D. Fowler, The global nitrogen cycle in the twenty-first century, Phil. Trans. R. Soc. B, vol.368, 2013.

J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, How a century of ammonia synthesis changed the world, Nature Geosci, vol.1, pp.636-639, 2008.

J. Galloway, Nitrogen cycles: past, present and future, Biogeochemistry, vol.70, pp.153-226, 2004.

J. Lamarque, Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways, Climatic Change, vol.109, 2011.

J. W. Erisman, Consequences of human modification of the global nitrogen cycle, Philos. Trans. R. Soc. London, Ser. B, vol.368, pp.20130116-20130116, 2013.

P. Warneck, Chemistry of the Natural Atmosphere, chap. 9. Nitrogen compounds in the troposphere, pp.511-586, 2000.

S. N. Behera, M. Sharma, V. P. Aneja, and R. Balasubramanian, Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. Res. Int, vol.20, pp.8092-8131, 2013.

L. Clarisse, C. Clerbaux, F. Dentener, D. Hurtmans, and P. Coheur, Global ammonia distribution derived from infrared satellite observations, Nature Geosci, vol.2, pp.479-483, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414672

J. X. Warner, Increased atmospheric ammonia over the world's major agricultural areas detected from space, Geophys. Res. Lett, vol.44, pp.2875-2884, 2017.

M. W. Shephard, TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia, Atmos. Chem. Phys, vol.11, pp.10743-10763, 2011.

M. W. Shephard and K. E. Cady-pereira, Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia, Atmos. Meas. Tech, vol.8, pp.1323-1336, 2015.

M. Van-damme, Global distributions, time series and error characterization of atmospheric ammonia (NH 3 ) from IASI satellite observations, Atmos. Chem. Phys, vol.14, pp.2905-2922, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00862486

M. Van-damme, Industrial and agricultural ammonia point sources exposed, Nature, vol.564, pp.99-103, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01948753

M. Van-damme, Version 2 of the IASI NH 3 neural network retrieval algorithm: near-real-time and reanalysed datasets, Atmos. Meas. Tech, vol.10, pp.4905-4914, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01665525

A. Vincens and J. Casanova, Modern background of Natron-Magadi basin (Tanzania-Kenya): physiography, climate, hydrology and vegetation, Sci. Géol. Bull, vol.40, pp.9-21, 1987.

E. Tebbs, J. Remedios, S. Avery, and D. Harper, Remote sensing the hydrological variability of Tanzania's Lake Natron, a vital Lesser Flamingo breeding site under threat, Ecohydrol. Hydrobiol, vol.13, pp.148-158, 2013.

J. K. Warren and . Evaporites, A geological compendium, pp.344-353, 2016.

M. Schagerl and R. W. Renaut, Dipping into the Soda Lakes of East Africa, Soda Lakes of East Africa, chap, vol.1, pp.3-24, 2016.

W. Grant, Alkaline environments and biodiversity, Extremophilies, Encyclopedia of Life Support Systems (EOLSS), 2006.

S. O. Oduor and M. Schagerl, Phytoplankton primary productivity characteristics in response to photosynthetically active radiation in three Kenyan Rift Valley saline alkaline lakes, J. Plankton Res, vol.29, 2007.

E. Tebbs, J. Remedios, S. Avery, C. Rowland, and D. Harper, Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley, Int. J. Appl. Earth Obs. Geoinf, vol.40, pp.100-108, 2015.

H. Nonga, Cyanobacteria and cyanobacterial toxins in the alkaline-saline Lakes Natron and Momela, Tanzania, Proceedings of the 34th scientific conference of the Tanzania Veterinary Association, vol.32, pp.108-116, 2017.

L. H. Brown and A. Root, The breeding behaviour of the Lesser Flamingo Phoeniconaias Minor, Ibis, vol.113, pp.147-172, 1971.

L. Krienitz, B. Mähnert, and M. Schagerl, Lesser Flamingo as a central element of the East African avifauna, Soda Lakes of East Africa, pp.259-284, 2016.

