P. Withers, C. Neal, H. P. Jarvie, and D. G. Doody, Agriculture and eutrophication: Where do we go from here?, Sustainability, vol.6, pp.5853-5875, 2014.

T. Kolbe, Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer, J Hydrol (Amst), vol.543, pp.31-46, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01316583

B. W. Abbott, Using multi-tracer inference to move beyond singlecatchment ecohydrology, Earth Sci Rev, vol.160, pp.19-42, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01346018

M. G. Turner and F. S. Chapin, Causes and consequences of spatial heterogeneity in ecosystem function. Ecosystem Function in Heterogeneous Landscapes, pp.9-30, 2005.

K. A. Lohse, P. D. Brooks, J. C. Mcintosh, T. Meixner, and T. E. Huxman, Interactions between biogeochemistry and hydrologic systems, Annu Rev Environ Resour, vol.34, pp.65-96, 2009.

M. Jahangir, Denitrification and indirect N2O emissions in groundwater: Hydrologic and biogeochemical influences, J Contam Hydrol, vol.152, pp.70-81, 2013.

C. J. Jørgensen, O. S. Jacobsen, B. Elberling, and J. Aamand, Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment, Environ Sci Technol, vol.43, pp.4851-4857, 2009.

C. Kludt, F. Weber, A. Bergmann, K. Knöller, G. Berthold et al., Identifizierung der Nitratabbauprozesse und Prognose des Nitratabbaupotenzials in den Sedimenten des, Hessischen Rieds. Grundwasser, vol.21, pp.227-241, 2016.

M. Leson and F. Wisotzky, Hydrogeochemische Untersuchungen von Nitrateinträgen in das Grundwasser und möglichen Denitrifikationsprozessen, Grundwasser, vol.17, pp.137-145, 2012.

M. Schwientek, Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system, Chem Eng Sci, vol.255, pp.60-67, 2008.

Y. Zhang, Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer, Chem Geol, vol.301, pp.123-132, 2012.

Y. Zhang, C. P. Slomp, H. P. Broers, H. F. Passier, and P. Van-cappellen, Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer, Geochim Cosmochim Acta, vol.73, pp.6716-6726, 2009.

Y. C. Zhang, Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer, Environ Sci Technol, vol.47, pp.10415-10422, 2013.

G. Pinay, Upscaling nitrogen removal capacity from local hotspots to low stream orders' drainage basins, Ecosystems, vol.18, pp.1101-1120, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149506

Z. Thomas and B. W. Abbott, Hedgerows reduce nitrate flux at hillslope and catchment scales via root uptake and secondary effects, J Contam Hydrol, vol.215, pp.51-61, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02014945

M. O. Rivett, S. R. Buss, P. Morgan, J. Smith, and C. D. Bemment, Nitrate attenuation in groundwater: A review of biogeochemical controlling processes, Water Res, vol.42, pp.4215-4232, 2008.

S. F. Korom, Natural denitrification in the saturated zone: A review, Water Resour Res, vol.28, pp.1657-1668, 1992.

W. Kinzelbach, W. Schäfer, and J. Herzer, Numerical modeling of natural and enhanced dentrification processes in aquifers, Water Resour Res, vol.27, pp.1123-1135, 1991.

L. Liao, C. T. Green, B. A. Bekins, and J. K. Böhlke, Factors controlling nitrate fluxes in groundwater in agricultural areas, Water Resour Res, vol.48, pp.0-09, 2012.

A. J. Tesoriero and L. J. Puckett, O2 reduction and denitrification rates in shallow aquifers, Water Resour Res, vol.47, pp.1-17, 2011.

C. T. Green, J. K. Boehlke, B. A. Bekins, and S. P. Phillips, Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer, Water Resour Res, vol.46, p.8525, 2010.

B. C. Jurgens, J. K. Böhlke, L. J. Kauffman, K. Belitz, and B. K. Esser, A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells, J Hydrol (Amst), vol.543, pp.109-126, 2016.

B. Maamar and S. , Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths, Front Microbiol, vol.6, p.1457, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01249981

D. Postma, C. Boesen, H. Kristiansen, and F. Larsen, Nitrate reduction in an unconfined sandy aquifer-Water chemistry, reduction processes, and geochemical modeling, Water Resour Res, vol.27, pp.2027-2045, 1991.

