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Abstract1

TracTrac is an open-source Matlab/Python implementation of a robust and efficient2

object tracking algorithm capable of simultaneously tracking several thousands of3

objects in very short time. Originally developed as an alternative to particle image4

velocimetry algorithms for estimating fluid flow velocities, its versatility and robust-5

ness makes it relevant to many other dynamic sceneries encountered in geophysics6

such as granular flows and drone videography. In this article, the structure of the7

algorithmis detailed and its capacity to resolve strongly variable and intermittent8

object motions is tested against three examples of geophysical interest.9
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1 Introduction11

Owing to the popularization of digital cameras in the last 20 years, videography tech-12

niques are increasingly used in the lab and in the field to measure velocities and13

trajectories associated to a moving scenery. As earth processes are mostly dynamic,14

imaging today appears as an affordable way to get spatio-temporal quantification of15

these motions. Glacier motion, river flow, sediment transport, rock avalanches, wind16

boundary layers, are some example of geophysical processes, whose understanding17

rely deeply on how accurately their kinematics can be measured both in time and18

in space. Yesterday restricted to laboratory studies with important experimental19

apparatus (lasers, high speed cameras, computing clusters), flow imaging is now20

expanding to in-situ monitoring of geophysical processes, notably thanks to the new21

perspectives offered by drone videography [1]. In parallel, significant efforts have22

been made in the computer vision community to improve and invent new image23

processing algorithms treating efficiently these image sequences. Applications for24

video surveillance (such as face recognition) and autonomous vehicles are among25

the most spectacular achievements of these algorithms, running in real time [3, 14].26

Curiously, few of these new methods were transferred into user-friendy, flexible and27

open-source applications available for earth science researcher in their daily work28

[5]. Processing images often costs much of the scientific effort instead of being a29

powerful and direct mean to better understand natural processes. The present arti-30

cle introduces TracTrac (see Computer Code Availability section), an open-source31

Matlab/Python implementation of an original and efficient object tracking algorithm32

capable of simultaneously tracking several thousands of objects in very short com-33

putation time and very basic user knowledge. Its conception makes it equally good34

for dealing with densely seeded fluid flows (typically treated with Particle Image35

Velocimetry methods, PIV), granular flow, birds motion or any natural moving scene.36

The article is structured as follows. After briefly reviewing the computational methods37

that have been proposed for motion estimation in the past, TracTrac originality and38

the algorithm structure is detailed. The accuracy and robustness of the algorithm is39

then tested against a synthetic images occupied by artificial moving objects. Finally,40

examples of TracTrac flow estimates are presented in real earth science applications41

(turbulence, granular avalanche and bird flock).42

2 Advances in motion estimation techniques43

Literature about motion estimation from image sequence is vast and spreads over44

several scientific disciplines, rendering difficult an exhaustive review. At least two45

large families of methods have emerged: (i) the methods based on interrogation46

windows, usually called Particle Image Velocimetry (PIV) and (ii) the methods based47

on object detection and tracking, typically called Particle Tracking Velocimetry (PTV).48

Although being not very informative, the choice of these acronyms refers to their49
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initial use in films of flows seeded by tracer particles to establish a map of local50

velocities. The spectrum of applications of PIV and PTV methods is however much51

broader, extending to complex moving sceneries. The general idea behind PIV is52

to quantify motion by cross-correlation of interrogation windows [25]. Dividing53

the image into smaller boxes (typically of 8 or 16 pixels width), the local motion is54

obtained by searching the box displacement that maximizes the cross-correlation55

product of box pixel light or color intensities between two consecutive frames. In56

contrast, PTV consists in detecting the presence of special features in an image and57

tracking them through consecutive frames. Special features, also called objects,58

can be particles (blobs of bright or dark intensities), but also more complex shapes59

(corners, ball, faces, ...). Where PIV outputs a velocity vector for each interrogation60

box, PTV provides the trajectory of an object (its position in successive frames)61

which can be then mapped into a grid to get a dense velocity field [22]. In other62

words, PTV takes the Lagrangian point of view of motion where PIV is essentially an63