A. G. Ford, High levels of interspecific gene flow in an endemic cichlid fish adaptive radiation from an extreme lake environment, Mol. Ecol, vol.24, pp.3421-3440, 2015.

G. D. Kavembe, A. Meyer, and C. M. Wood, Fish populations in East African saline lakes, Soda Lakes of East Africa, pp.227-257, 2016.

. Norconsult, Environmental and social impact assessment for the development of a soda ash facility at Lake Natron, 2007.

R. Bettinetti, A preliminary evaluation of the DDT contamination of sediments in Lakes Natron and Bogoria, AMBIO, vol.40, pp.341-350, 2011.

M. Baker and . Lake-natron, Flamingos and the Proposed Soda Ash Factory, Tanzania Natural Resource Forum, 2011.

R. M. Kadigi, K. Mwathe, A. Dutton, J. Kashaigili, and F. Kilima, Soda ash mining in Lake Natron: A reap or ruin for Tanzania?, Journal of Environmental Conservation Research, vol.2, 2014.

. Theeastafrican, Tanzania shelves Lake Natron soda ash project, 2018.

K. A. Snyder and E. B. Sulle, Tourism in Maasai communities: a chance to improve livelihoods?, J. Sust. Tour, vol.19, pp.935-951, 2011.

, Tanzania photograph taken from the International Space Station on, 2002.

F. Policelli, The NASA global flood mapping system, Remote Sensing of Hydrological Extremes, pp.47-63, 2017.

S. Whitburn, Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories, Atmos. Environ, vol.121, pp.42-54, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128022

T. P. Robinson, Mapping the global distribution of livestock, PLoS One, vol.9, 2014.

C. M. Reynolds and D. C. Wolf, Effect of soil moisture and air relative humidity on ammonia volatilization from surface-applied urea, Soil Sci, vol.143, pp.144-152, 1987.

M. Adon, NH 3 ), sulfur dioxide and ozone in west and central African ecosystems using the inferential method, Atmos. Chem. Phys, vol.3, issue.2, pp.11351-11374, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00910719

W. H. Schlesinger and W. T. Peterjohn, Processes controlling ammonia volatilization from Chihuahuan desert soils, Soil Biol. Biochem, vol.23, pp.637-642, 1991.

D. D. Francis, M. F. Vigil, A. R. Mosier, J. S. Schepers, and W. R. Raun, Gaseous losses of nitrogen other than through denitrification, Nitrogen in Agricultural Systems, pp.255-279, 2008.

L. Clarisse, Satellite monitoring of ammonia: A case study of the San Joaquin Valley, J. Geophys. Res, vol.115, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459974

S. Whitburn, A flexible and robust neural network IASI-NH 3 retrieval algorithm, J. Geophys. Res, vol.121, pp.6581-6599, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01345167

, ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS, issue.C3S, 2018.

E. S. Maddy, On the effect of dust aerosols on AIRS and IASI operational level 2 products, Geophys. Res. Lett, vol.39, p.10809, 2012.

S. Bauduin, Retrieval of near-surface sulfur dioxide (SO 2 ) concentrations at a global scale using IASI satellite observations, Atmos. Meas. Tech, vol.9, pp.721-740, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01244510

J. W. Eastes, Spectral and physical properties of some desert soils: Implications for remote spectroscopic terrain analysis in arid regions, Appl. Spectrosc, vol.46, pp.640-644, 1992.

N. C. Atkinson, F. I. Hilton, S. M. Illingworth, J. R. Eyre, and T. Hultberg, Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases, Atmos. Meas. Tech, vol.3, pp.991-1003, 2010.

S. Chefdeville, Analyse de trois années d' outliers dans les mesures de l'instrument IASI: détection et étude d' évènements extrêmes, 2010.

G. Socrates, Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 2001.

M. D. Lane, Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals, Am. Mineral, vol.92, pp.1-18, 2007.

H. P. Eugster and . Lake-magadi, Kenya: a model for rift valley hydrochemistry and sedimentation?, Geol. Soc. Spec. Publ, vol.25, pp.177-189, 1986.

