On the spatial representativeness of NOX and PM10 monitoring-sites in Paris, France
Delphy Rodriguez, Myrto Valari, Sébastien Payen, Laurence Eymard

To cite this version:

HAL Id: insu-01991752
https://hal-insu.archives-ouvertes.fr/insu-01991752
Submitted on 28 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the spatial representativeness of NO\textsubscript{X} and PM\textsubscript{10} monitoring-sites in Paris, France

Delphy Rodrigueza,\ast, Myrto Valarib, Sébastien Payana, Laurence Eymarda

a LATMOS/IPSL, Sorbonne Université, UVSQ,CNRS, Paris, France
b LMD, Ecole Polytechnique, Palaiseau, France

HIGHLIGHTS

- A new method to quantify the spatial representativeness of urban monitoring-sites using high-resolution simulations.
- Measurements at urban background sites are representative of concentrations over the broad neighborhood around the monitor.
- Measurements at traffic sites are representative of concentrations over specific urban features: roads, pavements, etc.
- PM\textsubscript{10} representativeness areas are larger than NO\textsubscript{X} representativeness areas.

ARTICLE INFO

Keywords:
- Urban air pollution
- Surface monitoring networks
- High resolution modeling
- Spatial representativeness

ABSTRACT

Ambient pollutant concentrations in Paris, France are routinely measured by the local surface-monitor network of the AIRPARIF agency. Such networks, however dense, have a limited spatial representativeness around the monitoring-site and are not capable to represent the strong horizontal gradients of pollutant concentrations over urban areas. High resolution models simulate 3D pollutant concentration fields at a spatial resolution as fine as a few meters over the urban area by integrating the underlying emission sources and accounting for the effect of buildings on the dispersion patterns. These models, provide a good spatial variability over the urban area but suffer from uncertainties related to the emission inventories, meteorological fields and parametrizations of the physical and chemical processes.

In this paper, simulations conducted by ARIA Technologies with the Parallel Micro-Swift-Spray (PMSS) model (http://www.aria.fr/projets/aircity) are used to assess NO\textsubscript{X} and PM\textsubscript{10} representativeness areas around five urban background and five traffic-oriented monitoring-sites of the AIRPARIF network during ten days in March 2016. Commonly, the spatial representativeness of a monitor site is defined through homogeneity areas, namely the area around a monitoring-site where pollutant concentration is above 20\% of the concentration at the location of the monitor. Here, we propose a novel approach that uses similarity areas to define the spatial representation of monitor sites. Similarity areas integrate points that respect the additional condition to be highly correlated in time with the concentration at the monitor station. Thus, the criterion to select similarity areas is a combination of a high value of the correlation coefficient and a small value of the normalized root mean square error with regards to the concentration at the grid-cell corresponding to the location of the monitor. Criteria thresholds are determined through an iterative analysis and a representative area is defined through image processing that selects all the connected pixels that satisfy criteria thresholds and incorporate the grid-cell of the monitor.

Daily similarity areas estimated around each monitor are compared against homogeneity areas with regards to their shape, spatial extent, and urban specific characterization. Around urban background sites they are of the same order of magnitude, whereas around traffic sites similarity areas are generally larger than homogeneity areas. PM\textsubscript{10} representativeness areas are found to be 2.2 times larger than the NO\textsubscript{X} ones. Urban background areas are representative of the broad neighborhood around the monitoring-site, whereas traffic-oriented monitoring-sites are representative of specific urban features such as sections of roads and sidewalks along the road. Averaged over the 10 days of the study and across all monitoring-sites, representativeness areas for urban background monitoring-sites are about 8 times larger than traffic representativeness areas (0.6 km2 vs. 0.07 km2).
1. Introduction

The latest studies on the health impact of atmospheric pollution have pointed out that traffic-related atmospheric pollution is particularly dangerous for children asthma and cardiovascular diseases (APHEKHOM, 2012; Host, 2013). The health impacts due to exposure to particulate matter (PM), ozone (O₃) and nitrogen dioxide (NO₂) are presented in the technical report of the World Health Organization (WHO) « Review of Evidence on Health Aspects of Air pollution » (REVIHAAP Project, 2013). The International Agency for Research on Cancer (IARC), a specialized cancer agency of the WHO, has classified the outdoors atmospheric pollution as « carcinogenic to humans » (IARC gr.1, 2013). The annual financial and economic cost of the atmospheric pollution in France according to the Senate in July 2015 (Senate Report n°610, 2015) is 101.3 billion €. This amount is not only due to health impacts but also due to hidden costs such as the decrease of crop yield, deterioration of the buildings, etc.

This paper focuses on Nitrogen Oxides (NOₓ = NO₂ + NO) and particulate matter with diameter lower than 10 μm (PM₁₀). NOₓ are mostly emitted by fossil fuel combustion, industrial processes, and can be produced by chemical reactions involving NO and O₂. PM₁₀ compounds are characterized of a large variability of chemical composition, solid or liquid state and size distribution. PM₁₀ are directly emitted by urban heating, fossil fuel combustion, industrial and agriculture processes (CITEPA, French emissions inventory agency: https://www.citepa.org). Other, indirect sources of PM₁₀ are chemical reactions, large-scale transport of dust and sea-salt and the resuspension of particles already deposited on the ground due to the wind blowing or traffic circulation along the streets. In this paper, we will focus on the local emission sources to provide guidelines for local policies.

The highly heterogeneous emissions from various sources (traffic, residential, industrial ...) and the presence of buildings affect the dispersion of pollutants in the urban environment resulting to a high spatial and temporal variability of pollutant concentrations (Harrison, 2018). In Paris, France, ambient pollutant concentrations are routinely measured by the local network of the AIRPARIF agency (https://www.airparif.asso.fr). In the inner Paris area, this network has 15 and 8 permanent surface monitoring-sites, for NOₓ and PM₁₀ respectively. The spatial representativeness is limited around each monitoring-site and therefore, such networks are not able to capture the strong horizontal gradients of pollutant concentrations over the urban area (Vardoulakis et al., 2005; Hagenbjörk et al., 2017; Hagemann et al., 2014; Blanchard et al., 2014).

Pollutant concentration fields are simulated with regional-scale chemistry transport models such as CHIMERE (http://www.lmd.polytechnique.fr/chimere) under air-quality forecasting platforms (e.g. Prev'Air http://www.prevair.org, or Esmeralda http://www.esmeralda-web.fr) or research projects. Such models integrate emission fluxes, the horizontal and vertical transport of pollutants, turbulent mixing, chemical reactions and deposition through complex numerical systems to calculate the three-dimensional atmospheric concentration fields. However, these models have insufficient horizontal resolution (maximum of 1 km × 1 km) to resolve the intra-urban variability of the pollutant concentration.

High-resolution models such as the Parallel Micro-Swift-Spray (PMSS) model integrated in local scale air-quality modeling platforms such ARIA City (http://www.aria.fr/aria_city.php) simulate pollutant concentration fields at a spatial resolution of a few meters over the urban area. They take into account the advection from various emission sources, integrate buildings as obstacles to the wind flow by generating vortexes downwind and upwind their location, calculate wet and dry deposition and in some cases deal with simple chemical reactions such as the Chapman cycle for ozone and NOx interactions. Given that the street model used in this study implements a simple chemical mechanism we chose to focus on the less reactive NOₓ pollutant. However, over the highly urbanized area of the study and close to traffic sources, NOₓ is a very good proxy of NO₂ since these pollutants are strongly correlated one with the other and with the traffic. Thus, chemistry is not expected to alter our results.