Eulerian vision. Both techniques have advantages and disadvantages as shown in64

the following. While originally preferred for its relative simplicity and robustness (a65

few free parameters involved), PIV inevitably introduces some filtering at fluctuation66

scales smaller than the box size, which preclude the correct estimation of steep67

velocity gradients. Partial recovering of interrogation boxes help at increasing velocity68

map resolution but do not solve the filtering effect. Uncertainties are thus particularly69

high for flows near walls and turbulent flows in general for which the Kolmogorov70

scale can be small. In contrast, PTV is only limited by the scale of the tracked features71

(particles, gradients) as well as their local density so that instantaneous velocity maps72

are less prone to the box filter effect [10, 11]. Both PIV and PTV dynamic ranges73

strongly rely on the accurate detection of peaks in the frames (e.g., the location74

of the feature to track for PTV and maximum cross-correlation product for PIV).75

Methods have been proposed to reach sub-pixel accuracy in peak location, allowing76

for the measurement of displacements smaller than one pixel per frame. However,77

local saturation of images (values equal to 0 or 1) and small particle image size may78

produce peak locking and biased velocity measurements [6, 15, 16, 19, 20, 23]. To79

minimize these effects, attention has to be taken to the effective dynamic range80

reached (high contrasts) and the magnification factor of the lens. PIV methods81

typically overtake PTV methods if particle displacement becomes large compared to82

the mean inter particle image distance. A so-called particle spacing displacement83

ratio p = p
S/N /(v∆t) (with v∆t the particle image displacement, N the number84

of particles and S the image surface) has been proposed by [13] to describe this85

effect. To avoid ambiguities in the reconstruction of trajectories, PTV algorithms86

generally requires high frame rates or low particle image densities, that is p ≥ 1. Thus,87

PIV algorithms have often been preferred to probe densely seeded turbulent flows88

where p can be small compared to 1. Combinations of the two methods have been89

proposed to gain robustness in the case of large displacements (or large particle image90

density) to limit the low-pass filtering effect of PIV [7, 21]. Another disadvantage of91

PIV methods concerns complex sceneries made of moving and non-moving layers92

(e.g. a flowing river on a fixed bed, a flock of flying birds through trees). The cross-93

correlation procedure do not differentiate between layers so that the resulting velocity94

is an average of the fixed and moving elements. In addition, incoherent motion95
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such as Brownian motion or multiple wave celerities cannot be handled by most96

PIV methods: at the scale of the interrogation window, the flow is supposed to be97

continuous and unidirectional. In contrast, sharp interfaces between moving and98

static regions, as well as non-coherent motions can in principle be rendered by PTV99

methods [5]. There is today a net enthusiasm for PTV algorithms due to their broader100

application range and their higher resolution [5, 9]. They are also directly transferable101

to stereoscopic camera setup where the position and trajectory of objects can be102

estimated in the three space dimensions [12, 13, 18]. However, most existing PTV103

algorithms still suffer from the aforementioned drawbacks: (i) they are limited to large104

particle spacing displacement ratio (p > 2 in [13] and in [5], while p>0.33 in a recent105

study by [7]) and (ii) they are not computationally efficient when many features have106

to be tracked (a maximum of 4000 particles per time frame are considered in [7] and107

1000 in [5]).108

3 TracTrac109

The first innovation brought by TracTrac compared to traditional PTV methods is110

its efficiency. Indeed, TracTrac uses k-dimensional trees to search and compute111

statistics around neighbouring objects [4], allowing very high analysis frame rate112

even at large particle image number. The second key feature lie in an original asso-113

ciation process of objects between frames, that significantly decreases the number114

of erroneous trajectory reconstructions. This process is based upon a sequence of 3115

frames (instead of 2 for classical pair association) and a conservative rule rejecting116

any association ambiguities [21]. The third advantage of TracTrac is its capacity to117

deal with high feature densities at relatively low acquisition frequencies (p down118

to 0.25). This is achieved owing to a motion predictor step based on a local spatio-119

temporal average of the neighbouring object velocities. Differences between the120

motion prediction model and the observed displacement are systematically moni-121

tored, allowing filtering outliers based on local and adaptive statistics of the motion122

variability. This adaptive filter enables both the quantification of strongly incoherent123

motions (of the Brownian motion type [5]) and coherent displacement (governed by124

a spatio-temporal continuous deterministic velocity field) in the same image.125

3.1 Details of the algorithm126

TracTrac rests on three main modules: object detection, motion estimation, error127

monitoring.128

3.1.1 Object detection129

The first module regroups all the computing steps from the raw frame It to the130

detection of the position of moving objects x t . Most of these preprocessing steps131

are optional, and may be turned off by the user. The procedure is the following.132

