R. O. Darouiche, Current concepts-Treatment of infections associated with surgical implants, N. Engl. J. Med, vol.350, pp.1422-1429, 2004.

M. Vallet-regi and D. Arcos, Biomimetic Nanoceramics in Clinical Use: From Materials to Applications, 2008.

A. M. Prodan, M. Beuran, C. S. Turculet, M. Popa, E. Andronescu et al., In vitro evaluation of glycerol coated iron oxide nanoparticles in solution, Rom. Biotechnol. Lett, vol.23, pp.13901-13908, 2018.

E. M. Kojic and R. O. Darouiche, Candida infections of medical devices, Clin. Microbiol. Rev, vol.17, pp.255-267, 2004.

J. Chandra, Z. Guangyin, and M. A. Ghannoum, Fungal biofilms and antimycotics, Curr. Drug Targets, vol.6, pp.887-894, 2005.

V. Eiff, C. Jansen, B. Kohnen, and W. , Infections associated with medical devices: Pathogenesis, management and prophylaxis, Drugs, vol.65, pp.179-214, 2005.

D. Predoi, S. L. Iconaru, N. Buton, M. L. Badea, and L. Marutescu, Antimicrobial activity of new materials based on lavender and basil essential oils and hydroxyapatite, Nanomaterials, vol.8, p.291, 2018.

M. Furko, Y. Jiang, T. Wilkins, and C. Balázsi, Development and characterization of silver and zinc doped bioceramic layer on metallic implant materials for orthopedic application, Ceram. Int, vol.42, pp.4924-4931, 2016.

M. Bosetti, A. Massé, E. Tobin, and M. Cannas, Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity, Biomaterials, vol.23, pp.887-892, 2002.

W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim et al., Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol, vol.74, pp.2171-2178, 2008.

J. M. Schierholz, L. J. Lucasj, and A. Rump, Efficacy of silver-coated medical devices, J. Hosp. Infect, vol.40, pp.257-262, 1998.

Y. Huang, X. Zhang, H. Qiao, M. Hao, H. Zhang et al., Corrosion resistance and cytocompatibility studies of zinc-doped fluorohydroxyapatite nanocomposite coatings on titanium implant, Ceram. Int, vol.42, 1903.

J. Kolmas, E. Groszyk, and D. Kwiatkowska-róhycka, Substituted hydroxyapatites with antibacterial properties, BioMed Res. Int, 2014.

M. Kurtjak, N. Ani?i´ani?i´c, and M. Vukomanovic´cvukomanovic´c, Inorganic nanoparticles: Innovative tools for antimicrobial agents, Antibacterial Agents

R. N. Kumavath and . Ed, , 2017.

J. Liedtke and W. Vahjen, In vitro antibacterial activity of zinc oxide on a broad range of reference strains of intestinal origin, Vet. Microbiol, vol.160, pp.251-255, 2012.

S. L. Iconaru, A. M. Prodan, C. S. Turculet, M. Beuran, R. V. Ghita et al., Enamel based composite layers deposited on titanium substrate with antifungal activity, J. Spectrosc, 2016.

A. Groza, C. S. Ciobanu, C. L. Popa, S. L. Iconaru, P. Chapon et al., Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes, Polymers, vol.8, p.131, 2016.

C. S. Ciobanu, F. Massuyeau, L. V. Constantin, and D. Predoi, Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 ? C, Nanoscale Res. Lett, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00849703

D. Predoi, S. L. Iconaru, A. Deniaud, M. Chevallet, I. Michaud-soret et al., Textural, structural and biological evaluation of hydroxyapatite doped with zinc at low concentrations, Materials, vol.10, p.229, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01577002

C. L. Popa, A. Deniaud, I. Michaud-soret, R. Guégan, M. Motelica-heino et al., Structural and biological assessment of zinc doped hydroxyapatite nanoparticles, J. Nanomater, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01414519

C. S. Ciobanu, C. L. Popa, D. Predoi, and . Sm, HAp Nanopowders present antibacterial activity against Enterococcus faecalis, J. Nanomater, vol.780686, 2014.

