shimoda S., Shimosaka K., and Kanaoka S., 1975. Lithium-bearing tosudite; Clays and
- 1142 Clay Minerals; Vol. 23, 337-342.
- 1143 Norton J.J. 1973. Lithium, cesium, and rubidium—the rare alkali metals (United States Mineral
- 1144 Resources), USGS Professional Paper 820, 363-378.

- Novák M., and Povondra P., 1995. Elbaite pegmatites in the Moldanubicum: A new subtype of the
- rare-element class; Mineral. Petrol., Vol. 12, 159-176.
- Novák M., Černý P., Kimbrough D.L., Taylor M.C., and Ercit T.S., 1998. U-Pb ages of monazite from
- 1148 granitic pegmatites in the Moldanubian Zone and their geological implications; Acta Universitatis
- 1149 Carol Geologica, Vol. 42, 309-310.
- Obradovic J., Djurdjevic-Colson J., and Vasic, N., 1997. Phytogenic lacustrine sedimentation -oil
- shales in Neogene from Serbia Yugoslavia; Journal of Paleolimnology, Vol. 18, 351-364.
- PANNN, 2017. Estudo de impacte ambiental mina da argemela; Proposta de definição de âmbito,
- 1153 134 p.
- Petrik I., Cik S., Miglierini M., Vaculovic T., Dianiska I., and Ozdin D., 2014. Alpine oxidation of
- 1155 lithium micas in Permian S-type granites (Gemeric unit, Western Carpathians, Slovakia);
- 1156 Mineralogical Magazine, Vol. 78, 507-533.
- Piantone P., Wu X., and Touray J.C., 1994. Zoned hydrothermal alteration and genesis of the gold
- deposit at Le Châtelet (French Massif Central); Economic Geology, Vol. 89, 757-777.
- Polgari M., Philippe M., Szabo-Drubina M., and Toth M., 2005. Manganese-impregnated wood from a
- Toarcian manganese ore deposit, Eplény mine, Bakony Mts., Transdanubia, Hungary; Neues Jahrbuch
- fur Geologie und Paläontologie Monatshefte, Vol. 3, 175-192.
- Raimbault L., and Burnol L., 1998. The Richemont rhyolitic dyke, Massif Central, France: A
- subvolcanic equivalent of rare-metal granite; The Canadian Mineralogist, Vol. 36, 256-282.
- Raimbault L., Cuney M., Azencott C., and Duthou J.L., 1995. Geochemical evidence for a multistage
- magmatic genesis of Ta-Sn-Li mineralization in the granite de Beauvoir, French Massif Central;
- 1166 Economic Geology, Vol. 90, 548-76.
- Ramos J.F., Ribeiro A., and Barriga F.J.A.S., 1994. Mineralizações de metais raros de Seixo Amarelo-
- 1168 Gonçalo (Guarda); Bol Minas, Vol. 31, 101-115.
- Rio Tinto, 2017. Notice to ASX, Increase to Jadar Project Mineral Resources, 2 March 2017, 22 p.
- 1170 http://www.riotinto.com/documents/170302 Increase to Jadar Project Mineral Resources.pdf
- 1171 Roberts N.M.W., and Slagstad T., 2015. Continental growth and reworking on the edge of the
- 1172 Columbia and Rodinia supercontinents; 1.86-0.9 Ga accretionary orogeny in southwest Fennoscandia;
- 1173 International Geology Review, Vol. 57, 1582-1606.
- 1174 Roda-Robles E., Pesquera A., Gil-Crespo P.P., Vieira R., Lima A., Garate-Olave I., Martins T., and
- 1175 Torres-Ruiz J., 2016. Geology and mineralogy of Li-mineralization in the Central Iberian Zone (Spain
- and Portugal); Mineralogical Magazine, Vol. 80, 103-126.

- 1177 Roda-Robles E., Vieira R., Pesquera A., and Lima A., 2010. Chemical variations and significance of
- phosphates from the Fregeneda-Almendra pegmatite field, Central Iberain Zone (Spain and Portugal);
- Mineralogy and Petrology, Vol. 100, 23-34.
- 1180 Roda-Robles E., Vieira R., Lima A., and Pesquera-Pérez A., 2009. Petrogenetic links between granites
- and pegmatites in the Fregeneda-Almendra area (Salamanca, Spain and Guarda, Portugal): New
- insights from 40Ar/39Ar dating in micas; Estudos Geologicos, Vol. 19, 305-310.
- 1183 Romer R.L., and Kroner U., 2015. Phanerozoic tin and tungsten mineralization Tectonic controls on
- the distribution of enriched protoliths and heat sources for crustal melting; Gondwana Research, Vol.
- 1185 31, 60-95.
- Romer R.L., Kirsch M., and Kroner U., 2011. Geochemical signature of Ordovician Mn-rich
- sedimentary rocks on the Avalonian shelf; Canadian Journal of Earth Sciences, Vol. 48, 703-718.
- Romer R.L., Förster H.J., and Štemprok M., 2010. Age constraints for the Late-Variscan magmatism
- in the Altenberg-Teplice caldera (eastern Erzgebirge, Krušné hory); Neues Jahrbuch für Mineralogie
- Abhandlungen, Vol. 187, 289-305. https://doi.org/10.1127/0077-7757/2010/0179.
- Romer R.L., and Smeds SA., 1997. U-Pb columbite chronology of post-kinematic Palaeoproterozoic
- pegmatites in Sweden; Precambrian Research, Vol. 82, 85-99.
- Romer R.L., Schärer U., and Steck A., 1996. Alpine and pre-Alpine magmatism in the root-zone of the
- western Central Alps; Contributions to Mineralogy and Petrology, Vol. 123, 138–158.
- Romer R.L., and Smeds SA., 1994. Implications of U-Pb ages of columbite-tantalites from granitic
- pegmatites for the Paleoproterozoic accretion of 1.90-1.85 Ga magmatic arcs to the Baltic Shield;
- 1197 Precambrian Research, Vol. 67, 141-158.
- Romer R.L., and Wright J.E., 1992. U-Pb dating of columbite A geochronologic tool to date
- magmatism and ore deposits; Geochimica et Cosmochimica Acta, Vol. 56, 2137–2142.
- Roskill Information Services Ltd., 2016. Lithium: Global Industry, Markets and Outlook to 2025;
- 1201 Thirteenth Edition. London.
- Rudnick R.L., and Gao S., 2004. Composition of the continental crust; *In* Treatise on Geochemistry,
- Holland H.D., and Turekian K.K. (eds.); Elsevier, Amsterdam; Vol. 3, 1-64.
- Scherer E., Mücker C., and Mezger K., 2001. Calibration of the lutetium-hafnium clock; Science, Vol.
- **1205** 293, 683-687.
- 1206 Schmid S.M., Bernoulli D., Fügenschuch B., Matenco L., Schefer S., Schuster R., Tischler M., and
- 1207 Ustaszewski K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution
- of tectonic units; Swiss Journal of Geosciences, Vol. 101, 139-183.

- 1209 Schuster R., and Stüwe K., 2008. The Permian metamorphic event in the Alps; Geology, Vol. 36/8,
- 1210 303-306.
- 1211 Shengsong Y., 1986. The hydrochemical features of salt lakes in Qaidam basin; Chinese Journal of
- 1212 Oceanology and Limnology, Vol. 4, 383–403.
- 1213 Silva D., Lima A., Gloaguen E., Gumiaux C., Noronha F., and Deveaud S. 2018. Chapter 3 Spatial
- 1214 geostatistical analysis applied to the Barroso-Alvão rare-elements pegmatite field (Northern Portugal).
- 1215 In Teodoro A.C. (ed.), Frontiers in Information Systems, GIS an Overview of Applications, Bentham
- 1216 Science Publishers, Sharjah, UAE, 1:67-101.
- 1217 Simić V., Andrić N., Životić D., and Rundić L., 2017. Evolution of Neogene Intramontane basins in
- 1218 Serbia; Pre-meeting Field trip B1 Abstract, 1 p.
- Smolin A., and Beaudry C., 2015. Mineral opportunities in Ukraine; 3rd Conference on Raw Materials;
- 1220 European Innovation Parternship on Raw Materials, Presentation.
- Stanley C., Jones G.C., Rumsey M.S., Blake C., Roberts A.C., Stirling J.A.R., Carpenter G.J.C.,
- Whitfield P.S., Grice J.D., and Lepage Y., 2007. Jadarite, LiNaSiB3O7(OH), a new mineral species
- from the Jadar Basin, Serbia; European Journal of Mineralogy, Vol. 19, 575-580.
- 1224 Štemprok M., Pivec E., and Langrova A., 2005. The petrogenesis of a wolframite-bearing greisen in
- the Vykamov granite stock, Western Krusné Hory pluton (Czech Republic); Bulletin of Geosciences,
- 1226 Vol. 80, 163-184.
- 1227 Stewart, D.B., 1978, Petrogenesis of lithium-rich pegmatites: American Mineralogist, Vol. 63, 970–
- **1228** 980.
- Stojadinovic U., Matenco L., Andriessen P., Toljic M., Rundic L., and Ducea M., 2017. Structure and
- provenance of Late Cretaceous-Miocene sediments located near the NE Dinarides margin:
- 1231 Interferences from kinematics of orogenic building and subsequent extensional collapse;
- 1232 Tectonophysics, Vol. 710-711, 184-204.
- 1233 Suikkanen E., Huhma H., Kurhila M., and Lahaye Y., 2014. The age and origin of the Vaasa
- migmatite complex revisited; Bulletin of the Geological Society of Finland; Vol. 86, 41-55.
- Szabo Z., Grasselly G., and Cseh-Németh J., 1981. Some conceptual questions regarding the origin of
- manganese in the Urkut deposit, Hungary; Chemical Geology, Vol.34, 19-29.
- Tarascon J.M., 2010. Is lithium the new gold?; Nature Chemistry, Vol. 2, 510.
- 1238 Thöni M., Miller Ch., Zanetti A., Habler G., and Goessler W., 2008. Sm-Nd isotope systematics of
- high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain

- multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps; Chemical Geology,
- 1241 Vol. 254, 216-237.
- 1242 Thöni M., and Miller C., 2000. Permo-Triassic pegmatites in the eo-Alpine eclogite facies Koralpe
- 1243 complex, Austria: Age and magma source constraints from mineral, chemical, Rb-Sr and Sm-Nd
- isotope data; Schweizerische Mineralogische und Petrographische Mitteillungen, Vol. 80, 169-186.
- Tomljenovic B., 2002. Strukturne Znacajke Medvednice i Samoborskoj gorja; PhD thesis, University
- 1246 of Zagreb, 208 p.
- Tourtelot H.A., and Brenner-Tourtelot E.F., 1977. Lithium, a preliminary survey of its mineral
- occurrence in flint clay and related rock types in the United States; Energy, Vol. 3, 263-272.
- 1249 Uher P., Chudik P., Bacik P., Vaculovic T., and Galiova M., 2010. Beryl composition and evolution
- trends: an example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians,
- 1251 Slovakia; Journal of Geosciences, Vol. 55, 69-80.
- Van Breemen O., Bowes D.R., Aftalion M., and Żelaźniewicz A., 1988. Devonian tectonothermal
- activity in the Sowie Gory Gneissic Block, Sudetes, Southwestern Poland: Evidence from Rb-Sr and
- 1254 U-Pb isotopic studies; Annales Societatis Geologorum Poloniae, Vol. 58, 3-19.
- 1255 Van Lichtervelde M., Grand'Homme A., de Saint-Blanquat M., Olivier P., Gerdes A., Paquette J.L.,
- Melgarejo J.C., Druguet E., and Alfonso P., 2017. U-Pb geochronology on zircon and columbite-
- group minerals of the Cap de Creus pegmatites, Spain; Mineralogy and Petrology, Vol. 111, 1-21.
- 1258 Viallette M.Y., 1963. Ages absolus par méthode au strontium des lépidolites du Massif Central
- français; Comptes rendus du 88eme congrès national des sociétés savantes, Clermont Ferrand, Section
- des Sciences, 17 p.
- Vieira R., Roda-Robles E., Pesquera A., and Lima, A., 2011. Chemical variation and significance of
- micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal);
- 1263 American Mineralogist, Vol. 96, 637–645.
- Vieira R., 2010. Aplitopegmatitos com elementos raros da região entre Almendra (V. N. de Foz-Côa)
- e Barca d'Alba (Figueira de Castelo Rodrigo). Campo plitopegmatítico da Fregeneda-Almendra; PhD
- 1266 Thesis, University of Porto, Portugal, 275 p.
- Vignola P., Diella V., Oppizi P., Tiepolo M., and Weiss S., 2008. Phosphate assemblages from the
- Brissago granitic pegmatite, western Southern Alps, Switzerland; The Canadian Mineralogist, Vol. 46,
- 1269 635-650.
- 1270 Vinogradov A.P., and Tugarinov A.I., 1961. The geologic age of pre-Cambrian rocks of the Ukrainian
- and Baltic shields; Annals of the New York Academy of Sciences, Vol. 91, 500-513.

1272	Yaksic A., and Tilton J.E., 2009. Using the cumulative availability curve to assess the threat of
1273	mineral depletion: The case of lithium; Resources Policy, Vol. 34, 185-194
1274	Yu J., Gao C., Cheng A., Liu Y., Zhang L., and He X., 2013. Geodynamic, hydroclimatic and
1275	hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern
1276	Tibetan Plateau, China; Ore Geology Reviews, Vol. 50, 171-183.
1277	Waldron J.W.F., Schofield D.I., White C.E., and Barr S.M., 2011. Cambrian successions of the
1278	Meguma Terrane, Nova Scotia and Harlech Dome, North Wales: dispersed fragments of a peri-
1279	Gondwana basin?; Journal of the Geological Society, Vol. 168, 83-97.
1280	White C.E., 2008. Defining the stratigraphy on the Meguma Supergroup in southern Nova Scotia;
1281	Where do we go from here?; Atlantic Geology, Vol. 44, 58 p.
1282	Woodcock N.H., Soper N.J., and Strachan R.A., 2007. A Rheic cause for the Acadian deformation in
1283	Europe; Journal of the Geological Society, London, Vol. 167, 1023-1036.
1284	Wang D.H., Li P.G., Qu W.J., Yin L.J., Zhao Z., Lei Z.Y., and Wen S.F., 2013. Discovery and
1285	preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit,
1286	Guizhou, China. Science China; Earth Sciences, Vol. 56, 145–152. doi: 10.1007/s11430-012-4504-2
1287	Zasedatelev, A.M. 1977. Quantitative model of metamorphic generation of rare-metal pegmatite with
1288	lithium mineralization: Doklady Akademii Nauk SSSR, seria geologichskaya, Vol. 236, 219–221.
1289	Zelazniewicz A., Cwojdzinsk S., England R. W., and Zientara P., 1997. Variscides in the Sudetes and
1290	the reworked Cadomian orogeny: evidence from the GB-2A seismic reflection profiling in
1291	southerwestern Poland; Geological Quarterly, Vol. 41, 289-308.
1292	Zhang R., Lehmann B., Seltmann R., Sun W., and Li C., 2017. Cassiterite U-Pb geochronology
1293	constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic
1294	Erzgebirge Tin Province (Saxony and Bohemia); Geology, Vol. 45, 1096-1098.
1295	Zhao G., Cawood P.A., Wilde S.A., and Sun M., 2002. Review of global 2.1-1.8 Ga orogens:
1296	Implications for a pre-Rodinia supercontinent; Earth Science Reviews, Vol. 59, 125-162.
1297	Ziemann S., Weil M., and Schebek L., 2012. Tracing the fate of lithium—The development of a
1298	material flow model; Resources, Conservation and Recycling, Vol. 63, 26-34.
1299	
1300	8. Table captions
1301	Table 1: Main Li-bearing minerals encountered in Europe, their corresponding chemical formula, Li

content (Li_2O and Li metal) and physical characteristics.

1302

40

1303	
1304	Table 2: RMG classification according to Linnen and Cuney (2005) with European examples.
1305	
1306 1307	Table 3: Pegmatite classification according to Černý and Ercit (2005) and Černý et al. (2012) and corresponding P/T conditions. LCT pegmatites in red show a significant lithium potential and those in
1308 1309	orange a moderate lithium potential, with corresponding examples if known. LCT = lithium-cesium-tantalum; NYF = niobium-yttrium-fluorine.
1310	
1311 1312	Table 4: Li projects in Europe and their past production and estimated Li metal resources/reserves. NA refers to data not available. (data were collected from exploration and mining companies; Lulzac and
1313	Apolinarski, 1986; Smolin and Beaudry, 2015; British Geological Survey, 2016)
1314	
1315	Table 5: Location and dating of several pegmatites, RMG and greisen deposits in Europe
1316	
1317	9. Figure captions
1318	Figure 1. Cross sections of various lithium deposits. Lithium-bearing units are identified in red in each
1319	section. A) Beauvoir RMG (France) and related stockwork (modified from Cuney and Autran, 1987).
1320	B) Sepeda pegmatite in Portugal (modified from Dakota Minerals, 2017); pink area represents barren
1321	pegmatite. C) Cinovec deposit in Czech Republic (modified from Breiter et al., 2017). D) Jadar Basin
1322	in Serbia and location of the jadarite layers (modified from Rio Tinto, 2017). Color should be used
1323	
1324	Figure 2. Photographs of various styles of lithium mineralization. A) Quartz-feldspar and zinnwaldite
1325	mineralization (Podlesi, Czech Republic). B) Greisen and related La Bosse stockwork (Beauvoir,
1326	Massif Central, France). C) Montebras stocksheider hosted in RMG (Massif Central, France).
1327	D) Phenocrysts of petalite (yellowish-greenish minerals) surrounded by purplish lepidolite in quartz-
1328	potassic feldspar-albite matrix (Chédeville pegmatite, Massif Central, France). E) Alternating
1329	lepidolite-rich and aplite-rich layers in a horizontal pegmatite (Chédeville pegmatite, Massif Central,
1330	France). Scale represents 7 cm. Abbreviations: Lpd: lepidolite; Ptl: petalite; Znw: Zinnwaldite;
1331	Qz+Fsp: quartz+feldspar. F) Jadarite mineralization (Jadar Basin, Serbia) in mudstone (courtesy of
1332	Matevž Novak, Geological Survey of Slovenia) Color should be used
1333	

