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ABSTRACT

This paper investigates the possibility of improving radio interferometric images using an algorithm inspired by an optical method
known as “lucky imaging”, which would give more weight to the best-calibrated visibilities used to make a given image. A fundamental
relationship between the statistics of interferometric calibration solution residuals and those of the image-plane pixels is derived in this
paper. This relationship allows us to understand and describe the statistical properties of the residual image. In this framework, the
noise map can be described as the Fourier transform of the covariance between residual visibilities in a new differential Fourier plane.
Image-plane artefacts can be seen as one realisation of the pixel covariance distribution, which can be estimated from the antenna
gain statistics. Based on this relationship, we propose a means of improving images made with calibrated visibilities using weighting
schemes. This improvement would occur after calibration, but before imaging; it is thus ideally used between major iterations of
self-calibration loops. Applying the weighting scheme to simulated data improves the noise level in the final image at negligible
computational cost.

Key words. instrumentation: interferometers – instrumentation: adaptive optics – methods: analytical – methods: statistical –
techniques: interferometric – radio continuum: general

1. Introduction

Interferometers sample Fourier modes of the sky brightness
distribution corrupted by instrumental and atmospheric effects
rather than measuring the sky brightness directly. This intro-
duces two problems for astronomers to invert: calibration and
imaging. Both of these problems are ill-conditioned.

The problem of imaging consists of correcting for the incom-
plete uv-coverage of any given interferometer by deconvolving
the instrument’s point-spread function (PSF) from images. Its
poor conditioning comes from our limited a priori knowledge of
the sky brightness distribution, combined with large gaps in our
uv-coverage, which prevents us from placing strong constraints
on image deconvolution. It can be better-conditioned in differ-
ent ways, including through the use of weighting schemes (see
Briggs 1995; Yatawatta 2014, and references therein) to improve
image fidelity at the start of deconvolution. When inverting the
imaging problem, we often assume that the sky is stable within
the domain (i.e. is constant in time and frequency). There are
exceptions, such as wide-band deconvolution algorithms (e.g.
Rau & Cornwell 2011) that explicitly take into account the sky’s
frequency dependence, but still assume that the sky brightness
distribution does not vary with time.

The problem of calibration is what concerns us in this paper.
It consists of estimating and correcting for instrumental errors
(which include effects such as antenna pointing errors, but also

the phase delays caused by ionospheric activity, troposphere, and
other factors). Calibration consists of solving for gain estimates,
where a gain models the relationship between the electromag-
netic field of an astrophysical source and the voltage that an
antenna measures for this source. Because measurements are
noisy, calibration often involves some fine-tuning of solution
intervals to ensure that the solutions are well-constrained while
the solution intervals stay as small as signal-to-noise allows. The
calibration inverse problem involves three competing statistical
effects: thermal noise in the measurements, true gain variability,
and sky model incompleteness. If gain solutions are sought indi-
vidually for each measurement, then calibration estimates will be
dominated by thermal noise and will not adequately describe the
actual gains. Similarly, if a single gain estimate is fitted to too
many measurements, the intrinsic gain variability will be aver-
aged out; for example, a choice of time and frequency interval
that is too large will cause the solver to estimate a constant gain
while the underlying function varies quickly, thereby missing
much of the gain structure. This will introduce error, which will
be correlated in time and frequency. This occurs, for example,
when solving for ionospheric phase delays: in the most extreme
case, where the solution interval is significantly larger than the
scale of ionospheric fluctuations, its varying phase can average
out to zero over the interval in time and frequency. Finally, if
the model being fitted is incomplete, un-modelled physical flux
will likely be absorbed unpredictably into both the gain solutions
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and the residual visibilities: this absorption of physical flux into
gain solutions is known as source suppression (see Grobler et al.
2014; Kazemi & Yatawatta 2013, and references therein).

