D. J. Allen and K. E. Pickering, Evaluation of lightning flash rate parameterizations for use in a global 660 chemical transport model, Journal of Geophysical Research: Atmospheres, vol.107, 2002.

E. M. Bednarz, A. C. Maycock, N. L. Abraham, P. Braesicke, O. Dessens et al., Future Arctic ozone recovery: the importance of chemistry and dynamics, Atmos. Chem. Phys, vol.16, pp.12159-12176, 2016.

P. Bousquet, D. A. Hauglustaine, P. Peylin, C. Carouge, and P. Ciais, Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys, vol.5, pp.2635-2656, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00327842

A. T. Archibald, J. G. Levine, N. L. Abraham, M. C. Cooke, P. M. Edwards et al., Physics, vol.16, pp.3099-3126, 2016.

F. Dentener, W. Peters, M. Krol, M. Van-weele, P. Bergamaschi et al., Development of a Meteorological Research Institute chemistry-climate model version 2 for the study of tropospheric and stratospheric chemistry, The atmospheric cycle of methane, vol.108, pp.58-70, 1029.

M. Etminan, G. Myhre, E. J. Highwood, and K. P. Shine, Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophysical Research Letters, vol.43, pp.614-612, 2016.

G. Etiope, Natural Gas Seepage: The Earth's Hydrocarbon Degassing, 2015.

R. R. Garcia and B. A. Boville, Downward control of the meanmeridional circulation and temperature distribution of the polar winter stratosphere, J. Atmos. Sci, vol.51, pp.2238-2245, 1994.

C. Granier, B. Bessagnet, T. Bond, A. D'angiola, H. Denier-van-der-gon et al., , p.725

A. Ohara, T. Raut, J. Riahi, K. Schultz, M. G. Smith et al., Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period, Climatic Change, vol.109, p.163, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637460

V. Grewe, D. Brunner, M. Dameris, J. L. Grenfell, R. Hein et al., Origin and 730 variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes, Atmospheric Environment, vol.35, pp.3421-3433, 2001.

J. Guth, B. Josse, V. Maré-cal, M. Joly, and P. Hamer, First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model, Geosci. Model Dev, vol.9, pp.137-160, 2016.

S. C. Hardiman, N. Butchart, F. M. O'connor, and S. T. Rumbold, The Met Office HadGEM3-ES chemistry-climate model: evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev, vol.10, pp.1209-1232, 2017.

D. A. Hauglustaine, F. Hourdin, L. Jourdain, M. Filiberti, S. Walters et al., Interactive chemistry in the Laboratoire de Mé té orologie Dynamique general circulation model, Physics, vol.13, pp.285-302, 2013.

F. Hourdin, A. , and A. , The Use of Finite-Volume Methods for Atmospheric Advection of Trace Species. Part I: Test of Various Formulations in a General Circulation Model, Monthly Weather Review, vol.127, pp.822-837, 1999.

F. Hourdin, T. Mauritsen, A. Gettelman, J. Golaz, V. Balaji et al., , p.750

, Bulletin of the American Meteorological Society, vol.98, 2017.

G. Janssens-maenhout, M. Crippa, D. Guizzardi, M. Muntean, E. Schaaf et al., The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980&ndash, Earth Syst. Sci. Data Discuss, vol.26, pp.1391-1413, 1970.

M. I. Hegglin and J. Lamarque, The IGAC/SPARC Chemistry-Climate Model Initiative Phase-1 760 (CCMI-1) model data output, NCAS British Atmospheric Data Centre, 2015.

E. C. Hunke and W. H. Lipscombe, CICE: the Los Alamos sea ice model documentation and software user's manual, 2008.

J. G. John, A. M. Fiore, V. Naik, L. W. Horowitz, and J. P. Dunne, Climate versus emission drivers of 765 methane lifetime against loss by tropospheric OH from 1860-2100, Atmospheric Chemistry and Physics, vol.12, pp.12021-12036, 2012.