L334	Figure 3. A) Schematic map of the East European Craton and distribution of the main shields
1335	(modified after Roberts and Slagstad, 2015). The red box highlights the studied area. B) Simplified
1336	geological map of the Fennoscandian Shield (modified after Koistinen et al., 2001 and Bergh et al.,
L337	2015) showing distribution of the Svecofennian and the Sveconorwegian orogens, and distribution of
1338	LCT and mixed NYF-LCT pegmatites. Red circles and surrounded red names refer to LCT pegmatite
1339	fields; blue circle and name refer to mixed NYF-LCT pegmatite field; $n = \text{number of identified}$
L340	pegmatite bodies. Abbreviations: B: Bamble Terrane; ES: Eastern Segment; I: Idefjorden Terrane; T:
L341	Telemark Terrane; SFDZ: Sveconorwegian Frontal Deformation Zone. Color should be used
1342	
L343	Figure 4. Simplified geological map of the crustal block involved in the Caledonian orogeny along the
L344	Rheic Suture and location of contemporaneous Mn-(Fe) rich deposits (modified after Linnemann et
L345	al., 2007; Garfunkel, 2015). Note that Caledonian relics within Gondwana were reworked during the
L346	Variscan and Alpine orogenies making reconstruction of their respective contacts difficult. Color
L347	should be used
L348	
L349	Figure 5. A) Schematic map of the Mid-Devonian paleo-continental reconstruction (modified after
L350	Woodcock et al., 2007). Red box highlights studied area. B) Simplified geological map of Ireland and
1351	northern Britain with distribution of LCT pegmatites related to the Caledonian orogeny (modified after
1352	Miles et al., 2016). Red circle and surrounded red name refer to Leinster LCT pegmatite fields from
L353	which nine LCT pegmatites are identified. Color should be used
L354	
1355	Figure 6. Simplified geological map of the Variscan orogeny in Europe, location of various lithium-
1356	bearing deposits and a selection of ages (modified after Murphy et al., 2010; Martínez Catalán, 1990).
1357	Note that the Variscan orogeny was subsequently reworked along the Alpine Front by the Alpine
1358	orogeny. Additionally, 260 Li-rich bodies including LCT pegmatites, greisen and the Argemela RMG
1359	are identified in Portugal and Spain, 50 Li-rich occurrences are identified in the Bohemian Massif and
1360	26 LCT pegmatites are identified in South Austria. Abbreviations: AM: Armorican Massif; AVZ:
1361	Arveno-Vosgina Zones; BM: Bohemian Massif; CAZ: Central Armorican Zone; CIZ: Central Iberian
1362	Zone; CZ: Cantabrian Zone; GTMZ: Galicia-Tras-os-Montes Zone; MZ: Moldanubian Zone; NAZ:
1363	North Armorican Zone; OS: Ossa-Morena Zone; RM: Rhenish Massif; SAZ: South Armorican Zone;
1364	SPZ: South Portugese Zone; SZ: Saxothuringian Zone; TBZ: Tepla-Barradian Zone; WALZ: West
1365	Asturian-Leonese Zone. Color should be used
1366	
1367	Figure 7. Simplified geological map of the Alpine-Mediterranean area and location of lithium-bearing
1368	deposits (modified after Tomljenovic, 2002; Bousquet et al., 2012). Brissago and Elba Islands

1369	pegmatite fields are highlighted by a red circle; black circle is Dauphinois region with cookeites; n
1370	suggests number of identified pegmatite bodies. Abbreviations: BM: Bohemian Massif; EA: Eastern
1371	Alps; EC: East Carpathians; IWC: Internal West Carpathians; NCA: Northern Calcareous Alps; SC:
1372	South Carpathians. Color should be used
1373	
1374	Figure 8. Simplified geotectonic map of Europe (modified after Artemieva et al., 2006; Charles et al.,
1375	2013) and distribution of various Li-bearing occurrences. Color should be used
1376	
1377	Figure 9. Location map of the Li deposits (Table 4) in Europe (modified after Artemieva et al., 2006;
1378	Charles et al., 2013). Categories refer to: $A \ge 1,000,000$ t Li_2O ; $1,000,000$ t \ge Category $B \ge 100,000$ t
1379	Li ₂ O; 100,000 t \geq Category C \geq 50,000 t Li ₂ O; 50,000 t \geq Category D \geq 5,000 t Li ₂ O; Category E
1380	<5,000 t Li ₂ O and past production and mineral resources. Color should be used
1381	5,000 t Er ₂ 0 and past production and inneral resources.
1382	Figure 10. Geological sections of favorable lithium setting. Continental collision (A; modified from
1383	Menant et al., 2018) shifting to post-collision setting (B; modified from Menant et al., 2018)
1384	represents favorable context for Li-hard-rock formation such as LCT pegmatites, RMG and greisen
1385	along orogenic collapse (C). Superscripts on C correspond to European examples: ¹ = Chédeville,
1386	Mina Feli, or Gonçalo; ² = Richemont; ³ = Beauvoir, Argemela and Montebras; ⁴ = Barroso-Alvao,
1387	Läntta and Aclare. Continental subduction (D; modified from Menant et al., 2018) shifting to back-arc
1388	setting (E; modified from Menant et al., 2018) represents favorable context for
1389	sedimentary/hydrothermal Li deposits such as Jadar (F; modified from Stojadinovic et al., 2016). LCT
1390	pegmatite can also occur in such a context. Color should be used
1391	
1392	Figure 11. Average lithium grade (wt.% Li ₂ O) versus metric tons of ore (Mt) for the 28 identified Li
1393	deposits in Europe regarding their deposit type. Deposits and projects based on historical estimates are
1394	written in italics and those based on the CRIRSCO system in bold. The Whabouchi (Canada; blue
1395	triangle) and Greenbushes (Australia; green triangle) pegmatite deposits are mentioned here in order to
1396	compare these world-class deposits to European grades and tonnages. Color should be used
4207	
1397	
1398	Figure 12. Grade (wt.% Li ₂ O) <i>versus</i> deposit types (A) and deposit tonnage (Mt) <i>versus</i> deposit types
1399	(B) considering resource estimates. The boxes indicate the median (black line), upper and lower
1400	quartiles (25%; gray boxes), maximum and minimum values (upper and lower whiskers) and outliers
1401	(black circles). Note that n reflects the total number of deposits considered for this summary plot.

Table 1. Main Li-bearing minerals encountered in Europe, their corresponding chemical formula, Li content and physical characteristics

				Specifi		
Name	Formula	Mineral group	Theoretic al values	c gravit y (g/cm3	Hardne ss	
			Li ₂ O %	Li metal %		
Eucryptite	LiAlSiO4	Feldspathoi d	11.86	5.51	2.67	6.5
Amblygonit e	(Li,Na)Al(PO ₄)(F,OH)	Phosphate	10.1	4.69	2.98	5.5- 6
Montebrasit e	LiAl(PO ₄)(OH,F)	Phosphate	10.1	4.69	3.98	5.5- 7
Lithiophilite	Li(Mn,Fe)PO ₄	Phosphate	9.53	4.43	3.5	5
Sicklerite	Li $_{1-x}(Fe^{3+}_{x}, Mn^{2+}_{1-x})PO_{5}$	Phosphate	< 9.48	4.40	3.2-3.4	4
Ferrisickleri te	$Li_{1-x}(Fe^{3+}_{x},Mn^{2+}_{1-x})PO_{4}$	Phosphate	< 9.47	4.40	3.2-3.4	4
Triphylite	Li(Fe,Mn)PO ₄	Phosphate	9.47	4.40	3.5	4-5
Spodumene	$LiAl(Si_2O_6)$	Inosilicate	8.03	3.73	3.2	6.5- 7
Lepidolite	$K(Li,Al)_3(Si,Al)_4O_{10}(OH,F)_2$	Phyllosilica te	7.7	3.58	2.8-2.9	1.55 - 1.59
Jadarite	LiNaSiB ₃ O ₇ (OH)	Neosilicate	7.3	3.39	2.45	4-5
Polylithionit e	$KLi_2Al(Si_4O_{10})(F,OH)_2$	Phyllosilica te	6.46	3.00	2.58- 2.82	2-3
Petalite	LiAl(Si ₄ O ₁₀)	Tectosilicat e		2.26	2.4-2.46	6- 6.5
Zinnwaldite	KLiFeAl(Al,Si ₃)O ₁₀ (OH,F) ₂	Phyllosilica te		1.91	2.9-3.2	5.5- 6
Elbaite	$Na(Li_{1.5}Al_{1.5})Al_6Si_6O_{18}(BO_3)_3(OH)_4$	Cyclosilicat e	4.07	1.89	2.9-3.2	7.5
Holmquistit e	$X(Li_2)(Mg_3Al_2)(Si_8O_{22})(OH)_2$	Inosilicate	3.98	1.85	3.06- 3.13	5.5
Cookeite	LiAl4(AlSi ₃ O ₁₀)(OH) ₈	Phyllosilica te	2.9	1.34	2.58- 2.69	2.5- 3.5
Lithiophorit e	(Al, Li)Mn ⁴⁺ O ₂ (OH) ₂	Oxide	1.23	0.57	3.14- 3.37	2.5- 3