S. M. Zebarjad, S. A. Sajjadi, T. Ebrahimi-sdrabadi, S. A. Sajjadi, A. Yaghmaei et al., A Study on mechanical properties of PMMA/hydroxyapatite nanocomposite, vol.3, pp.795-801, 2011.

S. Prasadh and R. C. Wong, Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects, Oral Sci. Int, vol.15, pp.48-55, 2018.

D. Predoi, S. L. Iconaru, and M. V. Predoi, Bioceramic layers with antifungal properties, vol.8, p.276, 2018.

C. S. Turculet, A. M. Prodan, I. Negoi, G. Teleanu, M. Popa et al., Preliminary evaluation of the antifungal activity of samarium doped hydroxyapatite thin films, Rom. Biotechnol. Lett, vol.23, pp.13928-13932, 2018.

E. Andronescu, F. Iordache, C. S. Ciobanu, M. L. Badea, A. Costescu et al., Optical properties of bioactive europium doped hydroxyapatite (HAp:Eu 3+ ), Optoelectron. Adv. Mat, vol.9, pp.1155-1159, 2015.

C. C. Negrila, M. V. Predoi, S. L. Iconaru, and D. Predoi, Development of Zinc-doped hydroxyapatite by sol-gel method for medical applications, Molecules, vol.23, 2018.

K. K. Johal, In vivo response of strontium and zinc-based ionomeric cement implants in bone, J. Mater. Sci. Mater. Med, vol.13, pp.375-379, 2002.

M. Yamaguchi, Role of zinc in bone formation and bone resorption, J. Trace Elem. Exp. Med, vol.11, pp.119-135, 1998.

N. Ohtsu, Y. Kakuchi, and T. Ohtsuki, Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition, Appl. Surf. Sci, vol.445, pp.596-600, 2018.

S. L. Iconaru, A. M. Prodan, N. Buton, and D. Predoi, Structural characterization and antifungal studies of zinc-doped hydroxyapatite coatings, vol.22, 2017.

E. S. Thian, T. Konishi, Y. Kawanobe, P. N. Lim, C. Choong et al., Zinc-substituted hydroxyapatite: A biomaterial with enhanced bioactivity and antibacterial properties, J. Mater. Sci. Mater. Med, vol.24, pp.437-445, 2013.

?. Radovanovi´cradovanovi´c, D. Veljovi´cveljovi´c, B. Joki´cjoki´c, S. Dimitrijevi´cdimitrijevi´c, G. Bogdanovi´cbogdanovi´c et al., Biocompatibility and antimicrobial activity of zinc(II)-doped hydroxyapatite, synthesized by a hydrothermal method, J. Serb. Chem. Soc, vol.77, pp.1787-1798, 2012.

B. Adamiak, A. Wiatrowski, J. Domaradzki, D. Kaczmarek, D. Wojcieszak et al., Preparation of multicomponent thin films by magnetron co-sputtering method: The Cu-Ti case study, vol.161, pp.419-428, 2019.

R. Kumar, R. T. Karunagaran, B. Kumar, V. Jeyachandran, Y. L. Mangalaraj et al., Structural properties of V 2 O 5 thin films prepared by vacuum evaporation, Mater. Sci. Semicond. Process, vol.6, 2003.

X. Wang, F. Shi, X. Gao, C. Fan, W. Huang et al., A sol-gel dip/spin coating method to prepare titanium oxide films, Thin Solid Films, vol.548, pp.34-39, 2013.

S. Calnan, M. H. Upadhyaya, E. S. Dann, J. M. Thwaites, and N. A. Tiwari, Effects of target bias voltage on indium tin oxide films deposited by high target utilisation sputtering, Thin Solid Films, vol.515, pp.8500-8504, 2007.

C. Yuen, S. F. Yu, E. S. Leong, S. P. Lau, K. Pita et al., Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique, J. Appl. Phys, vol.101, p.94905, 2007.