These models provide a good spatial variability within the urban environment but are still subjected to important biases due to the high uncertainties relating to the emission inventories, meteorological predictions and simplified chemistry.

Spatial representativeness assessment aims generally to improve the characterization of atmospheric pollution simulations by using surface measurements to test model performance, design and optimize monitoring-site deployment, better estimate population exposure to the atmospheric pollution, assess or report air quality, classify station, assimilate data for modeling.

In this paper, we focus on the first task, namely to define the spatial extent of the measurement around the monitoring-site. The European Commission stresses the need to assess the spatial representativeness around monitoring-sites without imposing a specific methodology (EC, 2011). An intercomparison exercise has been realized by FAIRMODE (Forum for Air Quality Modeling in Europe) and AQUILA (Air Quality Reference Laboratories) to harmonize a large set of 10 spatial representativeness approaches and provide a technical support to the implementation of Directive 2008/50/EC (EC, 2008) on ambient air quality and cleaner air for Europe. Study results obtained from the same common dataset reveal a strong variability between the different approaches (extent, shape, technical procedures). Most of these approaches use a common criterion to select representativeness areas: the pollutant concentration at each point of the representativeness area should not differ from the measurement at the monitoring-site location by more than a given threshold. Additionally, some approaches use also external parameters influencing air quality such emissions from different sources and/or climatic and topographic dispersion. Nguyen et al. (2012) calculate the means of Principal Component Analysis (PCA) to classify status station.

A brief overview of the most commonly used approaches found in the literature is presented here. These studies use a homogeneity criterion based on a certain threshold. Santiago et al. (2013) apply a methodology based on annual average simulated concentration maps obtained by means of weighted average of Computational Fluid Dynamics model for urban stations whereas Martin et al. (2014), use a Chemistry Transport Model (CHIMERE) for rural background stations. The applied threshold is ± 20% of the simulated concentration to the monitoring-site location. Vitali et al. (2016); Piersanti et al. (2015) used the Concentration Similarity Frequency (CSF) to assess representativeness areas from simulated concentrations. CSF approach is based on the definition given by Nappo et al. (1982): “a point measurement is representative of the average in a larger area (or volume) if the probability that the squared difference between point and area (volume) measurement is smaller than a certain threshold more than 90% of the time”. Representativeness area contains a grid-cell if the difference between concentrations at the monitoring-site and the selected grid-cell does not exceed 20%, 90% of the time. Spangl et al. (2007) compared modeled annual averaged concentration to the concentration to the monitoring-site location with similarity thresholds depending on pollutant. Additional criteria emissions are applied.

Beauchamp et al., (2016), Bobbia et al. (2008), assesses spatial representativeness areas on annual averages by estimating spatial concentration variability and uncertainties from passive sample measurements. Then those concentrations are interpolated from modeling output data applying a kriging approach. The applied threshold to select spatial representativeness points is 30%.

Janssen et al. (2012) assess representativeness of stations by calculating the relation between annual averaged levels at the location of the station and a land use characteristics.

These approaches require long datasets, much longer than the 10 days available in this study. Also, such homogeneity criteria provide an average estimate, not taking into account the daily temporal variability
due to specific meteorological conditions or traffic emissions which may involve pollution episodes. Moreover they are generally focusing on a small number of monitoring-sites. Another limitation of these approaches is that they do not filter out the variability due to regional scale transport (especially high for PM$_{10}$) and the long time averaged. They, therefore, fail to highlight the impact of the urban features (emissions, urban landscape) on the characterization of the representativeness area.

In this study, daily representativeness areas are derived from PMSS simulations with at 3 m horizontal resolution. The study focuses on NO$_X$ and PM$_{10}$ around five traffic and five urban-background monitoring-sites of the AIRPARIF network in Paris for ten non-successive days in March 2016.

Modeled and measured data and methodological aspects are presented in Section 2. The results of the study are presented in Section 3. Section 4 consists of a discussion on the general conclusions and future perspectives of the study.

2. Data and methodology

2.1. Monitoring-sites

Five traffic-oriented and five urban background sites have been selected for the study, covering a diversity of urban landscapes in Paris. Traffic monitoring-sites are located on sidewalks along roads, major crossroads or the border of the Seine River. Urban background monitoring-sites are located on low emission areas such a parks, pedestrian squares, schoolyards and leisure parks. NO$_X$ are measured at all monitoring-sites whereas PM$_{10}$ are measured at four traffic stations and two urban background stations (Table 1 and Fig. 1). Hourly averaged NO$_X$ and PM$_{10}$ surface concentrations are routinely measured and available on the website of the AIRPARIF air-quality agency (http://www.airparif.fr).

Table 1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID station</th>
<th>Characteristic features</th>
<th>Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic-oriented stations</td>
<td>CELES</td>
<td>Seine banks*, the Seine River, bridge, side roads</td>
<td>NO$_X$</td>
</tr>
<tr>
<td></td>
<td>HAUS</td>
<td>Bd Haussmann*, side roads</td>
<td>NOX, PM${10}$</td>
</tr>
<tr>
<td></td>
<td>OPERA</td>
<td>Crossroad*, road traffic</td>
<td>NOX, PM${10}$</td>
</tr>
<tr>
<td></td>
<td>BASCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELYS</td>
<td>Champ-Élysées Avenue*, large road bordered with trees, side roads</td>
<td>NOX, PM${10}$</td>
</tr>
<tr>
<td>Urban background stations</td>
<td>PA15L</td>
<td>Stade* and leisure park, “Boulevard Peripherique”, traffic road</td>
<td>NOX, PM${10}$</td>
</tr>
<tr>
<td></td>
<td>PA12</td>
<td>Schoolyard*, railways, traffic road</td>
<td>NO$_X$</td>
</tr>
<tr>
<td></td>
<td>PA13</td>
<td>Park*, traffic road, crossroad</td>
<td>NOX</td>
</tr>
<tr>
<td></td>
<td>PA04C</td>
<td>Place*, park, the Seine River, traffic road</td>
<td>NOX, PM${10}$</td>
</tr>
<tr>
<td></td>
<td>PA07</td>
<td>Square close to the Eiffel Tower*, Champ-de-Mars Garden, Seine banks, the Seine River, Bridge</td>
<td>NO$_X$</td>
</tr>
</tbody>
</table>

![Fig. 1. Paris map with locations of studied Airparif stations, the Seine River and roads. The red thin line represents Paris city boundary “Boulevard Peripherique” and the white and orange line represents roads.](image-url)
2.2. Model simulations

NOx and PM10 concentrations are simulated with the local-scale model PMSS, at a horizontal resolution of 3 km covering a 12 × 10 km² domain over the city of Paris. The model has thirty-five vertical layers from the ground up to an altitude of 800 m. The vertical resolution decreases with height with a surface layer of 2 m thick (Moussafir et al., 2015). Emissions fluxes are taken from the AIRPARIF inventory. Meteorological conditions are simulated with the MM5 weather mesoscale model. Terrain elevation and buildings’ contours and height are taken from the BDTOPO database developed by the French National Geographic Institute. Atmospheric dispersion is simulated with the PSPRAY Lagrangian particles model. Traffic emissions are calculated with the HEAVEN chain (Healthier Environment through the Abatement of Vehicle Emissions and Noise, http://www.airparif.asso.fr/etat-air/air-et-climat-emissions-heaven). HEAVEN chain calculates in near real-time traffic situation and allows obtaining pollutant emissions on main traffic road of Parisian area from a “bottom-up” approach. Hourly traffic emissions are calculated from the combination of traffic model (car flow, mean speed, cold engines percentage) and emission factors (car speed, road type, temperature, car type, etc.) applied by loop-based counting systems.