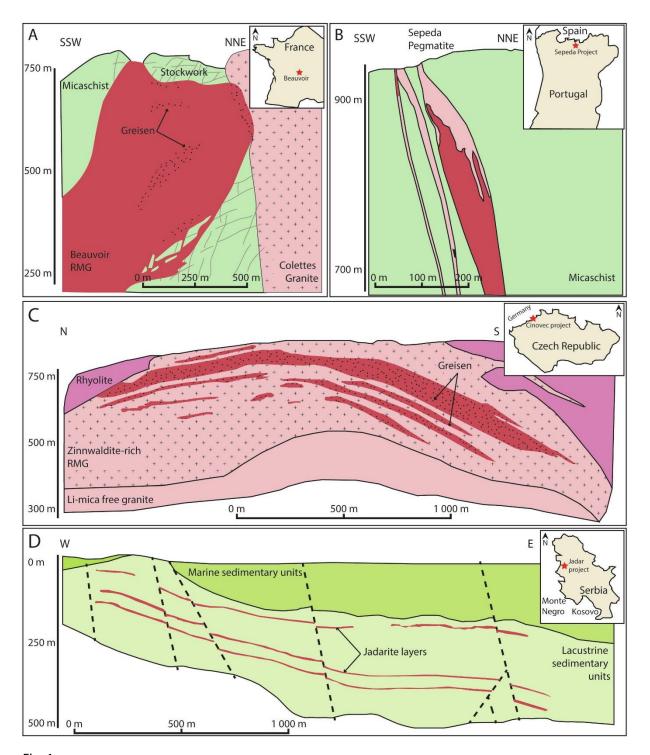


Fig. 1

Table 2. RMG classification according to Černý et al. (2005) with European examples.

		Mineral	Theoretic	Specifi c gravit	Hardne	
Name	Formula	group	al values	y (g/cm3	SS	
			Li ₂ O %	Li metal %		
Eucryptite	LiAlSiO ₄	Feldspathoi d	11.86	5.51	2.67	6.5
Amblygonit e	(Li,Na)Al(PO ₄)(F,OH)	Phosphate	10.1	4.69	2.98	5.5- 6
Montebrasit e	LiAl(PO ₄)(OH,F)	Phosphate	10.1	4.69	3.98	5.5- 7
Lithiophilite	Li(Mn,Fe)PO ₄	Phosphate	9.53	4.43	3.5	5
Sicklerite	Li $_{1-x}(Fe^{3+}x, Mn^{2+}1-x)PO_5$	Phosphate	< 9.48	4.40	3.2-3.4	4
Ferrisickleri te	$\text{Li }_{1\text{-x}}(\text{Fe}^{3+}_{x},\text{Mn}^{2+}_{1\text{-x}})\text{PO}_{4}$	Phosphate	< 9.47	4.40	3.2-3.4	4
Triphylite	Li(Fe,Mn)PO ₄	Phosphate	9.47	4.40	3.5	4-5
Spodumene	LiAl(Si ₂ O ₆)	Inosilicate	8.03	3.73	3.2	6.5- 7
Lepidolite	K(Li,Al) ₃ (Si,Al) ₄ O ₁₀ (OH,F) ₂	Phyllosilica te	7.7	3.58	2.8-2.9	1.55 - 1.59
Jadarite	LiNaSiB ₃ O ₇ (OH)	Neosilicate	7.3	3.39	2.45	4-5
Polylithionit e	KLi ₂ Al(Si ₄ O ₁₀)(F,OH) ₂	Phyllosilica te	0.40	3.00	2.58- 2.82	2-3
Petalite	LiAl(Si ₄ O ₁₀)	Tectosilicat e		2.26	2.4-2.46	6- 6.5
Zinnwaldite	KLiFeAl(Al,Si ₃)O ₁₀ (OH,F) ₂	Phyllosilica te	4.12	1.91	2.9-3.2	5.5- 6
Elbaite	$Na(Li_{1.5}Al_{1.5})Al_6Si_6O_{18}(BO_3)_3(OH)_4$	Cyclosilicat e	4.07	1.89	2.9-3.2	7.5
Holmquistit e	$X(Li_2)(Mg_3Al_2)(Si_8O_{22})(OH)_2$	Inosilicate	3.98	1.85	3.06- 3.13	5.5
Cookeite	LiAl4(AlSi ₃ O ₁₀)(OH) ₈	Phyllosilica te	2.9	1.34	2.58- 2.69	2.5- 3.5
Lithiophorit e	$(Al, Li)Mn^{4+}O_2(OH)_2$	Oxide	1.23	0.57	3.14- 3.37	2.5- 3

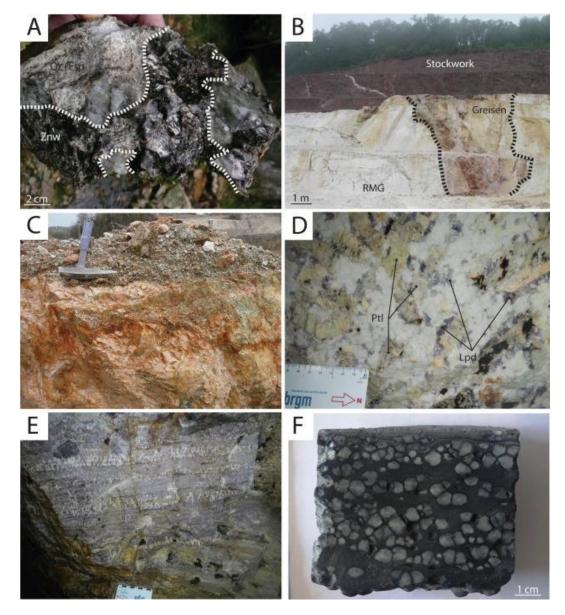


Fig.2

Table 3. Pegmatite classification according to <u>Černý and Ercit, 2005</u>, <u>Černý et al., 2012</u> and corresponding P/T conditions.

Class	Subclas	Туре	Subtype	Host rock Temp	Pressur e	Famil y	Examples	Reference s
Abyssal	HREE			-	> 5 kbar	NYF		
	LREE					NAC		
	U B/Be					NYF LCT		
Muscovite				650- 580 °C	5 to 8 kbar	201		
Muscovite -rare element	REE			650- 520 °C	3-7 kbar	NYF		
	Li					LCT		
Rare element								
	REE	allanite- monazite euxenite gadolinite		variabl e	variable	NYF		
	Li	beryl	beryl- columbite beryl- columbite- phosphate	650- 450 °C	2-4 kbar	LCT	Moravany, Slovakia Pedra da Moura, Portugal	<u>Uher et al., 2010</u> <u>Roda-Robles et al., 2016</u>
		complex	spodumene				Alijó, Portugal	<u>Lima,</u> 2000
			petalite				Varutrask, Sweden	<u>Černý and</u> <u>Ercit,</u> <u>2005</u>
			lepidolite				Rozná, Czech Republic	Melleton et al., 2012
			elbaite				Ctidružice, Czech Republic	Novák and Povondra, 1995,
			amblygonit e				Viitaniemi, Finland	Lahti, 1981
		albite- spodumen e					Most of the Barroso- Alvão, Portugal	<u>Lima,</u> 2000

Class	Subclas s	Type	Subtype	Host rock	Pressur e	Famil y	Examples	Reference s
		albite						
Mariolitic								
	REE	topaz- beryl gadolinite - fergusonit e			low P	NYF		
	Li	beryl- topaz spodumen e petalite lepidolite		500- 400 °C	3-1,5 kbar	LCT	Gwernavalo u, France	Marcoux, 2018

Table 4. Li projects in Europe and their past production and estimated Li metal resources/reserves. NA refers to data not available. (data were collected from mining companies; Lulzac and Apolinarski, 1986, Smolin and Beaudry, 2015, British Geological Survey, 2016)