In practice, it is reasonable to assume that gain variation is
generally slower than some given scale: we can then reduce the
noise of our gain estimates by finding a single gain solution for
a small number of measurements, assuming that the underlying
gain variation is very small and stable over short intervals. This
is generally a valid hypothesis, but the specific value for the vari-
ation scale can be contentious. Indeed, while the noise level can
often be treated as constant throughout an observation, the gain
variability itself is generally not constant: there will be time peri-
ods where the gains will tend to remain constant for longer, and
others where variability will be very quick. This means that, for
any choice of calibration interval, some gain estimates will be
better than others, and almost all could have been improved (at
a cost to others) by a different choice of time (and frequency)
intervals.

Since we have measurements that are better-calibrated than
others (in that better estimates for their gains were obtained
through chance alone), we could, in principle, take inspiration
from “lucky imaging” (an optical-domain method for making
good images: for more details, see Fried 1978, and references
therein) to weigh our visibilities according to their calibration
quality. Those weights would in effect be an improvement of
currently existing methods such as clipping noisy residual visi-
bilities: in the extreme case where all visibilities are equally-well
calibrated except a few which are extremely noisy, it should be
equivalent to clipping. Otherwise, the weights should show at
least a slight improvement over clipping.

The key finding of the present paper is a fundamental rela-
tionship between the covariance matrices of residual visibilities
and the map of the covariance in the image plane: the Cov-
Cov relationship between visibility covariance to image-plane
covariance. We show that the pixel statistics in the image plane
are determined by a noise PSF, convolved with each source
in the sky (modelled or not). This noise PSF is the product
of the Fourier transforms of the gain covariance matrix with
each cell mapped not from uv space to lm coordinates but
rather between their respective covariance spaces: from a new
differential Fourier plane (henceforth (δuδv)-plane) to the image-
plane covariance space δlδm. This image-plane covariance space
describes the variance in each pixel and the covariance between
pixels1. It describes the expected calibration artefacts and ther-
mal noise around each source, does not vary as a function of
direction, and is convolved with each source in the field to yield
the final error map. Because all unwanted (in our case, un-
physical) signal can be thought of as noise, we will refer to the
pixel variance map as the noise map.

The notion of a (δuδv)-plane arises organically from the
framework of radio interferometry: we are associating a correla-
tion between visibilities to coordinates in covariance space, just
as we associate the visibilities themselves to the uv-domain. The
(δuδv)-plane is the natural domain of these correlations. As pre-
viously stated, even if all sources in the field are perfectly known
and modelled, a poor choice of calibration interval can introduce
correlated noise in the residuals, which would then introduce
larger variance near sources in the noise map. Conversely, if
calibration is perfect, the noise map should be completely flat

1 The noise PSF also relates δw to δn, as shown in the matrix formal-
ism, but this is not explicitly referenced in the text since visibility space
is usually referred to as “the UV-plane” in literature, rather than “the
UVW-space”.

(i.e. same variance for all pixels), as there would be no noise
correlation between pixels.

The main result of this paper consists in describing a new
adaptive, quality-based weighting scheme based on this insight.
Using the Cov-Cov relationship, we can create a new weighting
scheme by estimating the residual visibility covariance matrix
in a given observation. By weighting visibilities so as to change
their covariance matrix, one can change the shape of the noise
PSF and thus improve the final image: this manifests as either
decreased noise or decreased calibration artefacts. This weight-
ing is applied after calibration, but before image deconvolution;
applying it will therefore not only improve the residual noise
in the image, and thus the sensitivity achievable with a given
pipeline, but will also improve deconvolution by minimising cal-
ibration artefacts in the field. It should thus effectively remove
spurious, un-physical emission from final data products. Esti-
mating the covariance matrix is the main difficulty of our
framework; we do not know the underlying covariance matrix,
and the conditioning of our estimation thereof is limited by the
number of measurements within each solution interval. As such,
we have no guarantee that our estimate of the corrected visibility
covariance matrix is accurate. This problem can be alleviated,
for example, by estimating the covariance matrix for the antenna
gains themselves, and using this estimate to build the visibil-
ity covariance matrix: this effectively improves conditioning
(cf. Sect. 4).