PMSS simulations are available for ten non-successive days in March 2016. Domain-averaged hourly variations of NOx and PM10 simulated concentrations are shown in Fig. 2. A peak in NOx concentration is observed on the 9th of March. A PM10 pollution episode is simulated from the 11th to the 15th of March 2016 reaching a peak of 60 µg/m³ on the 12th of March. Another PM10 peak is observed on March 18.

Table 2 summarizes daily and domain-averaged NOx and PM10 simulated concentrations, as well as mean daily surface pressure from the recent ECMWF model reanalyses ERA 5 (https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era5), wind direction and daily averaged velocity (superior to 3 m s⁻¹) simulated by the MM5 regional mesoscale weather forecasts model (https://www2.mmm.ucar.edu/mm5/). Wind patterns on these ten days change from West to North-East, accompanying the transition starting from a low-pressure system between 03-02 and 03-10 (994 hPa-1003 hPa) followed by a transition day 03-11-16 (1012 hPa), then the high-pressure situation took place on the 03-12-16 (1015 hPa). The beginning of a high-pressure situation is characterized by a strong atmospheric stability combined to a pollution episode due to agriculture activity from wide European area, as far as Eastern Europe, leading to an accumulation of PM10 within the boundary layer. A sharp rise in PM10 simulated concentration is observed on the 11th of March (more than twofold). These atmospheric conditions do not affect NOx concentration, which is more driven by local traffic emissions. However, both PM10 and NOx concentrations are sensitive to rainfall which occurs on the 2nd and 5th of March and results in pollutant deposition on the ground. During these days, NOx concentration reaches its lowest levels.

NOx concentration levels mostly depend on the density of the traffic network, with higher pollution levels during weekdays than during week-ends or holidays. Saturday the 5th of March, was a return-from-holiday and one would expect a peak in NOx concentrations. However, this was attenuated by rainfall.

![Fig. 2. Time-series of NOx and PM10 simulated concentrations (µg/m³) in Paris for 10 days in March 2016 (hourly data).](image-url)

<table>
<thead>
<tr>
<th>March 2016</th>
<th>[NOX] (µg/m³)</th>
<th>[PM10] (µg/m³)</th>
<th>Surface Pressure (hPa)</th>
<th>Wind Direction [Daily average velocity (m.s⁻¹)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 Wednesday* H</td>
<td>38.2</td>
<td>10.5</td>
<td>994</td>
<td>W [5.4–5.8]</td>
</tr>
<tr>
<td>05 Saturday* H</td>
<td>41.0</td>
<td>11.6</td>
<td>983</td>
<td>NW [3.2–3.3]</td>
</tr>
<tr>
<td>08 Tuesday</td>
<td>68.8</td>
<td>14.0</td>
<td>1001</td>
<td>–</td>
</tr>
<tr>
<td>10 Thursday</td>
<td>62.2</td>
<td>18.3</td>
<td>1001</td>
<td>–</td>
</tr>
<tr>
<td>11 Friday</td>
<td>63.5</td>
<td>46.2</td>
<td>1012</td>
<td>–</td>
</tr>
<tr>
<td>12 Saturday</td>
<td>54.5</td>
<td>44.3</td>
<td>1015</td>
<td>–</td>
</tr>
<tr>
<td>13 Sunday</td>
<td>31.1</td>
<td>28.5</td>
<td>1016</td>
<td>NE [3.9–4]</td>
</tr>
<tr>
<td>14 Monday</td>
<td>52.1</td>
<td>24.2</td>
<td>1014</td>
<td>NE [4–4.3]</td>
</tr>
<tr>
<td>18 Friday</td>
<td>68.0</td>
<td>52.1</td>
<td>1010</td>
<td>–</td>
</tr>
<tr>
<td>21 Monday</td>
<td>50.4</td>
<td>17.4</td>
<td>1008</td>
<td>–</td>
</tr>
</tbody>
</table>

2.3. Model evaluation against local surface observations

PMSS simulations at the surface model layer are compared to measurements of the AIRPARIF network. A thorough work has been carried out to assign model grid-cells to each monitoring-site combining google street view and plans of the French National Geographic Institute. An error in the grid-cell selection would strongly affect the results at such high resolution (Duyzer et al., 2015). Two AIRPARIF stations have been omitted for the model evaluation process due to missing data in the emission inventory along street segments in the vicinity of these stations (BASCH and CELES).

PMSS simulations are in a good agreement with PM10 measurements as shows the squared correlation coefficient (R²), equal to 0.83 and 0.92, and the root mean squared error (RMSE), equal to 9.57 µg/m³ and 6.21 µg/m³ for traffic and urban background sites respectively (Fig. 3). Model performance is not so satisfactory for NOx measurements with a R² equal to 0.65 and 0.45 for traffic and urban background sites respectively. As shown in the scatter plots the model overestimates NOx

![Image](image-url)
maxima, especially in traffic sites, resulting in large overall error (RMSE equal to 81.57 μg/m³). Moreover, PMSS simulations fail to reproduce some nocturnal peaks of the NOx concentration. On the contrary, PMSS underestimates NOx concentrations at urban background sites. More specifically, at urban sites, PMSS simulations fail to reproduce the morning peak of NOx concentration corresponding to the rush hour (between 7AM and 8AM). The large difference in the bias between NOx and PM10 is probably due to errors in the emissions inventory and to the simple chemical mechanism of the PMSS model, both having a larger impact on NOx concentrations than on PM10.

Although the model evaluation has pointed out some limitations of the PMSS simulations, overall the model performance is good for PM10. NOx simulations are not so satisfactory for peaks due to traffic emissions input. The reason is most probably the simple chemical mechanism of the PMSS model that fails to represent the concentration of the highly reactive pollutants such as NO. Note that the error for NO2 is smaller than for NO for traffic stations (RMSE(NO2) = 21.9 μg/m³ vs RMSE(NO) = 72.3 μg/m³) and similar for urban background stations.

Despite of these model limitations, we assume that the model captures the actual spatial variability of pollution. In the following, these simulations are used to assess the spatial representativeness of each AIRPARIF station during the 10 days of March 2016.

2.4. The spatial representativeness approach

The spatial representativeness area of a monitoring-site consists of all the points around the station where the concentration is linked to the concentration at the monitoring-site location, through a given criterion. Here we develop an alternative approach that focuses on the daily variability through the definition of “similarity” area. It aims at being a complementary method, with respect to those used to evaluate air quality directive limits.

This area integrates points for which the daily temporal variability is highly correlated to the temporal variability of the concentration at the reference point (monitor), and the daily bias with respect to the concentration at the monitor location, remains below a chosen threshold.

The model grid-cell corresponding to the location of the monitor station, called “pseudo-station” hereafter, is used as reference value, instead of the monitoring stations. Indeed, due to the discrepancies between observations and simulations, using actual measurement would lead to inconsistent results when studying the spatial representativeness of stations using simulations.