R. Starr and R. Gillham, Denitrification and organic carbon availability in two aquifers, Ground Water, vol.31, pp.934-947, 1993.

W. J. Pabich, I. Valiela, and H. F. Hemond, Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, vol.55, pp.247-268, 2001.

G. E. Jobbagy and B. R. Jackson, The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol Appl, vol.10, pp.423-436, 2000.

P. Ma?oszewski and A. Zuber, Determining the turnover time of groundwater systems with the aid of environmental tracers, J Hydrol (Amst), vol.57, pp.207-231, 1982.

J. Yang, I. Heidbüchel, A. Musolff, F. Reinstorf, and J. H. Fleckenstein, Exploring the dynamics of transit times and subsurface mixing in a small agricultural catchment, Water Resour Res, vol.54, pp.2317-2335, 2018.

K. S. Hunter, Y. Wang, and P. Van-cappellen, Kinetic modeling of microbially-driven redox chemistry of subsurface environments: Coupling transport, microbial metabolism and geochemistry, J Hydrol (Amst), vol.209, pp.53-80, 1998.

M. Loschko, T. Wöhling, D. L. Rudolph, and O. A. Cirpka, Cumulative relative reactivity: A concept for modeling aquifer-scale reactive transport, Water Resour Res, vol.52, pp.8117-8137, 2016.
DOI : 10.1002/2016wr019080

D. R. Lovley and F. H. Chapelle, Deep subsurface microbial processes, Rev Geophys, vol.33, pp.365-381, 1995.
DOI : 10.1029/95rg01305

J. P. Zarnetske, R. Haggerty, S. M. Wondzell, V. A. Bokil, and R. González-pinzón, Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones, Water Resour Res, vol.48, p.11508, 2012.

C. E. Oldham, D. E. Farrow, and S. Peiffer, A generalized Damköhler number for classifying material processing in hydrological systems, Hydrol Earth Syst Sci, vol.17, pp.1133-1148, 2013.

C. T. Green, Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, J Hydrol (Amst), vol.254, pp.155-166, 2016.
DOI : 10.1016/j.jhydrol.2016.05.018

M. A. Thomas, The effect of residential development on ground-water quality near Detroit, Michigan, J Am Water Resour Assoc, vol.36, pp.1023-1038, 2000.

L. J. Puckett and T. K. Cowdery, Transport and fate of nitrate in a glacial outwash aquifer in relation to ground water age, land use practices, and redox processes, J Environ Qual, vol.31, pp.782-796, 2002.

J. K. Böhlke, R. Wanty, M. Tuttle, G. Delin, and M. Landon, Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Water Resour Res, vol.38, pp.10-11, 2002.

A. J. Tesoriero, T. B. Spruill, H. E. Mew, K. M. Farrell, and S. L. Harden, Nitrogen transport and transformations in a coastal plain watershed: Influence of geomorphology on flow paths and residence times, Water Resour Res, vol.41, pp.1-15, 2005.

H. Pauwels, V. Ayraud-vergnaud, L. Aquilina, and J. Molénat, The fate of nitrogen and sulfur in hard-rock aquifers as shown by sulfate-isotope tracing, Appl Geochem, vol.25, pp.105-115, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00559187

V. Ayraud, Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses, Appl Geochem, vol.23, pp.2686-2707, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00338893

V. Ayraud, Physical, biogeochemical and isotopic processes related to heterogeneity of a shallow crystalline rock aquifer, Biogeochemistry, vol.81, pp.331-347, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00118770

C. Roques, Autotrophic denitrification supported by biotite dissolution in crystalline aquifers: (2) Transient mixing and denitrification dynamic during longterm pumping, Sci Total Environ, vol.619, pp.491-503, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01653141

L. Aquilina, Autotrophic denitrification supported by biotite dissolution in crystalline aquifers (1): New insights from short-term batch experiments, Sci Total Environ, vol.619, pp.842-853, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01652576

H. Pauwels, W. Kloppmann, J. C. Foucher, A. Martelat, and V. Fritsche, Field tracer test for denitrification in a pyrite-bearing schist aquifer, Appl Geochem, vol.13, pp.767-778, 1998.