First a median box filter can be applied to remove possible noise on It . The default133

size of this filter was set to 3× 3 pixels. Second, the image is divided between a134
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“background” image Bt made of quasi-static regions, and a “foreground image” Ft ,135

formed by the moving regions. The latter is computed as Ft = It −Bt . This operation136

allows focusing on the moving part of a scene, while ignoring the static regions. Bt137

has to be recomputed at each frame. The method chosen here borrows from the138

so-called “median” background subtraction method, where the background image is139

taken to be a temporal moving average of pixel values:140

Bt =βsign(It −Bt−1)+Bt−1, (1)

where β< 1 is the background adaptation speed. A large value of β gives backgrounds141

that are rapidly adapted to the changes in scene luminosity. On opposite, a small value142

of β provides background images that are insensible to rapid luminosity changes.143

The default value is set to β= 0.001. The recurrence relation (1) requires to provide144

an initial guess for B0, which is computed from an average of the first 1/(2β) frames145

B0 = 2

β

β/2−1∑
t=0

It . (2)

It is worth noting that PTV methods are able to resolve sharp velocity gradients as146

well as out-of-plane velocity gradients so that background subtraction may not be147

always necessary. Objects are then identified in the foreground image by a so-called148

“blob detection” method. TracTrac integrates two state-of-the-art detectors, namely149

Difference of Gaussians (DoG) and Laplace of Gaussian (LoG), both depending on150

a single scale parameter δ. The DoG convolves the image with a filter constructed151

from the subtraction of two Gaussian of bandwidth 0.8δ and 1.2δ. It acts as a band-152

pass filter selecting blobs in the 20% scale range around δ
p

2. The LoG approach153

first convolves the image with a Gaussian filter of bandwidth δ, then applying the154

Laplacian operator on the convoluted image. Both approaches yield a filtered image155

F ′
t with a strong positive response in the presence of objects of scale δ. Positions156

of the object centroids {x t } are obtained by searching for local maximum in F ′
t . To157

minimize false detections, an intensity threshold ε is fixed under which maxima are158

ignored. In TracTrac, the default value of ε is fixed to half standard deviation above159

the mean luminosity of F ′
t . Sub-pixel resolution of object position is achieved by160

fitting a quadratic or a Gaussian function to the pixel intensity values around the161

centroid position, and finding then the position of the maximum of this function. For162

instance, if a maximum is found in pixel i , j , the sub-pixel position of object will be163

x = j +
F ′

i , j+1 −F ′
i , j−1

2(F ′
i , j+1 −2F ′

i , j +F ′
i , j−1)

, (3)

y = i +
F ′

i+1, j −F ′
i−1, j

2(F ′
i+1, j −2F ′

i , j +F ′
i−1, j )

, (4)

(5)

for a quadratic function. The formula is the same for a Gaussian function, replacing F ′
164

by ln(F ′). The ensemble of points x i (t ), i = 1, . . . , N (t ) made of the sub-pixel centroid165

positions are then tracked through time.166
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3.1.2 Motion estimation167

As classical PTV algorithms [7, 13], motion estimation is achieved by associating168

detected objects between successive frames, typically by minimization of Euclidean169

distance. In TracTrac, at each time t , the set of N (t) detected objects is organized170

into a 2-dimensional tree allowing for fast nearest neighbour search [4]. The nearest171

neighbours in successive frames are computed for both forward and backward time172

association:173

• forward x i (t ) → x j (t +1): for each x i (t ), find its closest neighbour in {x(t +1)},174

• backward x i (t + 1) → x j (t): for each x i (t + 1), find its closest neighbour in175

{x(t )}.176

Since objects usually appear and disappear through frame, both computations may177

give different results. In order to minimize false associations, only the unequivocal178

pairs are kept (i.e., the pairs that point to the same objects regardless of the time179

direction of association). In doing so, ambiguous associations are automatically180

disregarded. A fragment of trajectory (“tracklet”) is defined if two consecutive and un-181

equivocal associations are made for the same object. In other words, when a position182

triplet xi (t −1) ↔ x j (t) ↔ xk (t +1) is found without ambiguity, it is considered as a183

valid fragment of trajectory, to which is associated a new or existing ID (depending184

on whether the object has been already associated to a trajectory ID in the frame185

t −1). This 3-frame association technique reduces significantly the occurrence of186

bad associations. In addition, it enables the computation of second order object187

velocities (via central differences) as well as their accelerations:188

v̂ (t −1) = x̂(t )− x̂(t −2)