Prospect	Project	Cou ntry	Compan Y	Past Prod uctio n Li2O (t)	Prod uctio	st- pr	Resourc e Tonnage (t)	Resour ces Li2O (t)	Li	Grad e resou rces Li ₂ O (%)	Cate gory reso urce s	Reserv es Tonna ge (t)	rves	Rese rves Li meta I (t)		Cod e	Status
Cinovec	Cinovec	Czec h Rep ublic	European Metals		NA	NA	695,900, 000.00	2,921,6 31.77	1,35 5,63 7	0.419 835%	Α					JORC	Prospec t under (downs tream) evaluati on
St Austell	St Austell	Engl and	NA		NA	NA	2666666 6700.00	16,000, 000.02	7,42 4,00 0	0.06 %	Α			-	-	Hist orica I Esti mat e	Produci ng deposit
Jadar	Jadar	Serb ia	Rio Tinto		-	-	135,700, 000.00	2,524,0 20.00	1,17 1,14 5	1.86 %	Α			-	-	JORC	Deposit under develop ment - project
Nadiya	Nadiya	Ukra ine	NA		NA	NA	65,080,0 00.00	728,89 6.00	338, 208	1.12	В			-	-	Unk now n	Deposit or prospec t of unknow n status
Valdeflór ez/San José	Valdeflór ez/San José	Spai n	Infinity Lithium Corporati on Ltd/Valor iza Mineria S.A.		-	-	112,000, 000.00		317, 005		В			-	-	JORC	Deposit under develop ment - project
Stankova skoe	Stankova skoe	Ukra ine	NA		NA	NA	36,153,8 00.00	469,99 9.40	218, 080	1.3%	В			-	-	Unk now n	Deposit or prospec t of unknow n status
Beauvoir	Beauvoir	Fran ce	Imerys		NA	NA	43,000,0 00.00	305,30 0.00			В					Hist orica I Esti	Produci ng deposit

Prospect	Project	Cou	Compan Y	Past Prod uctio n Li2O (t)	Past Prod uctio n Li metal (t)	st- pr	Resourc e Tonnage (t)	Resour ces Li2O (t)	Li	Grad e resou rces Li ₂ O (%)	Cate gory reso urce s	Reserv es Tonna ge (t)	rves	Rese rves Li meta I (t)		Cod e	Status
																mat e	
Mina do Barroso	Reservat orio, Grandao, NOA		Savanna h Resource s Plc /Slipstrea m		-	-	23,500,0 00.00	241,00 0.00	111, 833	1.02	В			-	-	JORC	Deposit under develop ment - project
Zinnwald	Zinnwald	Ger man y	Bacanora Minerals Ltd/ SolarWor Id		-	-	35,510,0 00.00	124,95 9.69	57,9 81	0.351 9%	В			-	-	PER C	Prospec t under (downs tream) evaluati on
Sadisdorf	Sadisdorf	Ger man y	Lithium Australia		-	-	25,000,0 00.00	112,50 0.00	52,2 00	0.45 %	В			-	-	JORC	Prospec t under (downs tream) evaluati on
Wolfsber g	Wolfsber g	Aust ria	European Lithium		NA	NA	10,980,0 00.00	109,80 0.00	50,9 47	1.00 %	В			-	-	JORC	Prospec t under (downs tream) evaluati on
Romano/ Sepeda	Romano/ Sepeda		Novo Litio/Lus orecurso s		-	-	10,300,0 00.00	103,00 0.00	47,7 92	1.00	В			-	-	JORC	Deposit under develop ment - project
Altenber g	Altenber g	Ger man y	-	199,1 24.75	92,50 0	0.1 85	NA	NA	NA	NA	С			-	-	orica I Esti	Deposit or prospec t of unknow n status
Polokhov skoe	Polokhov skoe	Ukra ine	Ukrainian rare metals		NA	NA	6,133,00 0.00	88,928. 50	41,2 63	1.45 %	С			-	-	Unk now n	Prospec t under (upstre am) reconn aissanc e

Prospect	Project	Cou ntry	Compan Y	n	Prod	st- pr od	Resourc e Tonnage (t)	Resour ces Li2O (t)	Li	resou	Cate gory reso urce s	Reserv es Tonna ge (t)	rves	Rese rves Li meta I (t)	rese rves	Cate gory rese rves	Cod e	Status
Shevche nkovsko e	Shevche nkovsko e	Ukra ine	NA		NA	NA	6,360,00 0.00	69,960. 00	32,4 61	1.1%	С			-	-			Deposit under develop ment - project
Tréguen nec - Prat-ar- Hastel	Tréguen nec - Prat-ar- Hastel	Fran ce	-		NA	NA	8,500,00 0.00	66,300. 00	30,7 63	0.78	С			-	-		Hist orica I Esti mat e	Unexpl oited deposit
Alberta I	Presquer ias, Acebedo , Taboazas , Coto Tocayo, Rubillon, Correa	Spai	Minewor X		-	-	17,400,0 00.00	66,120. 00	30,6 80	0.38	С			-	-		NI 43- 101	Deposit under develop ment - project
Alvarrõe s	Alvarrõe s	Port ugal	Lepidico Ltd/Felmi ca		-	-	5,870,00 0.00	51,069. 00	23,6 98	0.87	С			-	-		JORC	Deposit under develop ment - project
Rapasaar i	Rapasaar i	Finla nd	Keliber Oy		-	-	4,429,00 0.00	50,047. 70	23,2 22	1.13 %	С	3,490, 000.00	38,0 41.0 0	17,6 51	1.09	D	JORC	Prospec t under (downs tream) evaluati on
Argemel a	Argemel a	Port ugal					11,100,0 00.00	49,950. 00	23,1 78	0.21	D						JORC	Prospec t under (downs tream) evaluati on
Meldon aplite quarry	Meldon aplite quarry	Engl and	NA		NA	NA	13,382,4 00.00	45,500. 16	21,1 12	0.34	D			-	-		orica I Esti	Prospec t under (downs tream) evaluati on

Prospect	Project	Cou ntry	Compan Y	n	Past Prod uctio n Li metal (t)	st- pr	Resourc e Tonnage (t)	Resour ces Li2O (t)	Li	Grad e resou rces Li ₂ O (%)	Cate gory reso urce s	Reserv es Tonna ge (t)	rves	Rese rves Li meta I (t)	rese rves	Cate gory rese rves	Cod e	Status
Syväjärvi	Syväjärvi	Finla nd	Keliber Oy		-	-	2,170,00 0.00	26,908. 00	12,4 85	1.24 %	D	1,755, 000.00	20,7 09.0 0	9,60 9	1.18 %	D	JORC	Deposit or prospec t of unknow n status
Länttä	Länttä	Finla nd	Keliber Oy		-	-	1,330,00 0.00	13,832. 00	6,41 8	1.04	D	1,077, 000.00			0.86 %	D	JORC	Prospec t under (downs tream) evaluati on
Emmes	Emmes	Finla nd	Keliber Oy		-	-	1,080,00 0.00	13,176. 00	6,11 4	1.22 %	D	863,00 0.00	8,71 6.30	4044 .363 2	1.01 %	D	JORC	Prospec t under (downs tream) evaluati on
Aclare	Aclare	Irela nd	Internati onal Lithium		-	-	570,000. 00	8,550.0 0	3,96 7	1.5%	D			-	-		orica I Esti	Prospec t under (downs tream) evaluati on
Montebr as	Montebr as	Fran ce	Imerys	4,305 .40	2,000	NA	366,700. 00	5,500.5 0	2,55 2	1.5%	D			-	-		Hist orica I Esti mat e	Produci ng deposit
Alijo	Alijo		José Aldeia Lagoa & Filhos, SA		-	-	402,800. 00	5,639.2 0	2,61 7	1.4%	D			-	-		Cod e UNF C	Produci ng deposit
Chédevill e	Chédevill e	Fran ce	-	15,23 6.81	7,078	NA	300,000. 00	3,000.0 0	1,39 2	1.00	D			-	-		Hist orica I Esti mat e	Unexpl oited deposit
Leviäkan gas	Leviäkan gas	Finla nd	Keliber Oy		-	-	490,000. 00	4,865.7 0	2,25 8	0.993 %	E			-	-		JORC	Deposit or prospec t of