P. Jöckel, A. Kerkweg, A. Pozzer, R. Sander, H. Tost et al., Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev, vol.3, pp.717-752, 2010.

B. Josse, P. Simon, and V. Peuch, Radon global simulations with the multiscale chemistry and transport model MOCAGE, vol.56, pp.339-356, 2004.

P. Jöckel, H. Tost, A. Pozzer, M. Kunze, O. Kirner et al., , p.775

T. Runde, R. Sander, D. Scharffe, and A. Zahn, Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model Dev, vol.9, pp.1153-1200, 2016.

A. I. Jonsson, J. De-grandpré, V. I. Fomichev, J. C. Mcconnell, and S. R. Beagley, Doubled CO2-induced coolingin the middle atmosphere: Photochemical analysis of the ozone radiative feedback

M. Krol and J. Lelieveld, Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)?, Journal of Geophysical Research: Atmospheres, vol.108, 2003.

J. F. Lamarque, T. C. Bond, V. Eyring, C. Granier, A. Heil et al., , p.785

A. Owen, B. Schultz, M. G. Shindell, D. Smith, S. J. Stehfest et al., Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys, vol.10, issue.93, pp.37-49, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00458149

J. Lelieveld and F. J. Dentener, What controls tropospheric ozone?, Journal of Geophysical Research: Atmospheres, vol.105, pp.3531-3551, 2000.

J. Lelieveld, F. J. Dentener, W. Peters, and M. C. Krol, On the role of hydroxyl radicals in the selfcleansing capacity of the troposphere, Atmos. Chem. Phys, vol.4, pp.2337-2344, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00295555

J. Lelieveld, T. M. Butler, J. N. Crowley, T. J. Dillon, H. Fischer et al., Atmospheric oxidation capacity sustained by a 800 tropical forest, Nature, vol.452, pp.737-740, 2008.

J. Lelieveld, S. Gromov, A. Pozzer, D. Taraborrelli, M. B. Levy et al., Global tropospheric hydroxyl distribution, budget and reactivity, Atmospheric Chemistry and Physics, Journal of Regional Science, vol.16, pp.407-415, 1972.

X. Lin, P. Ciais, P. Bousquet, M. Ramonet, Y. Yin et al., Simulating CH&lt

, over South and East Asia using the zoomed chemistry transport model LMDz-INCA, Atmospheric 810 Chemistry and Physics, vol.18, pp.9475-9497, 2018.

R. Locatelli, P. Bousquet, F. Hourdin, M. Saunois, A. Cozic et al., Atmospheric transport and chemistry of trace gases in LMDz5B: evaluation and implications for 815 inverse modelling, Geosci. Model Dev, vol.8, pp.129-150, 2015.

J. A. Logan, M. J. Prather, S. C. Wofsy, and M. B. Mcelroy, Tropospheric chemistry: A global perspective, Manuscript under review for journal Atmos. Chem. Phys. Discussion, vol.86, 1981.

X. Lu, J. Hong, L. Zhang, O. R. Cooper, M. G. Schultz et al., Severe Surface Ozone Pollution in China: A Global Perspective, Environmental Science & 820 Technology Letters, vol.5, issue.27, pp.1288-1619, 2008.

D. Marsh, M. J. Mills, D. E. Kinnison, R. R. Garcia, J. Lamarque et al., Climate change from 1850-2005 simulated in CESM1 (WACCM), vol.26, pp.7372-7391, 2013.

T. Masui, K. Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa et al., An emission pathway for stabilization at 6 Wm ? 2 radiative forcing, Climatic change, vol.109, p.59, 2011.

J. Mcnorton, M. P. Chipperfield, M. Gloor, C. Wilson, W. Feng et al., , p.830

P. B. Doherty, S. Prinn, R. G. Weiss, R. F. Young, D. Dlugokencky et al., Role of OH variability in the stalling of the global atmospheric CH<sub>4</sub> growth rate from, Atmospheric Chemistry and Physics, vol.16, pp.7943-7956, 1999.