2∆t
, (6)

â(t −1) = x̂(t )− x̂(t −2)+2x̂(t −1)

∆t 2 (7)

This technique does not increase the computational cost significantly since nearest189

neighbour associations (x j (t) ↔ xk (t +1)) are saved for the following time step. In190

the following, the variables pertaining to objects that were associated into tracklets191

in the frame t are denoted by a hat (i.e., x̂(t), N̂ (t)). The quality of this association192

step is often constrained by the maximum object displacement between consecutive193

frames, or equally the maximum object velocity divided by the frame rate of the194

camera. Indeed, erroneous associations spontaneously arise from aliasing effects195

when object displacement is comparable to the average distance separating objects196

(for instance, points on a line distant by 10 pixels that travel at 10 pixels per frame197

will appear having a null velocity). Motion recognition is relatively easy when p−1 =198

v∆t
p

N /S ¿ 1 (or equally when p À 1 [13]). In TracTrac, this condition is relaxed by199

the use of a predictor step based on a motion model inherited from previous time200

step [7, 17]. In other words, TracTrac first predicts the position objects in the following201

frame and then use this prediction to perform the following association. At time202

t , the motion model is based on the pool of objects associated to tracklets at t −1,203

their velocities v̂(t −1) and their motion predictors v̂(t −1) (where the bar symbol204
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Figure 1: Prediction-Association process between frames t , t +1 and t +2

stands for quantities related to the motion model). This information is passed to all205

objects detected in the current frame t by a weighted average over their k-th nearest206

neighbours taken from the aforementioned pool:207

v i (t ) = 1

min(k, N̂ )

min(k,N̂ )∑
j=1

αv̂ i , j (t −1)+ (1−α)v̂ i , j (t −1). (8)

The weightα ∈ [0,1] introduces a finite temporal relaxation of the predicted velocities.208

For α→ 1, the motion model is only based on the immediate previous frame, while209

for α→ 0, history of the velocities predicted in earlier frames are used to compute the210

motion model. Averaging over the k-th nearest neighbours has two advantages. First,211

it allows filtering the smallest spatial variations of velocities, that can be influenced212

by noise or erroneous tracklets associations. Second, it naturally adapts to the local213

density of objects, in contrast to fixed-size kernel smoothing methods: the larger the214

density, the smaller the filtering scale, and the finer the prediction. Once the motion215

model is computed, new object position is predicted assuming zero acceleration:216

x i (t ) = x i (t −1)+v i (t )∆t , (9)

and the association process is performed by searching among the nearest neighbours217

between x(t) and x(t +1) (Fig. 1). These new tracklets can either be saved and the218

following frame proceed, or used iteratively to refine the motion model and predict219

once again object displacement. The predictor step is thus implemented as an220

iterative sequence, using the temporary recovered tracklets as additional velocity221

vectors considered in the motion model. Convergence is generally obtained after222

a few iterations, the number of associated tracklet reaching a maximum. Once the223

desired number of iteration is reached, computation continues with the following224

frame.225

3.1.3 Error monitoring and outliers filtering226

The motion model used in TracTrac enables a continuous monitoring of the differ-227

ence between predicted and actual displacements. This information is of particular228

value since it helps to eliminate outliers from the obtained associations based on229

statistical criterion. For each unequivocal associations, the log-error norm between230

the predicted and the true velocity vector is231

εi (t ) = log
(∥∥∥v̂ i (t −1)− v̂ i (t )

∥∥∥)
. (10)
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which may be considered a real valued spatio-temporal random variable of approxi-232

mately Gaussian shape (while the error norm would be log-normal since positive).233

Negative ε corresponds to high motion model accuracy. The probability distribution234

of ε depends on the spatial and temporal variability of the background flow to be235

measured as well as the quality of the zero acceleration approximation for the motion236

model. The local mean model error εi around the object i is estimated by sampling237

log-errors over its k-nearest objects, in the same time as determining model velocities238

(8):239

εi (t ) = 1

min(k, N̂ )

min(k,N̂ )∑
j=1

αε̂i , j (t )+ (1−α)ε̂i , j (t ). (11)

