I. E. Amin and M. E. Campana, A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems, Journal of Hydrology, vol.179, pp.2880-2883, 1996.

, Residence Time Distributions in non-uniform aquifer recharge and thickness conditions, vol.22, p.43

P. V. Danckwerts, Continuous flow systems: Distribution of residence times, Chemical Engineering Science, vol.2, issue.53, pp.80001-80002, 1953.

J. Dupuit, Etudes Théoriques et Pratiques sur le mouvement des Eaux dans les canaux découverts et à travers les terrains perméables, 1863.

S. M. Eberts, J. K. Böhlke, L. J. Kauffman, and B. C. Jurgens, Comparison of particle-tracking and lumped-parameter age-distribution models for evaluating vulnerability of production wells to contamination, Hydrogeol J, vol.20, pp.263-282, 2012.

N. B. Engdahl, Transient effects on confined groundwater age distributions: Considering the necessity of time-dependent simulations, Water Resources Research, vol.53, pp.7332-7348, 2017.

N. B. Engdahl and R. M. Maxwell, Quantifying changes in age distributions and the hydrologic balance of a high-mountain watershed from climate induced variations in recharge, Journal of Hydrology, vol.522, pp.152-162, 2015.

E. Eriksson, The Possible Use of Tritium' for Estimating Groundwater Storage, Tellus, vol.10, pp.472-478, 1958.

D. Etcheverry, Une approche déterministe des distributions des temps de transit de l'eau souterraine par la théorie des réservoirs, 2001.

P. Forchheimer, Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen, Z. Architekt. Ing.-Ver, vol.32, pp.539-563, 1886.

R. D. Garreaud, The Andes climate and weather, Advances in Geosciences. Presented at the 4th EGU Alexander von Humboldt Conference "The Andes: Challenge for Geosciences, 2009.

, Alexander von Humboldt International Conference on The Andes: Challenge for Geosciences, pp.3-11, 2008.

T. R. Ginn, H. Haeri, A. Massoudieh, and L. Foglia, Notes on Groundwater Age in Forward and Inverse Modeling, Transp Porous Med, vol.79, pp.117-134, 2009.

T. Gleeson, L. Marklund, L. Smith, and A. H. Manning, Classifying the water table at regional to continental scales, Geophysical Research Letters, vol.38, 2011.

P. Goderniaux, P. Davy, E. Bresciani, J. De-dreuzy, and T. Le-borgne, Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments: GROUNDWATER PARTITIONING, Water Resources Research, vol.49, pp.2274-2286, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00841206

H. Haitjema, The Role of Hand Calculations in, Ground Water Flow Modeling. Groundwater, vol.44, pp.786-791, 2006.

H. M. Haitjema, On the residence time distribution in idealized groundwatersheds, Journal of Hydrology, vol.172, pp.127-146, 1995.

H. M. Haitjema, Comparing a three-dimensional and a Dupuit-Forchheimer solution for a circular recharge area in a confined aquifer, Journal of Hydrology, vol.91, pp.83-101, 1987.

H. M. Haitjema and S. Mitchell-bruker, Are Water Tables a Subdued Replica of the Topography? Groundwater, vol.43, pp.781-786, 2005.

A. W. Harbaugh, C. D. Langevin, J. D. Hughes, R. G. Niswonger, and L. F. Konikow, MODFLOW-2005: USGS three-dimensional finite-difference groundwater model, 2017.

J. Houston, A recharge model for high altitude, arid, Andean aquifers, Hydrological Processes, vol.23, pp.2383-2393, 2009.

J. Houston, Recharge to groundwater in the Turi Basin, northern Chile: An evaluation based on tritium and chloride mass balance techniques, Journal of Hydrology, vol.334, pp.534-544, 2007.

, Use of Chlorofluorocarbons in Hydrology, IAEA, 2006.

S. Iriarte, M. Atenas, E. Aguirre, and C. Tore, Aquifer recharge and contamination determination using environmental isotopes: Santiago basin, Chile: A study case. Presented at the Studies of isotopic hydrology in Latin America, International Atomic Energy Agency, pp.97-112, 2006.

S. Ivey, R. W. Gentry, and J. Anderson, Inverse Application of Age-Distribution Modeling Using Environmental Tracers H3 ? He3, Journal of Hydrologic Engineering, vol.13, pp.11-1002, 2008.