K. Miyazaki, H. J. Eskes, and K. Sudo, Global NOx emission estimates derived from an assimilation of 835 OMI tropospheric NO2 columns, Atmos. Chem. Phys, vol.12, pp.2263-2288, 2012.

S. A. Montzka, M. Krol, E. Dlugokencky, B. Hall, P. Jöckel et al., Small Interannual Variability of Global Atmospheric Hydroxyl, Science, vol.331, p.5, 2011.

, Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna, NASA Technical Report Series on Global Modeling and Data Assimilation, vol.117, 2012.

A. Molod, L. Takacs, M. Suarez, and J. Bacmeister, Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev, vol.8, pp.1339-1356, 2015.

O. Morgenstern, P. Braesicke, F. M. O&apos;connor, A. C. Bushell, C. E. Johnson et al., Evaluation of the new UKCA climate-composition model -Part 1: The stratosphere, Geosci. Model Dev, vol.2, pp.43-57, 2009.

O. Morgenstern, P. Braesicke, F. M. O&apos;connor, A. C. Bushell, C. E. Johnson et al., , p.850

J. A. , Evaluation of the new UKCA climate-composition model -Part 1: The stratosphere, Geosci. Model Dev, vol.2, pp.43-57, 2009.

O. Morgenstern, M. I. Hegglin, E. Rozanov, F. M. Connor, N. L. Abraham et al., Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI), Geoscientific Model Development, vol.10, pp.639-671, 2017.

L. T. Murray, L. J. Mickley, J. O. Kaplan, E. D. Sofen, M. Pfeiffer et al., Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, Atmos. Chem. Phys, vol.14, p.865, 2014.

V. Faluvegi, G. Folberth, G. A. Josse, B. Lee, Y. H. Mackenzie et al., Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), vol.13, pp.5277-5298, 2013.

J. L. Neu, M. J. Prather, and J. E. Penner, Global atmospheric chemistry: Integrating over fractional cloud cover, Journal of Geophysical Research: Atmospheres, vol.112, p.11306, 2007.

J. E. Nielsen, S. Pawson, A. Molod, B. Auer, A. M. Da-silva et al., Chemical mechanisms and their applications in the Goddard Earth, vol.875

, Journal of advances in modeling earth systems, vol.9, pp.3019-3044, 2017.

E. G. Nisbet, M. R. Manning, E. J. Dlugokencky, R. E. Fisher, D. Lowry et al.,

W. C. , Very strong atmospheric methane growth in the four years 2014-2017: Implications for the Paris Agreement, Global Biogeochemical Cycles, vol.33, 2019.

F. M. O&apos;connor, C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke et al., Evaluation of the new UKCA climatecomposition model -Part, vol.2, pp.41-91, 2014.

L. D. Oman, J. R. Ziemke, A. R. Douglass, D. W. Waugh, C. Lang et al., The response of tropical tropospheric ozone to ENSO, Geophys. Res. Lett, vol.38, p.13706, 2011.

L. D. Oman, A. R. Douglass, J. R. Ziemke, J. M. Rodriguez, D. W. Waugh et al., The 890 ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation, J. Geophys. Res, vol.118, pp.965-976, 2013.

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

P. K. Patra, S. Houweling, M. Krol, P. Bousquet, D. Belikov et al., , p.895

C. Wilson, TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmospheric Chemistry and Physics, vol.11, pp.12813-12837, 2011.

P. K. Patra, M. C. Krol, S. A. Montzka, T. Arnold, E. L. Atlas et al., , p.900

B. R. Miyazaki, K. Moore, F. L. Mühle, J. O&apos;doherty, S. Prinn et al., Observational evidence for interhemispheric hydroxyl-radical parity, Nature, p.513, 2014.

I. Pison, P. Bousquet, F. Chevallier, S. Szopa, and D. Hauglustaine, Multi-species inversion of CH4, CO and H2 emissions from surface measurements, Atmos. Chem. Phys, vol.9, pp.5281-5297, 2009.

B. Poulter, P. Bousquet, J. G. Canadell, P. Ciais, A. Peregon et al., Global wetland contribution to 2000-2012 atmospheric methane growth rate dynamics, vol.12, p.94013, 2017.