The standard deviation of the error around the mean is estimated on the whole240

computation window by241

σε(t ) =α
√√√√ 1

N (t )

N (t )∑
i=1

(
ε̂i (t )− 1

N (t )

N (t )∑
j=1

ε̂ j (t )

)2

+ (1−α)σε(t −1), (12)

Outliers are then detected from tracklets which have εi (t)− εi (t) > nσσε(t), with242

nσ ∈ R a parameter chosen by the user. For instance, nσ = 1.96 ensures that all243

associated tracklets remain in the 95% confidence interval provided by the model. In244

contrast, for nσ =−1.96 only remains the 5% of tracklets that best fit the prediction245

model.246

3.1.4 From tracklets to trajectories247

To each new associated tracklet is given a trajectory ID number. If in the following248

frame, a tracklet is found with an object already having an ID, the latter is applied249

to the tracklet. This information handover allows reconstructing the whole object250

trajectories from elementary tracklets sharing the same ID. At each frame, the infor-251

mation about tracklets are saved by TracTrac in an array with columns: At the end of

Column Number 1 2 3 4 5 6 7 8 9 10 11

Variable t ID x̂i ŷi ûi v̂i âx,i ây,i ûi v̂ i ε̂i

Table 1: Correspondence between columns and variables in the TracTrac output
ASCII file “*_track.txt”

252

the computation, this array can be saved either in ASCII or in binary format (mat-file253

in Matlab, and hdf5 in python). This file is automatically named according to the254

video file name with the suffix “*_track.txt”.255

3.2 User interface256

The Matlab version of TracTrac includes a graphical interface (GUI) enabling rapid257

tracking results for non-expert users. In practice, it can be used to test and optimize258
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the free parameters meanwhile observing in real time their effect on the quality of259

the tracking process. In contrast to the Matlab GUI, the Python version of TracTrac260

can be launched either as a Python script or as a Python function. This command261

line control allows treating iteratively several videos or integrating TracTrac directly262

into Python scripts (a list of video files can also be chosen in the Matlab GUI). Full263

compatibility is maintained between the two implementations owing to a common264

input parameter file whose structure is given as the supplementary material. Details265

about the Matlab GUI and the Python commands are also provided in this document.266

4 Results and discussion267

4.1 Synthetic flow268

In order to test TracTrac performances, synthetic images were created, enabling a269

comparison of the algorithm predictions with known object trajectories. The flow270

was chosen in order to test the algorithm robustness for both strongly unsteady and271

non-uniform continuous flow field.272

4.1.1 Flow description273

The synthetic trajectories are initiated by N points randomly distributed in the image274

(x0, y0). At each frame, a synthetic image is build by applying a Gaussian kernel275

of fixed standard deviation on each object centroid. Uncorrelated noise is then276

added to the image pixels with an intensity depending on the signal-to-noise ratio277

(SNR) chosen (Fig. 2). An image is created at each frame, while advecting the objects278

according to the following two consecutive operations: a first one operating in radial279

coordinates (r =
√

x2 + y2,θ = tan−1(y/x)):280

rn+1 = rn , (13)

θn+1 = θn +4δcos(nπ/50)exp(−0.5(rn/80)2)−10δcos(nπ/25)exp(−0.5(rn/50)2),(14)

followed by a second step in cartesian coordinates (x = r cosθ, y = r sinθ):281

xn+1 = xn +2δsin(πn/100)∗ yn +ξn , (15)

yn+1 = yn +δxn +ξn , (16)

where ξn is a white noise term whose intensity will be varied. In practice, the time282

step δ= 0.01 is chosen to get displacement lengths in the range 0-20 pixels per frames.283

Cartesian and polar coordinate systems are centred on the image centre. Periodic284

boundary conditions are applied when a point leaves the image field. Snapshot of the285

flow velocity vectors were plotted on Fig. 3. Before the next frame, a finite number of286

points (0-50%) are associated new coordinates in order to mimic in and out of plane287

motion.288
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SNR = 0.5 SNR = 1 SNR = 2 SNR = 4

N/S = 0.08 N/S = 0.17 N/S = 0.25 N/S = 0.35

Figure 2: Effect of Signal to Noise Ratio (top) and particle number density on the
generated images.

t = 0 t = 30 t = 60 t = 90

Figure 3: Space dependence of the synthetic vortex flow considered (Eq. 8) at various
time instants.
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p
N /S, with v the mean

displacement and N the number of objects in the area S), object appearance and
disappearance (“Intermittency”) and velocities random fluctuations (“Brownian”).
True recoveries rates are defined according to a maximum position error of d and
a maximum displacement error of v/2. False recoveries are found for the opposite
criterion. Default parameters are: SNR=4, N=1000, Intermittency=0 and Brownian=0.