In two cases, (BASCH and CELES stations), the lack of emission sources along a street segment in the vicinity of the station led us to slightly shift the “pseudo-station”. Those both virtual stations will be renamed “BASCH_v” and “CELES_v”. CELES has been shifted by 600 m from the real monitoring-site position in the northwest direction, on the same road. BASCH has been moved by 60 m to be placed in another avenue (exit of the crossroad “Avenue Jean Moulin” instead of “Avenue du General Leclerc”). Those two transfers are made by respecting the same road and urban landscape conditions (subjective analysis). We indeed checked that there is no lack of emission sources along this new street segment in the vicinity of the virtual stations. Indeed, a further analysis with corrects simulations would be necessary for completing results around the actual station locations.

Fig. 3. Scatter plots of measured vs simulated hourly concentrations for NOx (top) and PM10 (bottom) at traffic (left) and urban (right) monitoring sites. The black line represents y = x. The dotted line represents the linear regression between AIRPARIF measurements and PMSS simulations.
For evaluating the relevance of the similarity approach, with comparison to homogeneity optimal thresholds must be chosen, both for the correlation coefficient and the root mean square difference. We use the 20% threshold for homogeneity, to be consistent with previous studies. Criteria thresholds are applied over squared areas of 1.2 × 1.2 km² centered around each pseudo-station. The size of these squares was chosen to be large enough to encompass both high (traffic network and dense residential areas) and low emission zones (parks or part of the Seine River).

Similarity areas are thus obtained by the combination of a (1) 0.1 high correlation coefficient R (Eq (1)) and a (2) low normalized root mean square error NRMSE (Eq (2)).

$$R(\text{ref}, \text{val}(x,y)) = \frac{\sum_{n=0}^{N-2} (\text{ref}(0) - \langle \text{ref} \rangle)(\text{val}(x,y) - \langle \text{val} \rangle)}{\sigma_{\text{ref}} \sigma_{\text{val}(x,y)}}$$ (1)

Where, \(\text{ref}(0)\) is the PM₁₀ or NOₓ hourly concentration at the pseudo-station, \(\text{val}(x,y)\) the PM₁₀ or NOₓ hourly concentration at each grid-cell, \(\langle \text{ref} \rangle\) the PM₁₀ or NOₓ daily concentration at the pseudo-station, \(\langle \text{val} \rangle\) daily concentration at each grid-cell, \(\sigma_{\text{ref}}\) the PM₁₀ or NOₓ daily standard deviation at the pseudo-station and \(\sigma_{\text{val}(x,y)}\) the PM₁₀ or NOₓ daily standard deviation at each grid-cell.

$$\text{NRMSE}(\text{ref}, \text{val}(x,y)) = \frac{\sqrt{\sum_{n=0}^{N-2} (\text{ref}(0) - \langle \text{val} \rangle)^2}}{\langle \text{ref} \rangle}$$ (2)

where \(\text{ref}(0)\) is the PM₁₀ or NOₓ hourly concentration at the pseudo-station, \(\text{val}(x,y)\) the PM₁₀ or NOₓ hourly concentration at each grid-cell and \(\langle \text{ref} \rangle\) the PM₁₀ or NOₓ daily concentration at the pseudo-station.

Homogeneity areas are determined from daily-averaged simulated concentrations applying a threshold of 20% of the pseudo-measure, as recommended by the European Commission for uncertainty assessment in the Directive 2008/50/EC (EC, 2008) (from 15% to 25% depending on the measured pollutant) and used in literature (Vitali et al., 2016; Piersanti et al., 2015; Blanchard et al., 1999; Janssen et al., 2008). This criterion will be called EC criterion hereafter (Eq. (3)).

$$\text{EC criterion} = \frac{\text{abs}(\langle \text{val} \rangle - \langle \text{ref} \rangle)}{\langle \text{ref} \rangle} \times 100$$ (3)

Where, \(\langle \text{ref} \rangle\) is the PM₁₀ or NOₓ mean daily concentration at the pseudo-station and \(\langle \text{val} \rangle\) the PM₁₀ or NOₓ mean daily concentration at each grid-cell.

PM₁₀ concentrations are characterized by a large temporal variability due to dust episodes occurring on some of the days within the ten days period of the study (Fig. 1). To reduce this regional scale effect on the statistics and highlight local effects such as urban emission sources we normalized PM₁₀ data on a daily basis (Eq. (4)).

$$\text{[PM₁₀].normalized} = \frac{\text{[PM₁₀]} - \text{[PM₁₀]}_{\text{min area}}}{\text{[PM₁₀]}_{\text{max area}} - \text{[PM₁₀]}_{\text{min area}}}$$ (4)

Where, \([\text{PM₁₀}]_{\text{normalized}}\) is the PM₁₀ hourly normalized concentration at each grid-cell, \([\text{PM₁₀}]_{\text{x,y}}\) is the PM₁₀ hourly concentration simulated at each grid-cell, \([\text{PM₁₀}]_{\text{min area}}\) and \([\text{PM₁₀}]_{\text{max area}}\) are the 0.1st and 99.9th percentiles of the daily averaged PM₁₀ concentrations over an area of 1.2 × 1.2 km² around the station.

The previous criteria are applied on the simulated concentration fields around each traffic station. An algorithm selects the connected pixels that satisfy the aforementioned criteria and incorporate the « pseudo-station » pixel. Two pixels are considered “connected” when they are neighbors and they respect the threshold criteria. We thus focus on the representativeness area strongly connected to the station. In some cases with moderated traffic, both sidewalks are selected. However, traffic impact is not always symmetric over both sidewalks bordering the traffic road. It is difficult to fully assess this result, since it relies on PMSS simulations.

As an example, Fig. 4 shows the correlation coefficient (R) and NRMSE values estimated at each model grid-cell over an area of 1.2 × 1.2 km² around the around Champs-Élysées Avenue monitoring-site (ELYS) on the 2nd of March 2016. The highest R values (purple color) are obtained in the vicinity of the station, along the avenue, and along the Seine bank. The minimal NRMSE values (from dark blue to green) are observed along a line inside the Champs-Élysées Avenue. The two criteria are thus complementary and their combination results in the definition of an area inside which concentration levels remain close to the concentration at the location of the station.

To choose thresholds for \(\rho\) and NRMSE, we consider two conditions:

(i) that the size of the defined area lies within a reasonable range and

(ii) that such an area is obtained most of the days of the study.

The European Air Quality Directive (EC/2008/50) specifies that a sampling point must be sited in such a way that the air sampled is representative of air quality for a street segment no less than 100 m in length at traffic-oriented sites. Indeed, the selected area must be large enough to get beyond the pseudo-station. Here we fix the lower limit at 300 m² and the upper limit at 400 × 10³ m² to avoid incorporating the entire domain centered around the monitoring-site (squares of 1.2 × 1.2 km²).

For example, on the 2nd of March 2016, around the monitoring-site located on the avenue des Champs-Élysées, the selected similarity area with R coefficient equal to 0.7 and NRMSE value of 0.45 is considered as a success with a selected area of 8.9 × 10³ m², superior to 300 m² and inferior to 400 × 10³ m² (Fig. 5).

Criteria thresholds to select similarity areas have been determined by an iterative analysis from all traffic-oriented monitoring-site areas over the 10-days with a step of 0.05 for both correlation and NRMSE values. This analysis is carried out on traffic-sites, because between road and sidewalk there is the highest degree of variability so we can check if the retained thresholds allow the distinction between the road and sidewalk and evaluate the impact on distance to the road. Then the same threshold values are applied on the urban-background sites.

For each threshold, a score is estimated by counting the number of days on which the size of the selected area ranges within the chosen boundaries. The maximum score for each site is 10. Finally, a total score
is calculated from all stations for the 10 days and reported as percentage of success.

