H. E. Petschek, Aerodynamic dissipation, Rev. Mod. Phys, vol.30, pp.966-974, 1958.
DOI : 10.1103/revmodphys.30.966

R. Z. Sagdeev, Non-linear motions of a rarefied plasma in a magnetic field, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol.4, p.p, 1961.

P. J. Kellogg, Flow of plasma around the Earth, J. Geophys. Res, vol.67, pp.3805-3811, 1962.
DOI : 10.1029/jz067i010p03805

V. G. Eselevich, Shock-wave structure in collisionless plasmas from results of laboratory experiments, Space Sci. Rev, vol.32, pp.65-81, 1982.
DOI : 10.1007/bf00225177

M. Neugebauer and C. W. Snyder, Solar plasma experiment, Science, vol.138, pp.1095-1097, 1962.
DOI : 10.1126/science.138.3545.1095-a

W. I. Axford, The interaction between the solar wind and the Earth's magnetosphere, J. Geophys. Res, vol.67, pp.3791-3796, 1962.

C. Niemann, W. Gekelman, C. G. Constantin, E. T. Everson, D. B. Schaeffer et al., Observation of collisionless shocks in a large current-free laboratory plasma, Geophys. Res. Lett, vol.41, pp.7413-7418, 2014.

D. Ryu, H. Kang, E. Hallman, and T. W. Jones, Cosmological shock waves and their role in the large-scale structure of the universe, Astrophys. J, vol.593, pp.599-610, 2003.

S. E. Hong, D. Ryu, H. Kang, and R. Cen, Shock waves and cosmic ray acceleration in the outskirts of galaxy clusters, Astrophys. J, vol.785, p.133, 2014.

M. A. Malkov, P. H. Diamond, and R. Z. Sagdeev, Mechanism for spectral break in cosmic ray proton spectrum of supernova remnant W44, Nat. Commun, vol.2, p.194, 2011.

C. F. Kennel, J. P. Edmiston, and T. Hada, A quarter century of collisionless shock research, Collisionless Shocks in the Heliosphere -a Tutorial Review, vol.34, pp.1-36, 1985.

D. H. Fairfield, Whistler waves observed upstream from collisionless shocks, J. Geophys. Res, vol.79, pp.1368-1378, 1974.
DOI : 10.1029/ja079i010p01368

URL : http://hdl.handle.net/2060/19730015687

B. T. Tsurutani, E. J. Smith, and D. E. Jones, Waves observed upstream of interplanetary shocks, J. Geophys. Res. Space Physics, vol.88, pp.5645-5656, 1983.
DOI : 10.1029/ja088ia07p05645

L. B. Wilson, Low Frequency Waves at and Upstream of Collisionless Shocks, pp.269-291, 2016.

D. L. Morse, W. W. Destler, and P. L. Auer, Nonstationary behavior of collisionless shocks, Phys. Rev. Lett, vol.28, pp.13-16, 1972.
DOI : 10.1103/physrevlett.28.13

V. V. , Nonlinear motions of a plasma across a magnetic field, Sov. Phys. JETP, vol.62, pp.282-293, 1985.

V. V. Krasnoselskikh, B. Lembège, P. Savoini, and V. V. Lobzin, Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations, Phys. Plasmas, vol.9, pp.1192-1209, 2002.
DOI : 10.1063/1.1457465

M. Scholer, I. Shinohara, and S. Matsukiyo, Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing, J. Geophys. Res. Space Physics, vol.108, issue.A1, 2003.

L. B. Wilson, I. , D. G. Sibeck, A. W. Breneman, O. L. Contel et al., Quantified energy dissipation rates in the terrestrial bow shock: 2. Waves and dissipation, J. Geophys. Res. Space Physics, vol.119, pp.6475-6495, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01552019

A. Johlander, S. J. Schwartz, A. Vaivads, Y. V. Khotyaintsev, I. Gingell et al., Rippled quasiperpendicular shock observed by the Magnetospheric Multiscale spacecraft, Phys. Rev. Lett, vol.117, p.165101, 2016.

R. Z. Sagdeev, Cooperative phenomena and shock waves in collisionless plasmas, Rev. Plasma Phys, vol.4, pp.23-90, 1966.

V. V. Lobzin, V. V. Krasnoselskikh, K. Musatenko, T. Dudok-de, and W. , On nonstationarity and rippling of the quasiperpendicular zone of the Earth bow shock: Cluster observations, Ann. Geophys, vol.26, pp.2899-2910, 2008.