H. Pauwels, W. Kloppmann, and J. C. Foucher, Denitrification and mixing in a schist aquifer: Influence on water chemistry and isotopes, Chem Geol, vol.168, pp.307-324, 2000.

A. Boisson, Reaction chain modeling of denitrification reactions during a push-pull test, J Contam Hydrol, vol.148, pp.1-11, 2013.
URL : https://hal.archives-ouvertes.fr/insu-00866128

C. T. Green, Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States, J Environ Qual, vol.37, pp.994-1009, 2008.

J. Böhlke, Groundwater recharge and agricultural contamination, Hydrogeol J, vol.10, pp.153-179, 2002.

P. B. Mcmahon, Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States, Water Resour Res, vol.44, pp.1-17, 2008.

S. Seitzinger, Denitrification across landscapes and waterscapes: A synthesis, Ecol Appl, vol.16, pp.2064-2090, 2006.

R. Starr and R. Gillham, Controls on denitrification in shallow unconfined aquifers. Contaminant Transport in Groundwater, pp.51-56, 1989.

D. Murty, M. Kirschbaum, R. E. Mcmurtrie, and H. Mcgilvray, Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature, Glob Chang Biol, vol.8, pp.105-123, 2002.

J. Temnerud, Can the distribution of headwater stream chemistry be predicted from downstream observations?, Hydrol Processes, vol.24, pp.2269-2276, 2010.

B. W. Abbott, Unexpected spatial stability of water chemistry in headwater stream networks, Ecol Lett, vol.21, pp.296-308, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01674523

A. L. Hansen, D. Gunderman, X. He, and J. C. Refsgaard, Uncertainty assessment of spatially distributed nitrate reduction potential in groundwater using multiple geological realizations, J Hydrol, vol.519, pp.225-237, 2014.

S. Jasechko, Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination, Nat Geosci, vol.10, pp.425-429, 2017.

A. F. Bouwman, Global trends and uncertainties in terrestrial denitrification and N2O emissions, Philos Trans R Soc Lond B Biol Sci, vol.368, 2013.

A. F. Bouwman, G. Van-drecht, and K. W. Van-der-hoek, Surface N balances and reactive N loss to the environment from global intensive agricultural production systems for the period 1970-2030, Sci China C Life Sci, vol.48, pp.767-779, 2005.

G. Van-drecht, A. F. Bouwman, J. M. Knoop, A. Beusen, and C. R. Meinardi, Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water, Global Biogeochem Cycles, vol.17, p.1115, 2003.

A. Y. Hoekstra and M. M. Mekonnen, The water footprint of humanity, Proc Natl Acad Sci, vol.109, pp.3232-3237, 2012.

B. L. Keeler, Linking water quality and well-being for improved assessment and valuation of ecosystem services, Proc Natl Acad Sci, vol.109, pp.18619-18624, 2012.

S. P. Seitzinger, Global river nutrient export: A scenario analysis of past and future trends, Global Biogeochem Cycles, vol.24, pp.0-08, 2010.

M. K. Landon, C. T. Green, K. Belitz, M. J. Singleton, and B. K. Esser, Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Hydrogeol J, vol.19, pp.1203-1224, 2011.

J. L. Mccallum, P. G. Cook, and C. T. Simmons, Limitations of the use of environmental tracers to infer groundwater age, Ground Water, vol.53, pp.56-70, 2015.

J. Marçais, Dating groundwater with dissolved silica and CFC concentrations in crystalline aquifers, Sci Total Environ, vol.636, pp.260-272, 2018.

Z. Thomas, Constitution of a catchment virtual observatory for sharing flow and transport models outputs, J Hydrol (Amst), vol.543, pp.59-66, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01312759

J. Marçais, J. R. De-dreuzy, T. R. Ginn, P. Rousseau-gueutin, and S. Leray, Inferring transit time distributions from atmospheric tracer data: Assessment of the predictive capacities of lumped parameter models on a 3D crystalline aquifer model, J Hydrol (Amst), vol.525, pp.619-631, 2015.

L. Aquilina, Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface-and groundwaters, Sci Total Environ, vol.435, pp.167-178, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00787165