K. V. Gurav, U. M. Patil, S. W. Shin, S. M. Pawar, J. H. Kim et al., Morphology evolution of ZnO thin films from aqueous solutions and their application to liquefied petroleum gas (LPG) sensor, J. Alloy. Compd, vol.525, pp.1-7, 2012.

M. Jamesh, S. Kumar, and T. S. Sankara-narayanan, Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications, J. Coat. Technol. Res, vol.9, pp.495-502, 2012.

H. Hornberger, S. Virtanen, and A. R. Boccaccini, Biomedical coatings on magnesium alloys-A review, Acta Biomater, vol.8, pp.2442-2455, 2012.

C. E. Wen, W. Xu, W. Y. Hu, and P. D. Hodgson, Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications, Acta Biomater, vol.3, pp.403-410, 2007.

M. Kakimoto, M. Suzuki, T. Konishi, Y. Imai, M. Iwamoto et al., Preparation of mono-and multilayer films of aromatic polyimides using Langmuir-Blodgett technique, Chem. Lett, vol.15, pp.823-826, 1986.

C. Y. Tsay, K. S. Fan, Y. W. Wang, C. J. Chang, Y. K. Tseng et al., Transparent semiconductor zinc oxide thin films deposited on glass substrates by sol-gel process, Cermic. Int, vol.36, pp.1791-1795, 2010.

A. G. Emslie, F. T. Bonner, and L. G. Peck, Flow of a viscous liquid on a rotating disk, J. Appl. Phys, vol.29, pp.858-862, 1958.

M. Motelica-heino and O. F. Donard, Comparison of UV and IR laser ablation ICP-MS on silicate reference materials and implementation of normalisation factors for quantitative measurements, Geostand. Geoanal. Res, vol.25, pp.345-359, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01335238

, Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents under Dynamic Contact Conditions, ASTM E2149-13a, 2013.

A. V. Fuchs, S. Ritz, S. Pütz, V. Mailänder, K. Landfester et al., Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties, Biomater. Sci, vol.1, pp.470-477, 2013.

C. S. Ciobanu, S. L. Iconaru, E. Gyorgy, M. Radu, M. Costache et al., Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique, Chem. Cent. J, vol.6, 2012.

S. U. Egelhaaf, E. Wehrli, M. Muller, M. Adrian, and P. Schurtenberger, Determination of the size distribution of lecithin liposomes: A comparative study using freeze fracture, cryoelectron microscopy and dynamic light scattering, J. Microsc, vol.184, pp.214-228, 1996.

G. Xu, I. A. Aksay, and J. T. Groves, Continuous crystalline carbonate apatite thin films. A Biomimetic approach, J. Am. Chem. Soc, vol.123, pp.2196-2203, 2001.

V. Jokanovic and D. Uskokovic, Calcium hydroxyapatite thin films on titanium substrates prepared by ultrasonic spray pyrolysis, Mater. Trans, vol.46, pp.228-235, 2005.

A. Anwar, S. Akbar, A. Sadiqa, and M. Kazmi, Novel continuous flow synthesis, characterization and antibacterial studies of nanoscale zinc substituted hydroxyapatite bioceramics, Inorg. Chim. Acta, vol.453, pp.16-22, 2016.

X. Chen, Q. L. Tang, Y. J. Zhu, C. L. Zhu, and X. P. Feng, Synthesis and antibacterial property of zinc loaded hydroxyapatite nanorods, Mater. Lett, vol.89, pp.233-235, 2012.

F. Ren, R. Xin, X. Ge, and Y. Leng, Characterization and structural analysis of zinc-substituted hydroxyapatites, Acta Biomater, vol.5, pp.3141-3149, 2009.

B. Ben-nissan and A. H. Choi, Sol-gel production of bioactive nano-coatings for medical applications. Part 1: An introduction, Nanomedicine, vol.1, pp.311-319, 2006.

A. Fahami, G. W. Beall, and T. Betancourt, Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite, Mater. Sci. Eng. C Mater. Biol. Appl, vol.59, pp.78-85, 2016.
DOI : 10.1016/j.msec.2015.10.002