The main difficulty is to find a combination of criteria thresholds that involves a good agreement for the maximum of days and the maximum of traffic-oriented areas.

In the case where two different combinations of criteria thresholds give the same score (percentage of success), the retained combination is the more restrictive (i.e. the higher \(R \) coefficient correlation and/or the lowest NRMSE value). Table 3 summarizes the results of this iterative analysis for the 5 traffic-oriented monitoring-sites and for the 10 days of the study.

For NO\textsubscript{x} similarity area, with a constant correlation coefficient of 0.7 and a NRMSE varying from 0.4 to 0.5 with a 0.05 step, the total success rate is comprised between 90 and 100%. Combination of \(R \) coefficient equal to 0.7 and NRMSE value of 0.4 selects too restrictive areas 5 times: 1 time (1 day) for 2 monitoring-site areas: BASCH\textsubscript{v}, ELYS, CELES\textsubscript{v} and 2 days for HAUS monitoring-site area. With correlation coefficients of 0.75 and 0.8 and NRMSE equal to 0.5, success rate is 98%. The combination of \(R \) coefficient equal to 0.7 and NRMSE equal to 0.45 and 0.5 has a 100% success rate for the 10 days and 5 traffic-oriented areas. In that case, the most restrictive criterion threshold is retained, namely \(R = 0.7 \) and NRMSE = 0.45.

Success rates in the selection of similarity areas are lower for PM\textsubscript{10} than for NO\textsubscript{x}. This is probably due to the fact that part of the local variability is overshadowed by the homogeneous regional signal of PM\textsubscript{10} concentrations. Thus traffic has a smaller contribution for PM\textsubscript{10} than for NO\textsubscript{x} resulting in similarity areas too large (> 400 \(\times \) \(10^3 \)m2). For correlation coefficients of 0.7, 0.75 and 0.8 and NRMSE = 0.3, success rates are in the range of 76–78%. With a combination of a correlation coefficient of 0.75 and NRMSE values of 0.25, 0.3 and 0.35,

Table 3

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Criteria thresholds</th>
<th>Success rates for the ten days</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>NRMSE</td>
<td>BASCH\textsubscript{v}</td>
<td>CELES\textsubscript{v}</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>0.7</td>
<td>0.4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>0.7</td>
<td>0.3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.35</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.25</td>
<td>10</td>
</tr>
</tbody>
</table>

b)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Success rates for the ten days</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>NRMSE</td>
<td>BASCH\textsubscript{v}</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>453x103</td>
</tr>
</tbody>
</table>

Fig. 5. NO\textsubscript{x} similarity area around Champs-Élysées Avenue on the 2nd of March 2016. The red cross shows the pseudo-station location.
total success rates vary between 68% and 78%. However, NRMSE = 0.3 is not restrictive enough, resulting in the selection of vast, non-realistic similarity areas whereas 0.25 is too restrictive (OPERA area). The final similarity criteria thresholds resulting from the iterative analysis for similarity for the 5 traffic-oriented areas are given in bold letters in Table 3a.

Success rates for the selection of the daily homogeneity representativeness area using the fixed 20% “EC criterion” are shown in Table 3b. Total success rate for homogeneity areas are generally lower than for similarity areas. Detection of NOx homogeneity areas has a success rate of 46% (100% for similarity areas). PM10 success rates for homogeneity and similarity areas are of the same order of magnitude 80% and 78% respectively. NOx homogeneity areas are particularly restrictive around Boulevard Haussmann monitoring-site (HAUS) and around the bank of the Seine River (CELES_v) due to the strong spatial variability of NOx concentration. Respectively for HAUS and CELES_v, only 2 and 1 out of the 10 selected areas may be considered successful.

The retained thresholds for PM10 are more restrictive than for NOx. This is due to the higher spatial variability of NOx concentrations, which requires less restrictive thresholds in order to retain areas large enough to get beyond the pseudo-station.

3. Results

3.1. Quantitative results

3.1.1. NOx representative areas

3.1.1.1. Traffic-oriented areas. NOx homogeneity and similarity areas around traffic sites for the 10 days in March 2016 are summarized in Fig. 6. NOx traffic-oriented monitoring-sites have a large variability between stations, criteria (homogeneity vs similarity) and across the ten days period. NOx traffic-oriented representativeness areas are comprised between 15 m² (minimum HAUS homogeneity area) and 51.5 × 10³ m² (maximum ELYS homogeneity area). A large variability is observed between the five traffic-oriented areas. ELYS has the largest similarity area, whereas OPERA has the smallest one, averaged over the 10 days. ELYS area is five times larger than the OPERA area (16.6 × 10³ m² vs 1.7 × 10³ m²). ELYS station is located on a sidewalk along the wide Champs-Élysées Avenue whereas OPERA station is located on a crossroad and integrates contributions from several streets. ELYS has the largest homogeneity area whereas CELES_v has the smallest one (18.3 × 10³ m² vs 74 m²).

Similarity areas are larger than homogeneity areas for CELES_v (ratio similarity (S)/homogeneity (H) = 164), HAUS (ratio S/H = 18) and BASCH_v (ratio S/H = 6). Similarity and homogeneity areas are of the same order of magnitude for ELYS. Homogeneity area is negligible for OPERA with a representativeness area averaged across the ten days of 74 m².

In order to get a synthetized result, the “most realistic” representativeness area is taken as the intersection of representativeness areas obtained at least seven days out of ten (70%). Applying a more restrictive condition (e.g. 100% of the time) leads to very small areas, whereas using the mean representativeness area across the ten days leads to a non-realistic representativeness area, given the high variability of selected areas across the ten days. As shown in Table 4, CELES_v station has the smallest NOx homogeneity area (18 m²) whereas BASCH_v has the smallest similarity area (846 m²). ELYS has the largest homogeneity area (2844 m²) and CELES_v has the largest similarity area (2745 m²). Similarity areas are larger than homogeneity areas with a ratio ranging between 3.6 (BASCH_v) and 152.5 (CELES_v), except the ELYS station, where both areas are of the same order of magnitude.

The most probable homogeneity area is in some cases not significant (18 m² and 27 m² for NOx at CELES_v and HAUS monitoring-sites respectively). A possible explanation for this, is the 20% threshold, stated for consistency with literature values, is not optimal for data issued from the PMSS simulation, contrary to the thresholds used for similarity areas.

3.1.1.2. Urban background areas. Fig. 7 summarizes the representativeness areas around NOx urban background monitoring-sites for the 10 days. Across the study period and all stations, mean NOx urban background areas are fifty-one times larger than NOx traffic-oriented areas (411 × 10³ m² vs 8.2 × 10³ m²). NOx urban background stations representativeness areas range between 9.6 × 10³ m² (minimum PA12 homogeneity area) and 932.0 × 10³ m² (maximum PA12, similarity area) whereas traffic-oriented stations representativeness areas range between 15 m² and 51.5 × 10³ m².

In most cases, the representativeness areas of urban background stations cover the neighborhood of the station. Representativeness areas of monitoring-sites located on schoolyards (PA12 and PA07) are in some cases very small but they still cover part of the neighborhood with a minimum value of 9.6 × 10³ m² (minimum PA12 homogeneity area) and 19.9 × 10³ m² (minimum PA07 similarity area). In fact, those monitoring-sites are partly influenced by traffic emissions due to their proximity to the roadside.

Large differences between the representativeness areas of the NOx urban background stations are found. A ratio of 2.1 is estimated between the monitoring-site located on a pedestrian square close to the Centre Pompidou (PA04C) and the PA12 site (513.0 × 10³ m² vs. 242.7 × 10³ m² averaged over ten days for homogeneity and similarity criteria).