M. Jing, F. Heße, R. Kumar, O. Kolditz, T. Kalbacher et al., Influence of input and parameter uncertainty on the prediction of catchment-scale groundwater travel time distributions, Hydrology and Earth System Sciences, vol.23, pp.171-190, 2019.

,

E. Jones, E. Oliphant, P. Peterson, and . Others, SciPy: Open Source Scientific Tools for Python, vol.18, 2001.

B. C. Jurgens, J. Böhlke, and S. M. Eberts, TracerLPM (Version 1): An Excel® workbook for interpreting groundwater age distributions from environmental tracer data (No. 2328-7055), US Geological Survey, 2012.

B. C. Jurgens, J. K. Böhlke, L. J. Kauffman, K. Belitz, and B. K. Esser, A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in longscreened wells, RESIDENCE TIMES IN SUBSURFACE HYDROLOGICAL SYSTEMS: Signature of hydrological processes and impact on environmental applications, vol.543, pp.109-126, 2016.

G. A. Kazemi, J. H. Lehr, and P. Perrochet, Groundwater Age, 2005.

J. W. Kirchner, Aggregation in environmental systems -Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrology and Earth System Sciences, vol.20, pp.279-297, 2016.

J. W. Kirchner, X. Feng, and C. Neal, Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations, Journal of Hydrology, vol.254, pp.487-492, 2001.

L. Knowles, B. G. Katz, and D. J. Toth, Using multiple chemical indicators to characterize and determine the age of groundwater from selected vents of the Silver Springs Group, central Florida, USA, Hydrogeol J, vol.18, pp.1825-1838, 2010.

D. Koh, L. Plummer, D. Kip-solomon, E. Busenberg, Y. Kim et al., Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea. Journal of Hydrology, vol.327, pp.258-275, 2006.

, Residence Time Distributions in non-uniform aquifer recharge and thickness conditions, vol.24, p.43

E. Koh, E. Lee, D. Kaown, C. T. Green, D. Koh et al., Comparison of groundwater age models for assessing nitrate loading, transport pathways, and management options in a complex aquifer system, Hydrological Processes, vol.32, pp.923-938, 2018.

T. Kolbe, J. De-dreuzy, B. W. Abbott, J. Marçais, T. Babey et al., Structure of groundwater denitrification, Proceedings of the National Academy of Sciences, 2018.

T. Kolbe, J. Marçais, Z. Thomas, B. W. Abbott, J. De-dreuzy et al., Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer, RESIDENCE TIMES IN SUBSURFACE HYDROLOGICAL SYSTEMS: Signature of hydrological processes and impact on environmental applications, vol.543, pp.31-46, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01316583

S. Leray, J. De-dreuzy, O. Bour, T. Labasque, and L. Aquilina, Contribution of age data to the characterization of complex aquifers, Journal of Hydrology, vol.464, pp.54-68, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00756566

S. Leray, N. B. Engdahl, A. Massoudieh, E. Bresciani, and J. Mccallum, Residence time distributions for hydrologic systems: Mechanistic foundations and steady-state analytical solutions, RESIDENCE TIMES IN SUBSURFACE HYDROLOGICAL SYSTEMS: Signature of hydrological processes and impact on environmental applications, vol.543, pp.67-87, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01271309

A. Lobo-guerrero and Y. Gilboa, Groundwater in Colombia, Hydrological Sciences Journal, vol.32, pp.161-178, 1987.

A. J. Long and L. D. Putnam, Translating CFC-based piston ages into probability density functions of ground-water age in karst, Journal of Hydrology, vol.330, pp.735-747, 2006.

,

J. Luo and P. K. Kitanidis, Fluid residence times within a recirculation zone created by an extraction-injection well pair, Journal of Hydrology, vol.295, pp.149-162, 2004.

,

P. Ma?oszewski and A. Zuber, Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. Models and their applicability, Journal of Hydrology, vol.57, pp.207-231, 1982.

A. H. Manning and J. S. Caine, Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development, Water Resources Research, vol.43, 2007.

M. A. Marazuela, E. Vázquez-suñé, C. Ayora, A. García-gil, and T. Palma, Hydrodynamics of salt flat basins: The Salar de Atacama example, Science of The Total Environment, vol.651, pp.668-683, 2019.

J. Marçais, J. De-dreuzy, and J. Erhel, Dynamic coupling of subsurface and seepage flows solved within a regularized partition formulation, Advances in Water Resources, vol.109, pp.94-105, 2017.