Prospect	Project	Cou ntry	Compan Y	n		st- pr od	Resourc e Tonnage (t)	Resour ces Li2O (t)	Li	resou	Cate gory reso urce s	Reserv es Tonna ge (t)	rves	Rese rves Li meta I (t)	rese rves	Cate gory rese rves	Cod e	Status
																		unknow n status
Kietyön mäki	Kietyön mäki	Finla nd	Scandian Metals/N ortec Minerals Corp		-	-	400,000. 00	4,720.0 0		1.18	Е			-	-		Hist orica I Esti mat e	Deposit under develop ment - project
Outovesi	Outovesi	Finla nd	Keliber Oy		-	-	280,000. 00	4,004.0 0	1,85 8	1.43	Е	222,00 0.00	2,39 7.60		1.08 %	E	JORC	Deposit under develop ment - project
Hirvikalli o	Hirvikalli o	Finla nd	Scandian Metals/N ortec Minerals Corp		-	-	150,000. 00	2,685.0 0		1.79	E			-	-		Hist orica I Esti mat e	Prospec t
Tréguen nec - Tréluan	Tréguen nec - Tréluan	Fran ce	-		-	-	3,412,92 1.35	1,215.0 0	564	0.035 6%	E			-	-		Hist orica I Esti mat e	Mineral occurre nce
Cornelia Mine	Cornelia Mine	Ger man y	-	297.0 7	138	8.6		NA	NA	NA	E			-	-		Hist orica I Esti mat e	Mineral occurre nce
Silbergru be	Silbergru be	Ger man y	-	2,152 .70	1,000	NA		NA	NA	NA	E			-	-		Hist orica I Esti mat e	Mineral occurre nce

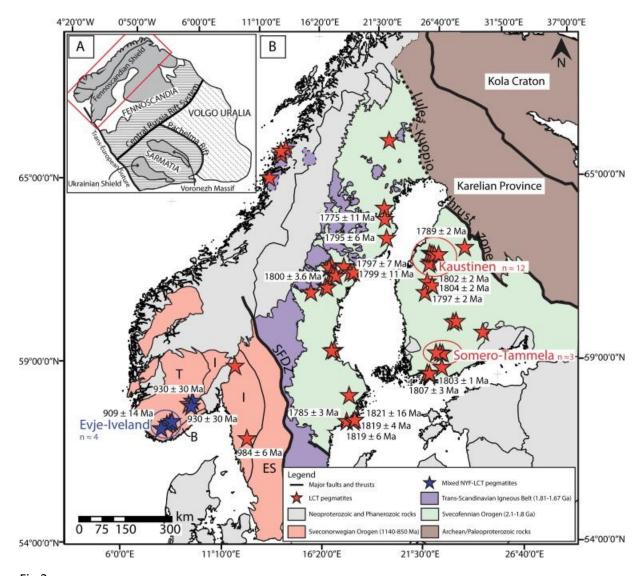


Fig.3

Table 5. Location and dating of several pegmatite, RMG and greisen deposits in Europe

									Age	1	
Country	Occurrence Name	Latitude (decimal degrees)	Longitude (decimal degrees)	Orogeny	Litholo gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e
Sweden	Utö gruvor	59.667133	14.316415	Svecofenni an	LCT pegma tite		182 1	16	columbite- tantalite	U/Pb	Romer and Smeds. 1994
Sweden	Rånö	58.928539	18.180919	Svecofenni an	LCT pegma tite		181 9	4	columbite- tantalite	U/Pb	Romer and Smeds. 1994
Sweden	Norrö	58.88583333 33333	18.13444444 44444	Svecofenni an	LCT pegma tite		181 9	6	columbite- tantalite	U/Pb	Romer and Smeds. 1994
Finland	Rosendal	60.123	22.553	Svecofenni an	LCT pegma tite		180 7	3	ferrotapiol ite	U/Pb	Lindroos et al 1996
Finland	Kaatiala	62.67916666 66667	23.49055555 55556	Svecofenni an	LCT pegma tite		180 4	2	columbite- tantalite	U/Pb	Alviola et al 2001
Finland	Skogsböle	60.142	22.598	Svecofenni an	LCT pegma tite	Kemiö pegmati te field	180 3		ferrotapiol ite	U/Pb	Lindroos et al 1996
Finland	Seinäjoki	62.779	23.1846	Svecofenni an	LCT pegma tite		180 2	2	ferrotapiol ite	U/Pb	Alviola et al 2001
Sweden	Jarkvissle	62.83805555 55556	16.63888888 88889	Svecofenni an	LCT pegma tite		180 0		columbite- tantalite	U/Pb	Romer and Smeds 1997
Sweden	Dyngselet	63.24422	18.156294	Svecofenni an	LCT pegma tite		179 9	11	columbite- tantalite	U/Pb	Romer and Smeds 1994
Finland	Haapaluoma	62.508	22.983	Svecofenni an	LCT pegma tite		179 7	2	columbite- tantalite	U/Pb	Alviola et al 2001
Sweden	Stenbackberget	63.239526	18.224771	Svecofenni an	LCT pegma tite		179 7	7	columbite- tantalite	U/Pb	Romer and Smeds 1994

	0	Latitude	Longitude		Litholo				7.80	-		
Country	Occurrence Name	(decimal degrees)	(decimal degrees)	Orogeny	Litholo gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e	
Sweden	Orrvik	64.2	20.76888888 88889	Svecofenni an	LCT pegma tite		179 5	6	columbite- tantalite	U/Pb	Romer and Smeds 1994	
Finland	Rapasaari	63.39162	23.50256	Svecofenni an	LCT pegma tite	Kaustin en Li- pegmati te field			columbite- tantalite	U/Pb	Kuusela et al 2011	
Finland	Länttä/Ullava	63.62095997	24.14255624	Svecofenni an	LCT pegma tite	Kaustin en Li- pegmati te field	178 9	2	columbite- tantalite	U/Pb	Alviola et al 2001	
Sweden	Stora Vika	58.91694444 44444	17.815	Svecofenni an	LCT pegma tite	Sörmla nd	178 5	3	columbite- tantalite	U/Pb	Romer and Smeds 1997	
Sweden	Varuträsk	64.80055555 55555	20.74083333 33333	Svecofenni an	LCT pegma tite		177 5	11	columbite- tantalite	U/Pb	Romer and Wright 1992	
Sweden	Skuleboda	58.33666666 66667	12.16527777 77778	Sveconorw egian	LCT pegma tite	Idefjord en Terrane	984	6	columbite- tantalite	U/Pb	Romer and Smeds 1993	
Norway	Høydalen	59.183142	8.759742	Sveconorw egian	Mixed LCT- NYF pegma tite	Telemar k Terrane		30	lepidolite	K/Ar	Kulp et al 1963 - indirect age determin ation	
Norway	Heftetjern	59.14305555 55556	8.756666666 66667	Sveconorw egian	Mixed LCT- NYF pegma tite	Telemar k Terrane		30	lepidolite	K/Ar	Kulp et al 1963 - indirect age determin ation	
Norway	Frikstad	58.525013	7.896257	Sveconorw egian	Mixed LCT- NYF pegma tite	Evje- Iveland pegmati te field	909	14	gadolinite	U/Pb	Scherer et al 2001	
Norway	Birkeland	58.53083333 33333	7.923888888 88889	Sveconorw egian	Mixed LCT- NYF	Evje- Iveland	909	14	gadolinite	U/Pb	Scherer et al 2001	

	Occurrence	Latitude	Litholo						-		
Country	Name	(decimal degrees)	(decimal degrees)	Orogeny	gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e
					pegma tite	pegmati te field					
Ireland	Moylisha	52.747771	-6.61769	Caledonian	LCT pegma tite	Leinster pegmati te field	416 .7		muscovite. K-feldspar	Rb/Sr	Barros 2017
Ireland	Aclare	52.681918	-6.74892	Caledonian	LCT pegma tite	Leinster pegmati te field	416 .1		muscovite. K-feldspar	Rb/Sr	Barros. 2017
Poland	Michałkowa	50.7275	16.44861111 11111	Variscan	LCT pegma tite	Sowie Gory Block	370	4	muscovite	Rb/Sr	Van Breemen et al 1988
Austria	Tannenfeld	48.43944444 44444	15.40916666 66667	Variscan	LCT pegma tite		339	4	feldspar/g arnet	Sm/N d	Ertl et al 2012
Czech Republi c	U obrazku	49.28111111 11111	14.27666666 66667	Variscan	LCT pegma tite	Písek pegmati te field	339	3	monazite	U/Pb	Novák et al 1998
Czech Republi c	Pucklice	49.35035	15.679192	Variscan	LCT pegma tite	Jihlava pegmati te field	336	3	columbite- tantalite	U/Pb	Melleton et al 2012
Czech Republi c	Sedlatice	49.200453	15.612342	Variscan	LCT pegma tite	Jihlava pegmati te field	334	6	columbite- tantalite	U/Pb	Melleton et al 2012
Czech Republi c	Jeclov	49.37995	15.671982	Variscan	LCT pegma tite	Jihlava pegmati te field	333	7	columbite- tantalite	U/Pb	Melleton et al 2012
Austria	Königsalm	48.47215	15.51908	Variscan	LCT pegma tite		332	3	feldspar/g arnet	Sm/N d	Ertl et al 2012
Czech Republi c	Rožná	49.479955	16.242045	Variscan	LCT pegma tite	Strážek pegmati te field	332	3	columbite- tantalite	U/Pb	Melleton et al 2012
Czech Republi c	Chvalovice	49.016787	14.222588	Variscan	LCT pegma tite	South Bohemi a pegmati te field	332	3	columbite- tantalite	U/Pb	Melleton et al 2012
Czech Republi c	Dobrá Voda	49.409261	16.050951	Variscan	LCT pegma tite	Strážek pegmati te field	332	3	columbite- tantalite	U/Pb	Melleton et al 2012