M. J. Prather, C. D. Holmes, and J. Hsu, Reactive greenhouse gas scenarios: Systematic exploration of 910 uncertainties and the role of atmospheric chemistry, Geophysical Research Letters, vol.39, p.9803, 2012.

C. Price and D. Rind, Modeling Global Lightning Distributions in a General Circulation Model, Monthly Weather Review, vol.122, 1930.

R. G. Prinn, J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser et al., Evidence for variability of atmospheric hydroxyl radicals over the past quarter century, Geophysical Research Letters, vol.32, p.7809, 2005.

J. T. Randerson, G. R. Van-der-werf, L. Giglio, G. J. Collatz, and P. S. Kasibhatla, Global Fire 920 Emissions Database, 2018.

L. E. Revell, F. Tummon, A. Stenke, T. Sukhodolov, A. Coulon et al., Drivers of the tropospheric ozone budget throughout the 21st century under the mediumhigh climate scenario RCP 6.0, Atmos. Chem. Phys, vol.15, p.2015

L. E. Revell, A. Stenke, F. Tummon, A. Feinberg, E. Rozanov et al., Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

, the SOCOLv3 chemistry-climate model, vol.18, pp.16155-16172, 2018.

K. Riahi, S. Rao, V. Krey, C. Cho, V. Chirkov et al., RCP 8.5-A scenario of comparatively high greenhouse gas emissions, Climatic Change, vol.109, pp.33-57, 2011.

A. J. Ridgwell, S. J. Marshall, K. Gregson, M. Rigby, R. G. Prinn et al., Consumption of atmospheric methane by soils: A process-based model, Global Biogeochemical Cycles, vol.13, pp.59-70, 1999.

M. Rigby, S. A. Montzka, R. G. Prinn, J. W. White, D. Young et al., Role of atmospheric oxidation in recent methane growth, Proc Natl Acad Sci U S A, vol.114, pp.5373-5377, 2017.

R. Sadourny and K. Laval, January and July performances of the LMD general circulation model, New Perspectives in Climate Modeling, New Perspectives in Climate Modeling, pp.173-197, 1984.

R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf et al., The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP), Geosci. Model Dev, vol.950, pp.2653-2662, 2014.

S. P. Sander, J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl et al., Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 17, 2011.

M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais et al., , p.960

R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. Mcdonald et al., , p.965

D. Wunch, D. Xu, X. Yoshida, Y. Zhang, B. Zhang et al., The global methane budget, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2000.

, Earth Syst. Sci. Data, vol.8, pp.697-751, 2016.

J. F. Scinocca, N. A. Mcfarlane, M. Lazare, J. Li, and D. Plummer, Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere, Atmos. Chem. Phys, vol.8, pp.7055-7074, 2008.

K. Sindelarova, C. Granier, I. Bouarar, A. Guenther, S. Tilmes et al., Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmospheric Chemistry and Physics, vol.14, pp.9317-9341, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00985526

S. Solomon, D. E. Kinnison, J. Bandoro, and R. Garcia, Simulations of polar ozone depletion: an update, p.975

, J. Geophys. Res, vol.120, pp.7958-7974, 2015.

C. M. Spivakovsky, J. A. Logan, S. A. Montzka, Y. J. Balkanski, M. Foreman-fowler et al., Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, Journal of Geophysical Research: Atmospheres, vol.105, pp.8931-8980, 2000.

A. Stenke, M. Schraner, E. Rozanov, T. Egorova, B. Luo et al., The SOCOL version 3.0 chemistry-climate model: description, evaluation, and implications from an advanced transport algorithm, Geosci. Model Dev, vol.6, pp.1407-1427, 2013.

J. Staehelin, F. Tummon, L. Revell, A. Stenke, and T. Peter, Tropospheric Ozone at Northern MidLatitudes: Modeled and Measured Long-Term Changes, Atmosphere, vol.8, p.163, 2017.