4.1.2 Accuracy289

Accuracy was measured owing to 4 indexes: mean percentage of true and false290

object detection as well as mean absolute error in object position and displacement291

estimation. These indexes were computed for various image qualities and flow292

properties. To better isolate TracTrac performances, no pre-processing step was293

performed on the synthetic images (e.g. background subtraction, median filter). First,294

TracTrac accuracy is compared to the Signal to Noise Ratio (SNR, defined as blob295

peak magnitude over magnitude of an underlying uniform noise). Results presented296

in Fig. 4 show that increasing SNR significantly increases tracking quality: for SNR≥ 4297

(a typical value in PIV experiments), less than 5% of false detections are made, while298

mean position and displacement error are below 0.2 pixels, a value comparable with299

recent PTV methods [7]. Another quality factor is given by the ratio of maximum300

displacement length to the mean distance between neighbour objects expressed as301

p−1 = vmax/
p

N /S (the inverse of the ratio defined by [13]). PTV algorithm are usually302

limited to r ¿ 1 to avoid object association ambiguities between frames [13, 17].303

Thanks to the motion predictor, the association rule, and the outlier filter, false304

detections remain below 6% for ratios p−1 ≈ 4.5, while position and displacement305

error are below 0.5 pixels. To the author knowledge, such large values of p−1 have not306

yet been reported in the literature.307

Appearance and disappearance of objects through time, referred to as “intermit-308

tency” in Fig. 4, often occur due to out of transverse velocities in 3D flows observed on309

2D planes. While this phenomenon complicates the association process, the number310

of false tracklets remains limited to 12% at high intermittency levels (50% of the object311
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Figure 5: Computation time per video frame depending on the number of objects
tracked. Computations are made with the Python implementation of TracTrac on a
HP ELiteBook 840 laptop with processor Intel i7.

disappearing at each frame), suggesting a good adaptation of the algorithm to out of312

plane motions. While intermittency does not affect position error, it increases slightly313

the mean displacement error (owing to false associations, with mean displacement314

errors smaller than 0.5 pixel for a level of intermittency of 50%).315

The last factor considered is the stochasticity of the underlying flow field, which316

cannot be predicted by deterministic motion predictors [5]. To investigate this effect,317

white noise was summed to object velocities in proportion of the deterministic flow318

velocity magnitude. Fig. 4 shows that both false detection and displacement error319

remain limited for fluctuations levels comparable with the average magnitudes (9%320

and 0.3 pixel respectively). This good performance is ensured by the continuous and321

local monitoring of prediction errors, that allows the computation of a local threshold322

to filter outliers, threshold which is directly influenced by the local motion statistics.323

4.1.3 Efficiency324

As shown by Fig. 5, TracTrac algorithm provides a computational time that grows only325

linearly with the number of object to track. This is mainly due to the implementation326

of k-d tree structures for nearest neighbour search. This allows for 25000 objects to327

be tracked in less than 0.7 seconds per frame (Fig. 5).328

5 Application to geosciences329

In this section, TracTrac specificities are highlighted through 3 examples of particular330

interest to geoscientists. We provide a comparison of TracTrac results with another331

open-source PIV software, PIVlab [24]. The latter was parametrized to compute332

velocity fields on 16×16 pixel interrogation windows.333
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5.1 Turbulent flow334

The first example concerns 1000 frames of a turbulent duct flow past a series of hills,335

similar to aquatic bedforms or aeolian dunes (Fig.6a). The data was presented in336

the 4-th PIV challenge as an example of time dependent flow with strong velocity337

gradients and out of plane motions (intermittency) [9]. It is available online at338

www.pivchallenge.org/pivchallenge4.html. The flow is visualized through a 2-D339

laser sheet which illuminates seeded particles in a plane. TracTrac processing on340

such data can be appreciated in Fig. 6b and in the supplementary video online.341