									Age	1	
Country	Occurrence Name	Latitude (decimal degrees)	Longitude (decimal degrees)	Orogeny	Litholo gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e
German y	Sadisdorf	50.82722222 22222	13.64611111 11111	Variscan	Greise n	Krusné Hory Mounta ins	326 .1	3. 4	cassiterite	U/Pb	Zhang et al 2017
Portuga I	Argemela	40.156042	-7.602784	Variscan	Evolve d rare- metal granite s		326	3	columbite- tantalite	U/Pb	Melleton and Gloaguen. 2015
Czech Republi c	Nová Ves	48.947464	14.252017	Variscan	LCT pegma tite	South Bohemi a pegmati te field	325	2	columbite- tantalite	U/Pb	Melleton et al 2012
Czech Republi c	Krásno	50.108559	12.767297	Variscan	Greise n	Krusné Hory Mounta ins			molybdeni te	Re/O s	Ackerman et al 2017
Czech Republi c	Ctidružice	48.989003	15.843322	Variscan	LCT pegma tite	Vratěni n– Radkovi ce pegmati te field	323	5	columbite- tantalite	U/Pb	Melleton et al 2012
Czech Republi c	Zinnwald/Cinov ec	50.73	13.76666665 07721	Variscan	Greise n	Krusné Hory Mounta ins	321 .5	3. 1	cassiterite	U/Pb	Zhang et al 2017
German y	Sauberg mine	50.64083	12.97833	Variscan	Greise n		320 .8	2	uraninite	U/Pb	Romer et al 2007
Czech Republi c	Krupka	50.6833	13.8667	Variscan	Greise n	Krusné Hory Mounta ins	320 .1	2. 8	cassiterite	U/Pb	Zhang et al 2017
German y	Altenberg	50.7655555 55556	13.76472222 22222	Variscan	Greise n	Krusné Hory Mounta ins	319 .2	2. 4	zircon	U/Pb	Romer et al 2010
France	Tréguennec - Prat-ar-Hastel	47.875073	-4.34846	Variscan	Evolve d rare- metal granite s		319	6	columbite- tantalite	U/Pb	Gloaguen et al 2018

		l atituda	Lanaituda						Age	1	
Country	Occurrence Name	Latitude (decimal degrees)	Longitude (decimal degrees)	Orogeny	Litholo gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e
Spain	FL-02	42.51635	-8.35222	Variscan	LCT pegma tite	Lalín- Forcarei pegmati te field	318		columbite- tantalite	U/Pb	Deveaud. 2015
France	Beauvoir	46.181308	2.953114	Variscan	Evolve d rare- metal granite s	Echassi ères	317	6	columbite- tantalite	U/Pb	Melleton et Gloaguen. 2015
France	Larmont	45.98462	1.39807	Variscan	LCT pegma tite		317	14	lepidolite	Rb/Sr	recalculat ed according Viallette 1963
France	Montebras	46.321071	2.295544	Variscan	Evolve d rare- metal granite s		314	4	columbite- tantalite	U/Pb	Melleton et Gloaguen. 2015
France	Richemont	46.076501	1.046411	Variscan	Evolve d rare- metal granite s	Blond	313 .4	1. 4	muscovite	Ar/Ar	Cuney et al 2002
Spain	Alfonsin	42.503525	-8.339867	Variscan	LCT pegma tite	Lalín- Forcarei pegmati te field	312	4	columbite- tantalite	U/Pb	Melleton pers. Com.
Portuga I	Lousas	41.415323	-7.799594	Variscan	LCT pegma tite	Barroso -Alvao pegmati te field	311	5	columbite- tantalite	U/Pb	Melleton pers. Com.
Portuga I	AL109-02	41.622648	-7.829223	Variscan	LCT pegma tite	Barroso -Alvao pegmati te field	311	4	columbite- tantalite	U/Pb	Melleton pers. Com.
France	Chanteloube	46.0643	1.3607	Variscan	LCT pegma tite		311	9	lepidolite	Rb/Sr	recalculat ed according Viallette 1963

	Occurrence	Latitude	Longitude						7.50	_	
Country	Occurrence Name	(decimal degrees)	(decimal degrees)	Orogeny	Litholo gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e
France	Chédeville	45.97888888 88889	1.385833333 33333	Variscan	LCT pegma tite	Saint Sylvestr e	309	5	columbite- tantalite	U/Pb	Melleton et Gloaguen. 2015
Portuga I	Adagoi	41.60265	-7.660869	Variscan	LCT pegma tite	Barroso -Alvao pegmati te field	307	5	columbite- tantalite	U/Pb	Melleton pers. Com.
Spain	Feli open pit	41.027847	-6.8686722	Variscan	LCT pegma tite	Fregene da- Almend ra pegmati te field	307	5	columbite- tantalite	U/Pb	Melleton pers. Com.
Spain	Alberto-03	41.004381	-6.847987	Variscan	LCT pegma tite	Fregene da- Almend ra pegmati te field	307	4	columbite- tantalite	U/Pb	Melleton pers. Com.
Portuga I	Bajoca Mine	40.99907	-7.01697	Variscan	LCT pegma tite	Fregene da- Almend ra pegmati te field	305	4	columbite- tantalite	U/Pb	Melleton pers. Com.
England	St Austell	50.3521	-4.83869	Variscan	Greise n		305	5	zircon	U/Pb	Neace et al 2016
Portuga I	Formigoso	41.833429	-8.625814	Variscan	LCT pegma tite	Serra de Arga pegmati te field		9	columbite- tantalite	U/Pb	Melleton pers. Com.
France	Crozant	46.386782	1.626529	Variscan	LCT pegma tite		302	4	lepidolite	Rb/Sr	recalculat ed according to Viallette 1963
Portuga I	Vieiros	41.321697	-7.992944	Variscan	LCT pegma tite	Seixoso -Vieiros pegmati te field	301	4	columbite- tantalite	U/Pb	Melleton pers. Com.

		و ماند، ما	Lanaituda				Age 1					
Country	Occurrence Name	Latitude (decimal degrees)	Longitude (decimal degrees)	Orogeny	Litholo gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e	
Portuga I	Outeiro granite	41.351054	-8.112911	Variscan	Greise n	Seixoso -Vieiros pegmati te field	301	5	columbite- tantalite	U/Pb	Melleton pers. Com.	
Portuga I	Gonçalo Sul	40.435432	-7.335044	Variscan	LCT pegma tite	Gonçal o-Seixo Amarel o pegmati te field	301	3	columbite- tantalite	U/Pb	Melleton pers. Com.	
Portuga I	Queiriga	40.78663	-7.738518	Variscan	LCT pegma tite		300	4	columbite- tantalite	U/Pb	Melleton pers. Com.	
France	Castelnau de Brassac	43.65805555 55556	2.499166666 66667	Variscan	LCT pegma tite		300	6	lepidolite	Rb/Sr	recalculat ed according to Viallette 1963	
Spain	Cap de creus	42.320028	3.3175814	Variscan	LCT pegma tite		296 .2	2. 5	zircon	U/Pb	Van Lichtervel de et al 2017	
Slovakia	Surovec	48.792306	20.561275	Variscan	Evolve d rare- metal granite s		276	13	Monazite	U/Pb	Finger et al 2003	
Austria	Zinkenschlucht /Lachtal	47.26388888 88889	14.34194444 44444	Variscan	LCT pegma tite		268	2. 8	whole rock/garne t	Sm/N d	Ilickovic et al 2017	
Austria	Hohenwart	47.325	14.24166666 66667	Variscan	LCT pegma tite		264	3	garnet	Sm/N d	Ilickovic et al 2016	
Slovakia	Medvedí potok/Hnilec	48.826263	20.488632	Variscan	Greise n		263 .8	_	molybdeni te	Re/O s	Kohút and Stein 2004	
Austria	Wildbachgrabe n	46.85138888 88889	15.15861111 11111	Variscan	LCT pegma tite		261	2. 5	feldspar/g arnet	Sm/N d	Thöni et al 2008	

Country	Occurrence Name	Latitude (decimal degrees)	Longitude (decimal degrees)	Orogeny	Litholo gy	Area	Age (M a)	±2 σ	Mineral analyzed	Meth od	Referenc e
Austria	Weinebene/Wo Ifsberg	46.83405	14.99393	Variscan	LCT pegma tite	Koralpe comple x	242 .8	1. 7	•	Rb/Sr	Thöni and Miller 2000
Switzerl and	Brissago	46.11916666 66667	8.711388888 88889	Alpine Orogeny	LCT pegma tite	Brissag o pegmati te field		2. 8	zircon	U/Pb	Vignola et al 2008