S. Matlab and . Toolbox, , 2012.

R. M. Maxwell, L. E. Condon, S. J. Kollet, K. Maher, R. Haggerty et al., The imprint of climate and geology on the residence times of groundwater, Geophysical Research Letters, vol.43, pp.701-708, 2016.

, Residence Time Distributions in non-uniform aquifer recharge and thickness conditions, vol.25, p.43

K. J. Mcguire and J. J. Mcdonnell, A review and evaluation of catchment transit time modeling, Journal of Hydrology, vol.330, pp.543-563, 2006.

K. J. Millman and M. Aivazis, Python for Scientists and Engineers, Computing in Science Engineering, vol.13, pp.9-12, 2011.

R. Millot, C. Guerrot, C. Innocent, P. Négrel, and B. Sanjuan, Chemical, multi-isotopic (Li-B-Sr-U-H-O) and thermal characterization of Triassic formation waters from the Paris Basin, Chemical Geology, vol.283, pp.226-241, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00563924

Y. Niu, M. C. Castro, C. M. Hall, S. M. Aciego, and C. A. Arendt, Characterizing glacial meltwater sources in the Athabasca Glacier, Canada, using noble gases as tracers, Applied Geochemistry, vol.76, pp.136-147, 2017.

T. E. Oliphant, Python for Scientific Computing, Computing in Science & Engineering, vol.9, pp.10-20, 2007.

K. Osenbrück, S. Fiedler, K. Knöller, S. M. Weise, J. Sültenfuß et al., Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Water Resources Research, vol.42, 2006.

G. Pinay, S. Peiffer, J. De-dreuzy, S. Krause, D. M. Hannah et al., Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream Orders' Drainage Basins, Ecosystems, vol.18, pp.1101-1120, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149506

,

D. W. Pollock, MODPATH: A particle-tracking model for MODFLOW, 2016.

P. A. Raats, Convective transport of solutes by steady flows II. Specific flow problems, Agricultural Water Management, vol.1, pp.90002-90008, 1977.

D. M. Rempe and W. E. Dietrich, A bottom-up control on fresh-bedrock topography under landscapes, PNAS, vol.111, pp.6576-6581, 2014.

J. Scherberg, J. Keller, S. Patten, T. Baker, and M. Milczarek, Modeling the impact of aquifer recharge, in-stream water savings, and canal lining on water resources in the Walla Walla Basin, Sustain. Water Resour. Manag, vol.4, pp.275-289, 2018.

D. K. Solomon, D. P. Genereux, L. N. Plummer, and E. Busenberg, Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers, Water Resources Research, vol.46, 2010.

F. A. Squeo, R. Aravena, E. Aguirre, A. Pollastri, C. B. Jorquera et al., Groundwater dynamics in a coastal aquifer in north-central Chile: Implications for groundwater recharge in an arid ecosystem, Journal of Arid Environments, vol.67, pp.240-254, 2006.

,

J. Tóth, A theoretical analysis of groundwater flow in small drainage basins, Journal of Geophysical Research, vol.68, pp.4795-4812, 1963.

P. A. Troch, C. Paniconi, E. E. Loon, and . Van, Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response, Water Resources Research, vol.39, 2003.

C. Turnadge and B. D. Smerdon, A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation, Journal of Hydrology, vol.519, pp.3674-3689, 2014.

, Residence Time Distributions in non-uniform aquifer recharge and thickness conditions, vol.26, p.43

, Ground water atlas of the United States, USGS, 2000.

Y. Velde, . Van-der, P. J. Torfs, S. E. Zee, . Van-der et al., Quantifying catchmentscale mixing and its effect on time-varying travel time distributions, Water Resources Research, vol.48, 2012.

A. Visser, H. P. Broers, R. Purtschert, J. Sültenfuß, M. Jonge et al., Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (85Kr, 3H/3He, and 39Ar), Water Resources Research, vol.49, pp.7778-7796, 2013.

J. C. Vogel, Presented at the Symposium on isotopes in hydrology, International Atomic Energy Agency, pp.355-369, 1967.

J. Wang, A. Wörman, E. Bresciani, L. Wan, X. Wang et al., On the use of latetime peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems, RESIDENCE TIMES IN SUBSURFACE HYDROLOGICAL SYSTEMS: Signature of hydrological processes and impact on environmental applications, vol.543, pp.47-58, 2016.

R. B. Warrier, M. C. Castro, and C. M. Hall, Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes, Water Resources Research, vol.48, 2012.