By averaging across the ten days and all urban background areas, we find that NOx similarity areas are 1.3 times higher than NOx homogeneity areas (468.7 × 10³ m² vs 353.5 × 10³ m²). Similarity area values span over a greater range across the ten days of the study than homogeneity areas, particularly for PA07 and PA12. Homogeneity area values at PA15L, a monitoring-site located within a stadium close to “Boulevard Peripherique” and another major road during the 10 days of the study have the smallest dispersion. This can be explained by the sharp spatial gradient of pollutant concentration at the proximity of...
these roads.

NO$_x$ urban background representativeness areas obtained seven days out of ten (Table 5) are three hundred times wider than NO$_x$ traffic representativeness areas (1.2 × 103 m2 vs 366.5 × 103 m2). PA04C monitoring-site is the least representative (121.7 × 102 m2 and 193.8 × 103 m2 for the largest homogeneity and similarity areas respectively). PA13 (monitoring-site located in the Choisy Park) and PA12 in the schoolyard have the larger homogeneity and similarity areas (464.0 × 103 m2 and 497.6 × 103 m2 respectively). Homogeneity and similarity areas in most cases are of the same order of magnitude with the exception of PA07 station, where similarity area is two times larger than homogeneity area.

3.1.2. PM$_{10}$ representativeness areas

3.1.2.1. Traffic-oriented areas. PM$_{10}$ traffic-oriented areas are seventeen times larger than NO$_x$ traffic-oriented areas. Fig. 8 summarizes PM$_{10}$ representativeness areas of traffic sites for the 10 days of the study. In some cases, PM$_{10}$ traffic-oriented areas cover a vast surface around the monitor (maximum of 846.2 × 103 m2 for BASCH$_V$ similarity area). A strong variability is observed between the monitoring-sites areas, with the highest ratio of twenty-eight being found between the largest representative area around HAUS (279 × 103 m2 averaged over ten days for both similarity and homogeneity) and the smallest one around OPERA (9.9 × 103 m2). PM$_{10}$ similarity areas are in general, larger than PM$_{10}$ homogeneity areas with a ratio between 1.5 (ELYS) and 5 (BASCH$_V$) except for HAUS areas where they both are of the same order of magnitude with very vast areas. In most of the cases, representativeness areas have a high variability across the ten days (see boxplots width of BASCH$_V$ similarity area, ELYS, HAUS and CELES$_V$).

By considering areas shared 70% of the time (Table 6), PM$_{10}$ representativeness areas are nine times larger than NO$_x$ representativeness area (11.0 × 103 m2 vs 1.2 × 103 m2). A large variability is shown between stations with the OPERA site being the less representative monitor location (171 m2 and 1.2 × 103 m2 for homogeneity and similarity areas respectively). ELYS and BASCH$_V$ have the largest homogeneity and similarity areas with 26.0 × 103 m2 and 38.4 × 103 m2 respectively. Similarity areas are larger than homogeneity areas for HAUS, OPERA and BASCH$_V$ with a ratio of 4.8–13.6. Inversely, ELYS similarity areas are two times lower than the corresponding homogeneity areas. For CELES$_V$, similarity and homogeneity area are of the same order of magnitude.

Table 5

<table>
<thead>
<tr>
<th>ID STATIONS</th>
<th>Areas shared seven days out of ten</th>
<th>Statistics over ten days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Homogeneity (H) (m2)</td>
<td>Similarity (S) (m2)</td>
</tr>
<tr>
<td>PA07</td>
<td>18</td>
<td>2745</td>
</tr>
<tr>
<td>PA04C</td>
<td>121.7 × 103</td>
<td>193.8 × 103</td>
</tr>
<tr>
<td>PA13</td>
<td>464.0 × 103</td>
<td>495.0 × 103</td>
</tr>
<tr>
<td>PA12</td>
<td>431.8 × 103</td>
<td>497.6 × 103</td>
</tr>
<tr>
<td>PA15L</td>
<td>445.1 × 103</td>
<td>479.3 × 103</td>
</tr>
<tr>
<td>OPA12</td>
<td>234</td>
<td>846</td>
</tr>
<tr>
<td>ELYS</td>
<td>2844</td>
<td>2529</td>
</tr>
<tr>
<td>HAUS</td>
<td>27</td>
<td>1728</td>
</tr>
<tr>
<td>OPERA</td>
<td>90</td>
<td>1125</td>
</tr>
<tr>
<td>BASCH$_V$</td>
<td>2844</td>
<td>2529</td>
</tr>
<tr>
<td>CELES$_V$</td>
<td>121.7 × 103</td>
<td>193.8 × 103</td>
</tr>
</tbody>
</table>

Fig. 7. Boxplots of NO$_x$ homogeneity and similarity areas (m2) around urban background monitoring-sites during the ten days in March 2016. Blue and pink solid lines inside the boxes represent the median and mean values of the distribution respectively, the lower and upper bounds of the boxes represent the 25th and 75th percentiles and low and high whiskers represent the minimum and maximum values.
3.1.2.2. Urban background areas. Fig. 9 summarizes PM$_{10}$ representativeness areas around urban background monitoring-sites for the 10 days in March 2016. PM$_{10}$ representativeness areas are generally larger than NO$_x$ representativeness areas for urban background monitoring-site with a ratio of 1.9 across all days and urban background stations (772 × 103 m2 vs 411 × 103 m2) and are comprised between 289 × 103 m2 and 988 × 103 m2.

Here again, we observe a large variability between representativeness areas of urban background monitoring-sites with a highest ratio of 1.8 between the most (PA12) and the less representative sites (PA04C). PM$_{10}$ homogeneity and similarity areas are of the same order of magnitude with mean values across all days and urban background stations equal to 791.5 × 103 m2 and 753.2 × 103 m2 respectively. PM$_{10}$ concentrations are more spatially homogeneous than NO$_x$ concentrations that have a high spatial gradient. For PA15L and PA12, the 25th percentile values of similarity areas are higher than the ones for homogeneity areas but the minimum and maximum values are very close.

By considering areas shared seven days out of ten (Table 7), PM$_{10}$ urban background representativeness areas are two times larger than NO$_x$ urban background representativeness areas (799.4 × 103 m2 vs 366.5 × 103 m2). PM$_{10}$ urban representativeness areas are also seventy-five times larger than PM$_{10}$ traffic representativeness areas (799.4 × 103 m2 vs 10.6 × 103 m2). PA04C has the lowest representativeness area (410.4 × 103 m2) and 428.2 × 103 m2 for homogeneity and similarity areas respectively. PA12 has the highest homogeneity (931.7 × 103 m2) and similarity area (955.9 × 103 m2).

<table>
<thead>
<tr>
<th>Areas shared seven days out of ten</th>
<th>Statistics over ten days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneity (H) [m2]</td>
<td>Similarity (S) [m2]</td>
</tr>
<tr>
<td>OPERA</td>
<td>BASCH_v</td>
</tr>
<tr>
<td>171</td>
<td>2.8 × 103</td>
</tr>
<tr>
<td>4.3 × 103 [4.4 × 103]</td>
<td>40.5 × 103 [29.4 × 103]</td>
</tr>
<tr>
<td>15.6 × 103 [23.6 × 103]</td>
<td>197.7 × 103 [244.0 × 103]</td>
</tr>
</tbody>
</table>
3.2. Characterization of urban areas

A large variability among stations is observed for the most probable traffic-oriented similarity areas (i.e. mean areas and areas shared seven days on ten), ranging from 18 m² (NOx homogeneity area at CELES_v station) to 38.4 × 10³ m² (PM10 similarity area at BASCH_v station), see Tables 4 and 6. This large variability may be related to the monitoring-site location and its vicinity (see Table 1). Two traffic-oriented monitoring-sites are located on a crossroad (OPERA is in the middle of the crossroad and BASCH_v is at the exit of the crossroad). Three traffic-oriented monitoring-sites are located on a sidewalk along roadside (HAUS, ELYS and CELES_v).