This test case provides an example of the algorithm capabilities to compute time-342

average Eulerian flow quantities within high resolution (average flow magnitude343

and turbulent kinetic energy are presented in Fig.6c). In the dark regions where no344

object could be detected, the average values are kept empty (e.g., blank pixels in the345

right size of Fig.6c). The accuracy of the algorithm is specifically demonstrated by346

Fig. 6d where the streamwise time-average velocity profile close to the above wall347

is plotted. The profile closely follows the expected logarithmic law of the wall over348

several measurement points, and allows deducing the value of the local wall shear349

velocity (u∗ ≈ 0.035 m/s). While comparable to the TracTrac values in the bulk flow,350

the PIVlab-computed time-average velocity profile do not allow a clear identification351

of the inertial layer where the log-law applies. This is caused by the filtering effect352

imposed by the interrogation windows which bias velocity gradients close to the wall353

boundary. Wall boundary layer typically present a linear increase of the shear stress354

while approaching the wall, which permits deducing the shear velocity independently355

of the log-law of the wall. In the inertial layer, the total shear stress τ = u2∗ρ (ρ356

is the water density) is approximated by the turbulent stresses −ρ 〈
u′v ′〉 (viscous357

stresses νρ∂y 〈u〉 are negligible outside of the viscous layer, ν= 10−6m2s−1 being the358

kinematic viscosity of water). Extrapolation of the Reynolds stresses at the wall thus359

provides an estimation of the shear velocity u∗ =√
τ/ρ. Fig. 6d shows that TracTrac360

predicts a similar wall shear velocity by this method, confirming its ability to measure361

precisely all the contributing scales of turbulence. In contrast, the Reynolds stresses362

predicted by PIVlab, while qualitatively similar, are much smaller than TracTrac363

values. This is once again an effect of the low-pass filter imposed by interrogation364

windows. This analysis is confirmed by a comparison of the root mean squared (RMS)365

streamwise velocity profile at x = 100px with the average of several PIV software366

presented in [9]. Fig. 7 shows that TracTrac RMS are significantly higher than typically367

measured by traditional PIV software, including PIVlab.368

Finally, it is worth pointing that the sub-pixel resolution of TracTrac algorithm also369

enables the observation of the viscous sub-layer in the mean velocity profile (Fig. 6d,370

at yu∗/ν< 30). The latter has a theoretical size of ν/u∗ ≈ 28µm, which corresponds371

to 0.15 pixel in the images and can thus, in theory, be visualized by TracTrac.372

Computational time for the hill test case were reported in Fig. 5. In this figure,373

the level of the object detection threshold was sequentially decreased to artificially374

increase the number of detected object and confirm the quasi linear dependence of375

the computational time on object number. PIVlab takes about 2 seconds to compute376

15741 velocity vectors at each time step, where TracTrac takes less than 0.5 seconds377

to provide the double of vectors. A factor 8 is thus observed between computation378
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a) 4th PIV Challenge: test case B

b) TracTrac processing (instantaneous object veloci�es at frame 28)

c) Time Average Eulerian fields d) Near-wall boundary layer

y

Figure 6: TracTrac results on the 4-th PIV Challenge data of time resolved turbulent
flow past a hill [9]. (a) Geometry of the flow. (b) Instantaneous object velocities
obtained by TracTrac. c) Time average Eulerian field: velocity magnitude (up) and
turbulent kinetic energy (down). (d) Turbulent profiles close to the wall above the
hill: mean streamwise velocity (up) and Reynolds stresses (down)

time of PIVlab and TracTrac.379

5.2 Granular avalanche380

The second example focuses on the avalanche of granular material (glass beads of381

1mm diameter) along an inclined plate confined between two lateral walls (Fig. 8a).382

The experiment was made at Institut de Physique de Rennes, France, as part of a larger383

project aiming at modelling the rheology of dense inertial flow of granular media [8].384