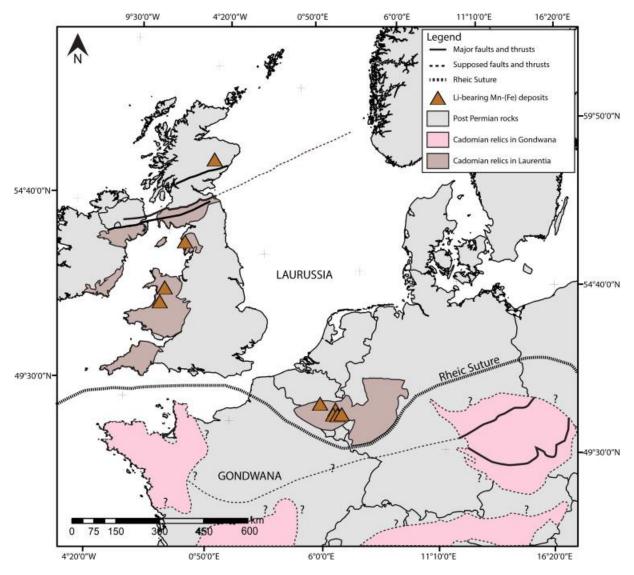


Fig.4

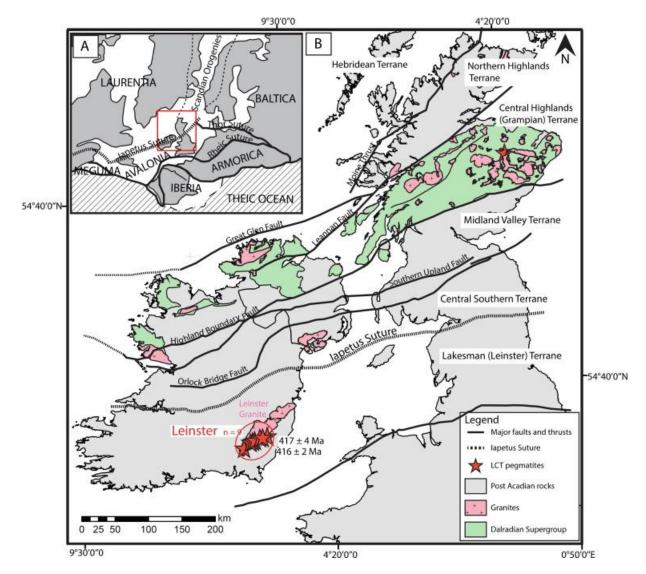


Fig.5

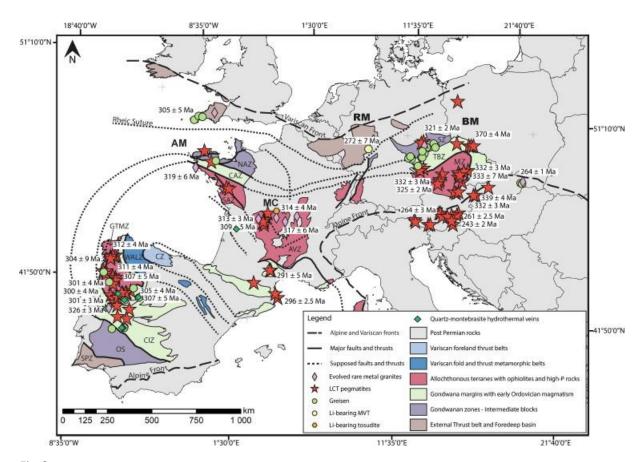


Fig.6

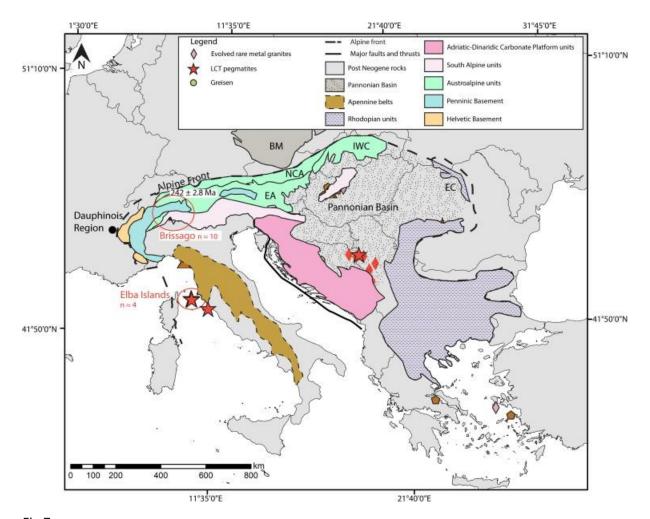


Fig.7

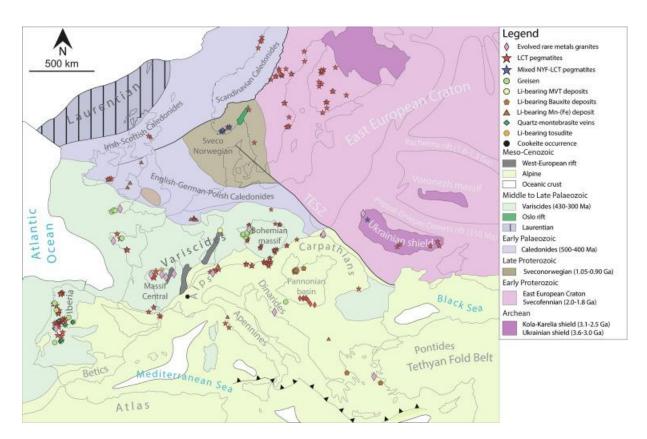


Fig.8

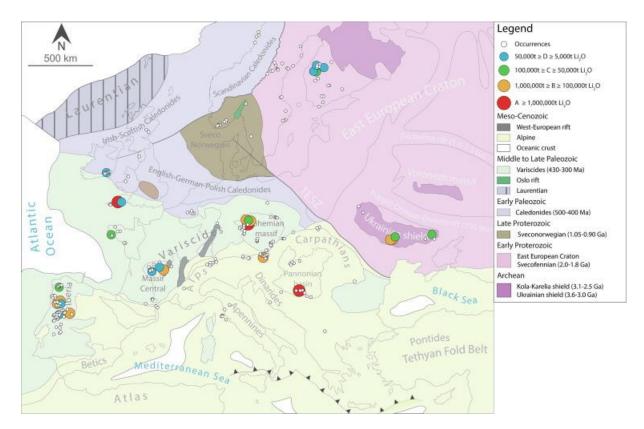


Fig.9

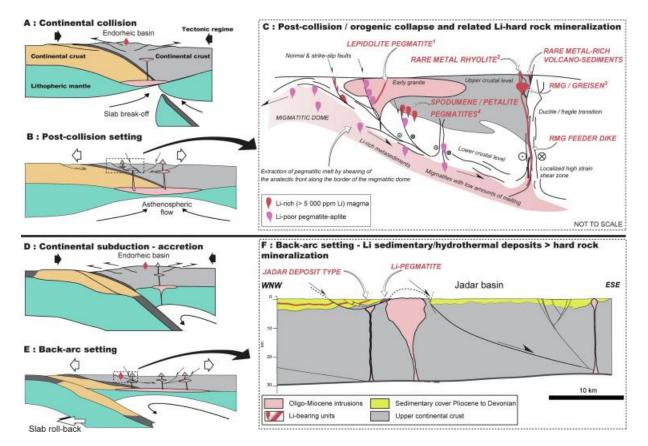


Fig.10

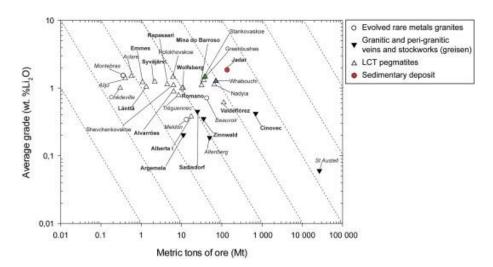


Fig.11

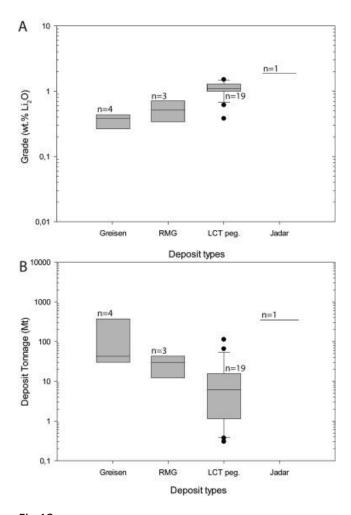


Fig.12