In this section, we will investigate the possible impact of specific urban features around the station on the differences in similarity areas. The specific features characterizing the representativeness areas selected around traffic-oriented monitoring-sites are listed in Table 8. Their common feature is the sidewalk in the immediate proximity to the road.

Table 7
PM10 background representativeness areas (m²) shared 70% of the time, average areas over the days (m²) and standard deviation of the areas over the ten days (m²).

<table>
<thead>
<tr>
<th>ID STATIONS</th>
<th>Areas shared seven days on ten</th>
<th>Statistics over ten days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Homogeneity (H) (m²)</td>
<td>Similarity (S) (m²)</td>
</tr>
<tr>
<td>PA15L</td>
<td>833.0 × 10³</td>
<td>881.9 × 10³</td>
</tr>
<tr>
<td>PA12</td>
<td>931.7 × 10³</td>
<td>855.9 × 10³</td>
</tr>
<tr>
<td>PA13</td>
<td>849.4 × 10³</td>
<td>855.7 × 10³</td>
</tr>
<tr>
<td>PA04C</td>
<td>410.4 × 10³</td>
<td>428.2 × 10³</td>
</tr>
<tr>
<td>PA07</td>
<td>920.2 × 10³</td>
<td>928.1 × 10³</td>
</tr>
</tbody>
</table>

3.2.1. Traffic-oriented monitoring-sites located on crossroad (BASCH_v and OPERA)

As shown in section 3.1.1 NOx representativeness areas are smaller than the PM10 representativeness areas for both monitoring-sites (0.6 × 10³ m² vs 10.6 × 10³ m² averaged across criteria and stations). NOx and PM10 similarity areas at the OPERA monitoring-site are of the same order of magnitude (1125 m² and 1179 m², see Tables 4 and 6) and both include a roadside segment of 140 m along the large crossroad. However, as shown in Fig. 10 the diurnal variability of the selected PM10 similarity area is much higher than for NOx (see also the standard deviations of similarity areas in Tables 4 and 6).

Two times out of ten, PM10 similarity area around the OPERA monitoring-site includes main traffic-roads and secondary axes over a vast area around the station (Fig. 10d). The most probable NOx similarity area around the BASCH_v station is smaller than the OPERA one. It includes a small portion of the sidewalk and the street along a distance of about 100 m. The PM10 similarity area around BASCH_v is larger than the one around the OPERA monitor and also, larger than the NOx area around BASCH_v. It includes a part of the street side and the sidewalk where the monitoring-site is located (avenue Jean Moulin) over a length of 700 m but also two other large avenues, one leading to the crossroad, and another one further down Jean Moulin avenue on the south-east direction. Thus, traffic sources from different avenues more or less distant to the monitor site may contribute to the pollutant concentration measured at the BASCH_v monitoring-site. On the contrary, OPERA is isolated in the middle of the crossroad and does not integrate pollution sources from the nearby roadside except for a small road segment. These differences in the topography of the two stations explain the large discrepancy in PM10 representativeness areas between the two sites (most probable PM10 similarity area 38.4 × 10³ m² (BASCH_v) vs 1179 m² (OPERA)).
3.2.2. Traffic-oriented monitoring-sites located along a roadside (ELYS, HAUS and CELES_v)

ELYS monitor station is located on the sidewalk of a wide urban boulevard. NO\textsubscript{X} similarity area includes the sidewalk of the station along a distance of 500 m, while the much larger PM\textsubscript{10} area (2.5 \times 10^3 m2 vs 17.1 \times 10^3 m2 for NO\textsubscript{X} and PM\textsubscript{10} respectively) includes both sidewalks of the road along a distance of 700 m as well as a 400 m segment of a sidewalk from the station in northwest direction (Fig. 11). PM\textsubscript{10} similarity area at the ELYS monitor has a stronger variability during the ten days of the study than NO\textsubscript{X} similarity area with a standard deviation over ten days of 360 \times 10^3 m2 (PM\textsubscript{10}) and 15.2 \times 10^3 m2 (NO\textsubscript{X}). Secondary arteries perpendicular to the primary axe are included in the selected area 10% of the time for NO\textsubscript{X} and 50% of the time for PM\textsubscript{10}. Four days out of ten, all the streets of the domain shown in Fig. 11b as well as part of the Seine River are included in the PM\textsubscript{10} similarity area.

The most probable PM\textsubscript{10} similarity area around Boulevard Haussmann monitoring-site (HAUS) is larger than the NO\textsubscript{X} one (12.3 \times 10^3 m2 and 1.7 \times 10^3 m2, respectively). NO\textsubscript{X} similarity area includes the sidewalk of the station along a distance of 200 m from the station and a small street perpendicular to the Haussmann boulevard, in the northwest direction. PM\textsubscript{10} similarity area includes a portion of sidewalk over 400 m and secondary axes (Fig. 11). The PM\textsubscript{10} similarity area has a higher variability for these ten days than the NO\textsubscript{X} area (see standard deviations on Tables 4 and 6). 20–30% of the time, NO\textsubscript{X} similarity areas include small segments of secondary axes, whereas 40 and 50% of the time, PM\textsubscript{10} similarity areas include all streets segments except from the busy roadside near the monitoring-site.

The extents of the most probable NO\textsubscript{X} and PM\textsubscript{10} similarity areas around the Seine River Bank monitoring site (CELES_v) are close to each other (2.7 \times 10^3 m2 vs 4.6 \times 10^3 m2 for NO\textsubscript{X} and PM\textsubscript{10} respectively). They both include a segment of the sidewalk and roadside south-east from the monitoring-site along a distance of 640 m. Similarity areas extend along the bank of the Seine river four days out of ten for PM\textsubscript{10} whereas for NO\textsubscript{X} selected similarity is not as widely spread. One day out of ten, PM\textsubscript{10} similarity area selects secondary axes and crosses the bridge. Note that the Southeast part of the road is not selected, due to the lack of emission data in the simulation.

The most probable NO\textsubscript{X} similarity areas are of the same order of magnitude for the three monitoring sites (around 2 \times 10^3 m2). However, the CELES_v PM\textsubscript{10} area is smaller than the two other (4.6 \times 10^3 m2 (CELES_v) vs 17.1 \times 10^3 m2 (ELYS) and 12.2 \times 10^3 m2 (HAUS)). This difference may be attributed to the road configuration. ELYS is located at the edge on the 20 m wide sidewalk of a 30 m wide avenue, whereas HAUS is located at the edge on the 9 m wide sidewalk of a 18 m wide road. The CELES_v monitor has the particularity to be located on the sidewalk (6 m wide) of a road (12 m wide) from which it is separated with a 3 m wide bicycle path.
4. Discussions and conclusions

A new methodology has been developed to assess daily NO\textsubscript{X} and PM\textsubscript{10} representativeness areas around traffic and urban-background monitoring-sites of the air-quality network of AIRPARIF in the city of Paris, France. It is based on a high-resolution model simulation (PMSS model) during ten days in March 2016, including a typical PM\textsubscript{10} winter pollution episode due to high-pressure conditions. The PMSS modeling system provided pollutant concentration fields at a 3 m horizontal resolution within a 2 m thick surface layer. Modeled concentrations were compared to measurements at 10 monitoring-sites, showing that simulations are in good agreement with the observations for PM\textsubscript{10} and stay realistic for NO\textsubscript{X} even if model has some difficulty to reproduce NO\textsubscript{X} concentration peaks. To perform this study, we assume that the model properly reproduces the pollution spatial variability in Paris.