F. Darragi, M. Gueddari, and B. Fritz, Mise en evidence d'un fluoro-sulfate de sodium, la kogarkoite, dans les croutes salines du Lac Natron en Tanzanie (Presence of Kogarkoite (Na 3 SO 4 F) in the salt paragenesis of Lake Natron in Tanzania). Comptes-Rendus des Seances de l'Academie des, Sciences Serie, vol.2, issue.297, pp.141-144, 1983.

J. M. Nielsen, East African magadi (trona): fluoride concentration and mineralogical composition, J. Afr. Earth. Sci, vol.29, pp.107-111, 1999.

R. H. Mitchell, Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai, Tanzania. Mineral. Mag, vol.70, pp.437-444, 2006.

N. V. Chukanov, Infrared spectra of mineral species, 2014.

C. K. Huang and P. F. Kerr, Infrared study of the carbonate minerals, Am. Mineral, vol.45, pp.311-324, 1960.

A. Baldridge, S. Hook, C. Grove, and G. Rivera, The ASTER spectral library version 2.0. Remote Sens, Environ, vol.113, pp.711-715, 2009.

G. R. Kodikara, Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya. Int. J. Appl. Earth Obs. Geoinf, vol.14, pp.22-32, 2012.

M. Van-damme, Towards validation of ammonia (NH 3 ) measurements from the IASI satellite, Atmos. Meas. Tech, vol.8, pp.1575-1591, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01091151

C. M. Duarte, CO 2 emissions from saline lakes: A global estimate of a surprisingly large flux, Journal of Geophysical Research: Biogeosciences, vol.113, 2008.

S. Castanier, M. Bernet-rollande, A. Maurin, and J. Perthuisot, Effects of microbial activity on the hydrochemistry and sedimentology of Lake Logipi, Kenya. Hydrobiologia, vol.267, pp.99-112, 1993.

J. R. White and K. R. Reddy, Biogeochemical dynamics I: Nitrogen cycling in wetlands, The Wetlands Handbook, pp.213-227, 2009.

R. Herbert, Nitrogen cycling in coastal marine ecosystems, FEMS Microbiology Reviews, vol.23, pp.563-590, 1999.

S. O. Oduor and M. Schagerl, Temporal trends of ion contents and nutrients in three Kenyan Rift Valley saline-alkaline lakes and their influence on phytoplankton biomass, Shallow Lakes in a Changing World, pp.59-68, 2007.

E. Kihwele, C. Lugomela, K. Howell, and H. Nonga, Spatial and temporal variations in the abundance and diversity of phytoplankton in Lake Manyara, Tanzania. International Journal of Innovative Studies in Aquatic Biology and Fisheries, vol.1, 2015.

A. Kulecho and V. Muhandiki, Water quality trends and input loads to Lake Nakuru, Proceedings of the 11th World Lakes Conference, vol.II, pp.529-533, 2005.

B. Ganning, F. Wulff, and B. Ganning, The effects of bird droppings on chemical and biological dynamics in brackish water rockpools, Oikos, vol.20, 1969.

S. Riddick, The global distribution of ammonia emissions from seabird colonies, Atmos. Environ, vol.55, pp.319-327, 2012.

N. N. Gichuki, H. A. Oyieke, and T. Terer, Status and root causes of biodiversity loss in the eastern Rift Valley lakes, Kenya, Proceedings of the 11th World Lakes Conference, vol.II, pp.511-517, 2005.

R. Jellison, L. G. Miller, J. M. Melack, and G. L. Dana, Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes, Limnol. Oceanogr, vol.38, pp.1020-1039, 1993.

P. C. Manega and S. Bieda, Modern sediments of Lake Natron, Tanzania. Sci. Géol. Bull, vol.40, pp.83-95, 1987.

E. S. Kihwele, C. Lugomela, and K. M. Howell, Temporal changes in the Lesser Flamingos population (Phoenicopterus minor) in relation to phytoplankton abundance in Lake Manyara, Tanzania. Open Journal of Ecology, vol.04, pp.145-161, 2014.