A. H. Sulaiman, A. Masters, M. K. Dougherty, D. Burgess, M. Fujimoto et al., Quasiperpendicular high Mach number shocks, Phys. Rev. Lett, vol.115, p.125001, 2015.

L. B. Wilson, I. , A. Koval, A. Szabo, A. Breneman et al., Observations of electromagnetic whistler precursors at supercritical interplanetary shocks, Geophys. Res. Lett, vol.39, p.8109, 2012.

V. I. Karpman, Structure of the shock front propagating at an angle of the magnetic field in a low density plasma, Sov. Phys. Tech. Phys. Engl. Transl, vol.8, pp.715-719, 1964.

P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, vol.133, 1994.

S. N. Walker, H. C. St, M. A. Alleyne, M. Balikhin, T. S. André et al., Electric field scales at quasi-perpendicular shocks, Ann. Geophys, vol.22, pp.2291-2300, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00317475

M. Balikhin and M. Gedalin, Kinematic mechanism of electron heating in shocks: Theory vs observations, Geophys. Res. Lett, vol.21, pp.841-844, 1994.

D. Burgess and M. Scholer, Shock front instability associated with reflected ions at the perpendicular shock, Phys. Plasmas, vol.14, p.12108, 2007.

T. Hada, M. Oonishi, B. Lembège, and P. Savoini, Shock front nonstationarity of supercritical perpendicular shocks, J. Geophys. Res. Space Physics, vol.108, p.1233, 2003.

B. Lembège, P. Savoini, P. Hellinger, and P. M. Trávni?ek, Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms, J. Geophys. Res. Space Physics, vol.114, p.3217, 2009.

V. Krasnoselskikh, M. Balikhin, S. N. Walker, S. Schwartz, D. Sundkvist et al., The dynamic quasiperpendicular shock: Cluster discoveries, Space Sci. Rev, vol.178, pp.535-598, 2013.
URL : https://hal.archives-ouvertes.fr/insu-01256371

M. Scholer and D. Burgess, Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks, Phys. Plasmas, vol.14, p.72103, 2007.

M. Peredo, J. A. Slavin, E. Mazur, and S. A. Curtis, Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation, J. Geophys. Res, vol.100, pp.7907-7916, 1995.

L. C. Woods, On the structure of collisionless magneto-plasma shock waves at supercritical Alfvén-Mach numbers, J. Plasma Phys, vol.3, pp.435-447, 1969.

L. B. Wilson, I. , C. A. Cattell, P. J. Kellogg, K. Goetz et al., Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks, J. Geophys. Res. Space Physics, vol.114, p.10106, 2009.

L. B. Wilson, I. , A. Koval, A. Szabo, M. L. Stevens et al., Revisiting the structure of low-mach number, low-beta, quasi-perpendicular shocks, J. Geophys. Res. Space Physics, vol.122, pp.9115-9133, 2017.

, was supported in part by the Israel Science Foundation (grant no. 368/14). C.T.R. was supported through NASA's Magnetospheric Multiscale mission. A.P.D. was supported by the Swedish Civil Contingencies Agency (MSB) (grant no. 2016-2102). C.C. acknowledges the Cluster FGM (grant no. ST/P003427/1) from UKSA/STFC. N.G. acknowledges financial support from NASA grant 80NSSC17K0015 and NSF grant 1663770. Author contributions: M.A.B. performed the initial analysis and motivation for the study. A.P.D. analyzed the data and wrote the first draft of the manuscript together with, were funded by the Academy of Finland (grant nos. 288472 and 267073/2013). Y.V.K. was supported by the Swedish Research Council

I. , Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors. We acknowledge the Cluster FGM, DWP, EFW, and CIS instrument teams and also the Cluster Science Archive. The data used in this study are openly available through the Cluster Science Archive

A. P. Dimmock, C. T. Russell, R. Z. Sagdeev, V. Krasnoselskikh, S. N. Walker et al., Direct evidence of nonstationary collisionless shocks in space plasmas, Sci. Adv, vol.5, p.9926, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02080005

C. P. Iannis-dandouras, N. Escoubet, M. Ganushkina, Y. V. Gedalin, H. Khotyaintsev et al.,

A. P. Dimmock, C. T. Russell, R. Z. Sagdeev, V. Krasnoselskikh, S. N. Walker et al., , p.9926

, Sci Adv REFERENCES

, This article cites 33 articles, 1 of which you can access for free