The purpose of this example is to highlight the role of the motion predictor step and385

the associated monitoring of prediction errors to resolve locally heterogenous flow386

regions. In this experiment, the image density of objects is about 0.13 object/pixels,387

with displacements up to 6 pixels/frames, giving locally a ratio p−1 = v̄/
p

N /S ≈ 0.8.388

Instantaneous top and side views of the granular flow are shown on Fig. 8b with389

a color scale proportional to the monitored error between motion prediction and390

corrected displacement, showing local variations in the error values. As beads are391

generally bouncing against the walls, these regions present higher deviations from392

the mean motion than the bulk of the flow. This is confirmed by transverse and393

vertical profiles (Fig. 8c) that show higher average prediction errors on the side walls394

and at the bottom of the plate (at z = 160px) than in the bulk of the flow. This increase395

is also observed in the mean kinetic agitation (defined here as
p

u′2 + v ′2).396

By continuously monitoring the local mean prediction error, the algorithm gen-397

uinely adapts to the Brownian nature of object motion close to the side walls. As398

a consequence, the threshold for outlier filtering (see Sec. 3.1.3), ε̄+1.5σε, locally399

adapts to the flow characteristics and allows for an correct estimation of object mo-400

tion statistics in all regions.401

In contrast, PIVlab underestimates the kinetic agitation of the flow close to the402
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Figure 7: Root mean square streamwise velocity profiles estimated at the transverse
section x = 100px of the hill test case. The average of five PIV algorithms (Dantec,
DLR, INSEAN, IOT and IPP) are represented with circles (adapted from the Fig. 21 of
[9]), together with the PIVlab estimates (dashed line) and TracTrac values (blue line).

side walls (Fig. 8c). An advantage of PTV over PIV also appears in the low density403

gaseous region that develops above the dense granular flow in the bottom view404

(for x = 0 to 75px). In this region, the kinetic agitation estimated by PIV increases405

artificially because interrogation windows are often empty, leading to erroneous406

velocity estimates. This effect is not occurring in TracTrac, since velocity is computed407

in a Lagrangian basis only where objects are detected.408

5.3 Bird flock409

In the last example, the fly of a bird flock recorded by Attanasi et al. [2] is used to410

highlight the versatility of the algorithm and its robustness for many types of motions411

(Fig. 9). In this example, bird motion is three-dimensional so that, in the image, bird412

trajectories can occlude each other. However, TracTrac rules out fake connections413

when ambiguity arises in the nearest neighbour association, producing sure track-414

lets. These tracklets can then be recombined with cost optimization algorithm to415

reconstruct each individual entire trajectory.416

Another aspect well highlighted by this example is the equal ability of a single417

size, isotropic convolution kernel (here the differential of Gaussians) to predict the418

velocity of objects that are not always of isotropic neither Gaussian shape (the birds419

wings for instance). It is particularly true in videos where moving features are not420

particles as in the two first examples, but consist of a deforming texture (the water421

surface of a flowing river for instance). In these situations, an isotropic convolution422

will still be able to isolate local features of interest in the image; features which can be423

tracked to provide an estimation of local velocities. In general, it is enough for images424

to have strong, dense and aleatory intensity gradients to provide good features to425

track, and reliable tracking results.426
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Figure 8: TracTrac genuine error monitoring revealed by a granular avalanche experi-
ment.

Figure 9: Birds trajectories obtained by TracTrac superimposed on the video of bird
flock by Attanasi et al. [2]
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6 Conclusion427

In this article, I present an open source PTV algorithm called TracTrac, dedicated to428

motion recognition in geophysics. The main advantages of this algorithm are429

1. A fast implementation through k-d tree nearest neighbour search, enabling the430

use of PTV for applications usually restricted to PIV.431

2. An iterative prediction-correction procedure capable of following large object432

displacements in fluctuating and heterogeneous flow fields (p−1 = 4.5).433

3. A robust 3-frame association process that limits velocity bias.434

In particular, it has been shown that the algorithm provides much higher details435

of turbulent statistics than other open-source PIV software [24]. This result is crucial,436

since the measure of microscopic velocity fluctuations and sharp local gradients are437

often essential to correctly model geophysical processes (in turbulence and granular438

flows for instance).439

All TracTrac source files are freely available (see Computer Code Availability sec-440

tion). Among the possible future developments, 3-dimensional tracking via stereo-441

scopic videography may be easily implemented in the current algorithm. Other442

improvements such as the recognition of size and other specific features of objects443

can provide stronger constraints to the association process without increasing signifi-444

cantly the computation time.445

Computer Code Availability446

The TracTrac Matlab and Python source code are freely available at https://perso.univ-447

rennes1.fr/joris.heyman/tractrac-source.zip. Compiled versions are also available on448

SourceForge at https://sourceforge.net/projects/tractrac.449
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