A representativeness area should be seen as an area where pollution variations are very close to those at the monitoring-site. Two kinds of such “resemblance” were investigated in this study: homogeneity and similarity. Homogeneity areas integrate points where daily concentrations do not differ more than 20% of the daily averaged value at the monitoring-site location. Similarity areas incorporate points satisfying the additional condition to be strongly correlated with concentrations at the location of the monitoring-site. We first determined the optimal thresholds on correlation and normalized root mean square, considering that the obtained area surface must be confined within the [300 and 400 \times 10^3 m2] range, for a maximum number of days and a maximum number of sites. A sensitivity analysis was performed to choose the lowest NRMSE and the highest value of correlation coefficient specific for NO\textsubscript{X} and PM\textsubscript{10} traffic-oriented sites.

This new approach has been found to be robust despite some gaps in the traffic emissions and the small dataset (only ten days). The same criteria thresholds were applied for the different monitoring-sites of the AIRPARIF network leading to realistic representativeness areas for both urban background and traffic sites. The similarity criteria thresholds applied in the present study are most probably dependent of the study area and period as well as of the dispersion model. However the proposed methodology is generic and could be easily repeated under a different study setup.

Homogeneity and similarity areas are most of the time of the same order of magnitude for both NO\textsubscript{X} and PM\textsubscript{10} urban background monitoring-site. The difference between these two representativeness areas is more pronounced around traffic monitor-sites and in most cases, the

Fig. 11. Same as Fig. 10, but for three monitor sites, ELYS (top), HAUS (middle) and CELES_v (bottom).
most probable similarity area is larger than the most probable homogeneity area. The definition of similarity areas is composed of two components, a threshold on the correlation coefficient, to ensure that the time series inside the similarity area have correlated variations, and a threshold on the NRMSE, to ensure that the time series variations have similar values. As a consequence, the daily average does not strongly differ as well. The overall criterion to select similarity areas integrates the condition of homogeneity with an additional constraint on the correlation coefficient. To check this hypothesis, we compared representativeness areas selected on the basis of a condition only on the NRMSE against homogeneity areas. For PM$_{10}$ of urban background stations and for NO$_X$ of 3/5 urban background stations (PA15L, PA12, PA13), NRMSE and homogeneity criteria select an area (km^2) similar with respectively an averaged ratio between the most probable NRMSE area and the most probable homogeneity area to 1 and 1.1. NRMSE most probable NO$_X$ areas are wider than most probable NO$_X$ homogeneity ones for 2/5 urban stations with a ratio to 1.6 (PA04C) and 1.9 (PA07), and much larger for traffic stations with an averaged ratio to 77.2 (range ratio between 1.3 (ELYS) and 213 (CELES,y)).

Most probable PM$_{10}$ NRMSE areas are larger than most probable PM$_{10}$ homogeneity area for OPERA, BASCHV and HAUS with an averaged ratio between the most probable NRMSE area and the most probable homogeneity area of 8.6. For CELES,y they have the same value. For ELYS monitoring-site, most probable PM$_{10}$ homogeneity areas are slightly larger than most probable PM$_{10}$ NRMSE areas with a ratio of 0.7.

NRMSE thresholds were determined using a sensitivity analysis which integrates the daily variability and the diversity of urban elements landscape (by defining areas limits $> 300 \text{ m}^2$ and $< 400 \times 10^2 \text{ m}^2$). Given the retained thresholds, this criteria is less stringent than homogeneity criteria. However, homogeneity criteria do not integrate any area specificities or daily peak. In the FAIRMODE and AQUILA inter-comparison studies, representativeness areas of one traffic and two urban background monitoring-sites were estimated from annual year data (in Belgium). In this framework, results obtained with eleven methodologies have been compared, and show an important variability (FAIRMODE report, Kracht et al. 2017): PM$_{10}$ traffic-oriented representativeness areas are estimated between 0.001 km2 (10^2 m^2) and 160 km2 whereas here, most probable PM$_{10}$ traffic-oriented similarity area range between 0.001 km2 (1.2 $\times 10^2 \text{ m}^2$) and 0.003 km2 (38.4 $\times 10^2 \text{ m}^2$). In the FAIRMODE report, PM$_{10}$ urban background representativeness areas are estimated between 1 km2 (10^4 m^2) and 700 km2. In our study, most probable PM$_{10}$ similarity and homogeneity areas of urban background monitoring-sites range between 0.4 km2 and 0.9 km2 due to the limitation of the study domain fixed 1.2 km \times 1.2 km around each station.

The representativeness areas estimated in this study show a large daily variability. Traffic variations between working days, week-ends and national holidays as well as meteorological conditions (mainly the wind) are probably the two principal causes of this variability for both PM$_{10}$ and NO$_X$. Unfortunately, the small dataset did not allow us to further investigate the daily traffic variation impact on representativeness areas.

Among the causes of this day-to-day variability, the wind can be suspected to play a role. The influence of the wind speed and wind direction has been investigated. Wind direction was not found to have a significant effect based on this small sample (only ten days and four windy days). The influence of the wind speed on the representativeness areas has been investigated by comparing similarity areas on windy days against non-windy days, we used 3 m/s as threshold to distinguish between the two. Preliminary results suggest that similarity areas are smaller in case of windy days and that the wind impact is stronger for traffic-oriented sites. The ratio between the difference of no windy area and windy area on the mean area for traffic stations is 1.7 and 1.8 respectively for NO$_X$ and PM$_{10}$ and for urban background stations is 1.1 and 0.6 for NO$_X$ and PM$_{10}$. However, such an analysis should be carried out over longer simulation periods to provide statistically significant results.

The study showed that in general, urban background areas are representative of the neighborhood in the vicinity of the monitoring-site whereas traffic-oriented monitoring-sites are representative of specific urban features such as sections of roads and sidewalks along the road. Averaged over all monitoring-sites, most probable similarity areas for urban background monitoring-sites are about seventy times larger than traffic representativeness areas. Averaged over all stations, PM$_{10}$ most probable similarity areas are 2 times larger than NO$_X$ areas around urban monitors and 8 times around traffic sites. Even if PM$_{10}$ concentrations were normalized to remove part of the regional signal (see Sect. 2.4) the remaining trace of large-scale effects seem to overshadow local effects such as the sharp concentration gradients over the road network.

As a next step, AIRPARIF monitoring-site measurements will be assimilated to the model simulations in order to correct some model artifacts and provide more reliable concentrations as input to the computation of the similarity areas. The present study should be expanded over a much greater number of simulated days, to provide more general conclusions and confirm our assumptions on the influence of parameters such as wind speed and traffic patterns. Then, measurements at monitor sites could be spread across similarity areas depending on the wind vector and provide an information particularly relevant for human exposure estimation.

Acknowledgements

Acknowledgments to ARIA Technologies for giving those simulations for ten days.

References