A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin et al., , p.990

K. E. Zhu, T. Strode, S. A. Duncan, B. N. Yegorova, E. A. Kouatchou et al., Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models, Atmos. Chem. Phys, vol.15, pp.11789-11805, 2015.

S. Szopa, Y. Balkanski, M. Schulz, S. Bekki, D. Cugnet et al., Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100, Climate Dynamics, vol.40, pp.2223-2250, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00723730

P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi et al.,

M. Richards, N. A. Pyle, and J. A. , Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3), Geosci. Model Dev, vol.6, pp.161-177, 2013.

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

E. Terrenoire, D. A. Hauglustaine, R. Valorso, A. Cozic-;-teyssè-dre, H. Michou et al., Impact of present and future aircraft NOx and aerosol emissions on atmospheric composition and radiative forcing of climate, A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat, 2019.

, Chem. Phys, vol.7, pp.5815-5860, 2007.

S. Tilmes, J. Lamarque, L. K. Emmons, D. E. Kinnison, P. Ma et al., Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2), Geosci. Model Dev, vol.8, pp.1395-1426, 2015.

S. Tilmes, J. Lamarque, L. K. Emmons, D. E. Kinnison, D. Marsh et al., Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI), vol.9, pp.1853-1890, 2016.

A. J. Turner, C. Frankenberg, P. O. Wennberg, J. , D. J. Van-der-werf et al., Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl, Interannual variability in global biomass burning emissions from, vol.114, pp.1025-3423, 1997.

G. C. Vinken, K. F. Boersma, J. D. Maasakkers, M. Adon, and R. V. Martin, Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations, Atmos. Chem. Phys, vol.14, pp.10363-10381, 2014.

A. Voulgarakis, V. Naik, J. F. Lamarque, D. T. Shindell, P. J. Young et al.,

D. Bergmann, D. Cameron-smith, P. Cionni, I. Collins, W. J. Dalsøren et al., Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmospheric Chemistry and Physics, vol.13, pp.2563-2587, 2013.

Y. Wang, J. , and D. J. , Anthropogenic forcing on tropospheric ozone and OH since preindustrial times, Journal of Geophysical Research: Atmospheres, vol.103, pp.31123-31135, 1998.

J. J. Yienger and H. Levy, Empirical model of global soil-biogenic NO? emissions, Journal of Geophysical Research: Atmospheres, vol.100, pp.11447-11464, 1995.

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

S. Yukimoto, H. Yoshimura, M. Hosaka, T. Sakami, H. Tsujino et al., Meteorological Research Institute Earth System Model Version 1 (MRIESM1)

D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards et al., , p.1045

M. E. Copsey, D. Earnshaw, P. D. Hardiman, S. C. Harris, C. M. Levine et al., Estimates on the 1050 production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation, The Met Office Unified Model, vol.7, pp.679-682, 1978.

P. H. Zimmermann, C. A. Brenninkmeijer, A. Pozzer, P. Jöckel, A. Zahn et al., Model simulations of atmospheric methane and their evaluation using AGAGE/NOAA surface-and IAGOS-CARIBIC aircraft observations, Atmospheric Chemistry and Physics 1055 Discussions, vol.1060, p.1070, 1997.

, apply annual decrease rate of 1% Run_fix_OH, 2000.

O. H. Constant, , 2000.

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

, Tp-v refers to the volume-weighted tropospheric mean

, Tp-m refers to the mass-weighted tropospheric mean

, Atmos. Chem. Phys. Discuss

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

. Cesm1-waccm, , vol.1701, pp.1757-1794, 1688.

. Mri-esm1r1, , p.90, 1691.

. N/s,

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

, Atmos. Chem. Phys. Discuss

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

, Atmos. Chem. Phys. Discuss

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

, tropospheric CH4 mixing ratios (blue) and for changes in tropospheric

, Atmos. Chem. Phys. Discuss

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.

, Atmos. Chem. Phys. Discuss

, Manuscript under review for journal Atmos. Chem. Phys. Discussion, 2019.