G. L. Batanero, Flamingos and drought as drivers of nutrients and microbial dynamics in a saline lake, Scientific Reports, vol.7, 2017.

D. Y. Sorokin, Microbial diversity and biogeochemical cycling in soda lakes, Extremophiles, vol.18, pp.791-809, 2014.

J. Freney, J. Simpson, and O. Denmead, Volatilization of ammonia, Gaseous Loss of Nitrogen from Plant-Soil Systems, pp.1-32, 1983.

G. Cai, Ammonia volatilization, Nitrogen in Soils of China, pp.193-213, 1997.

P. Vlek and E. T. Craswell, Ammonia volatilization from flooded soils, Fertilizer Research, vol.2, pp.227-245, 1981.

S. Fazi, Biogeochemistry and biodiversity in a network of saline-alkaline lakes: Implications of ecohydrological connectivity in the Kenyan Rift Valley, Ecohydrology & Hydrobiology, vol.18, pp.96-106, 2018.

J. A. Raini, Impact of land use changes on water resources and biodiversity of Lake Nakuru catchment basin, Kenya. African Journal of Ecology, vol.47, pp.39-45, 2009.

W. L. Hargrove, Evaluation of ammonia volatilization in the field, J. Prod. Agric, vol.1, 1988.

S. Tweed, M. Grace, M. Leblanc, I. Cartwright, and D. Smithyman, The individual response of saline lakes to a severe drought, Sci. Total Environ, vol.409, pp.3919-3933, 2011.

D. Zhenghu and X. Honglang, Effects of soil properties on ammonia volatilization, Soil Science and Plant Nutrition, vol.46, pp.845-852, 2000.

W. S. Gardner, S. P. Seitzinger, and J. M. Malczyk, The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux? Estuaries 14, vol.157, 1991.

S. Rysgaard, Effects of salinity on NH 4 + adsorption capacity, nitrification, and denitrification in danish estuarine sediments, Estuaries, vol.22, 1999.

F. Jirsa, Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught, Chem. Erde, vol.73, pp.275-282, 2013.

B. Childress, Satellite tracking Lesser Flamingo movements in the Rift Valley, East Africa: pilot study report. Ostrich, vol.75, pp.57-65, 2004.

B. L. Woodworth, B. P. Arm, C. Mufungo, M. Borner, and J. O. Kuwai, A photographic census of flamingos in the Rift Valley lakes of Tanzania, African Journal of Ecology, vol.35, pp.326-334, 1997.

C. Tuite, The distribution and density of Lesser Flamingos in east africa in relation to food availability and productivity, Waterbirds: The International Journal of Waterbird Biology. Special Publication, vol.1, pp.52-63, 2000.

A. O. Owino, J. O. Oyugi, O. O. Nasirwa, and L. A. Bennun, Patterns of variation in waterbird numbers on four rift valley lakes in Kenya, Hydrobiologia, vol.458, pp.45-53, 1991.

C. Mlingwa and N. Baker, Lesser Flamingo Phoenicopterus minor counts in Tanzanian soda lakes: implications for conservation, Waterbirds around the world, pp.230-233, 2006.

M. N. Kaggwa, M. Gruber, S. O. Oduor, and M. Schagerl, A detailed time series assessment of the diet of Lesser Flamingos: further explanation for their itinerant behaviour, Hydrobiologia, vol.710, pp.83-93, 2012.

P. Wessel and W. H. Smith, A global, self-consistent, hierarchical, high-resolution shoreline database, Journal of Geophysical Research: Solid Earth, vol.101, pp.8741-8743, 1996.

F. R. Ac-saf-;-belgian, The research was also funded by the Belgian State Federal Office for Scientific, Technical and Cultural Affairs (Prodex arrangement IASI.FLOW). Figure 1 was generated using ESA's CCI S2 prototype Land Cover 20 m map of Africa, Scientific data and quick-looks are available from the Aeris data infrastructure, 2016.