This paper is split into four main sections. In Sect. 2, we
derive the Cov-Cov relationship. With its newfound insights,
we propose quality-based weighting schemes with which to
improve radio interferometric images in Sect. 3. We follow in
Sect. 4 by showing how to estimate, from real data, the covari-
ance matrix from which the quality-based weights are derived.
Our approach seems to give good results. Finally, we close the
paper on a discussion of the applicability and limitations of the
quality-based weighting scheme.

2. Building the noise map

In this section, we derive our first fundamental result: the Cov-
Cov relationship, Eq. (25), which describes how the statistics of
residual visibilities (and thus the antenna calibration solutions,
henceforth gains) relate to the statistics of the image plane, that
is, of images made using the associated visibilities. The dimen-
sions of the matrices (denoted by boldface capital letters) and
vectors (denoted by boldface lowercase letters) used in this paper
are given in Table 1, along with the scalar numbers used to
denote specific dimensions. All other variables are scalars.

2.1. The Cov-Cov relationship in the δuδv plane

Let us begin by defining visibility gains. Using the Radio Inter-
ferometry Measurement Equation formalism for a sky consisting
of a single point source (Hamaker et al. 1996; Smirnov 2011; and
companion papers), we can write the following relation between
the sky and the signal as measured by a single baseline at time t
and frequency ν:

Vtν
pq =

∑
d

Kd
p,tνJd

p,tνBd
ν

(
Jd

q,tν

)H (
Kd

q,tν

)H
+ N. (1)

All the quantities above are 2 × 2 matrices. Equation (1)
implies a linear relationship between the coherency matrix Bd

ν
and the visibilities recorded by a given baseline (Vtν

pq), with the
addition of a thermal noise matrix N, which is also of shape
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Table 1. Meaning and dimensions of vectors and matrices used in
Sect. 2.1.

Scalars

npix Total number of pixels in image plane
& number of cells in uv-grid

nant Total number of antennas in the array
nb Number of visibilities
b Index for a single visibility.

Equivalent to (pq, tν)
τ Equivalent to (t, ν)

Vectors

ỹ Residual image vector, size npix
ε Vector of ε, size npix
γ̃ Contains gain products, size nb. see Eq. (12)
1 Vector containing 1 in every cell, size nb

δubb′ Vector of coordinates in differential Fourier
plane, of length 3.

ld Vector of sky coordinates, of length 3.

Matrices

Vtν
pq Visibility seen by a baseline pq at time and

frequency t, ν. Size 2 × 2.
Kd

p,tν Fourier kernel for direction d, antenna p and
one (t, ν) pair. Size 2 × 2.

J p,tν Jones matrix for antenna p for one (t, ν) pair.
Contains the gains information. Size 2 × 2

B Sky brightness distribution matrix, of size 2 × 2.
N Noise matrix, of size 2 × 2. Contains a single

realisation n of the thermal noise in each cell.
F Fourier transform matrix, of size npix × npix.
Sb Baseline selection matrix, which picks out 1

visibility out of the full set. Size npix × nb
Cb npix × npix convolution kernel that defines

the PSF.
F bb′ Convolution matrix mapping one δuδv to δlδm.

The set of all F bb′ determines the noise-PSF.
Size npix × npix.

Notes. Only scalars which give matrix dimensions or indices are given
here.

2 × 2 and contains different complex-valued realisations of the
noise in each cell. Since electric fields are additive, the sky
coherency matrix can be described as the sum of the contri-
butions from individual sources in directions d in the sky. We
also assume that the sky does not vary over time, that is, that
Bd
ν is not a function of time. The Jones matrices (Jd

...,tν) con-
tain the antenna gain information in matrix form, while Kd

...,tν
is the Fourier kernel. Let us limit ourselves to the scalar case,
which corresponds to assuming that emission is unpolarised. We
assume that Bd = sdI, where s is the flux of our single point
source and I is the 2 × 2 identity matrix. We also assume that
Jp,tν = gp,tνI, where gtν

p is the complex-valued gains of antenna
p at time t and frequency ν. This means that we assume that
the gains are direction-independent, and so Jd

...,tν becomes J...,tν.
Similarly, Kd

p,tν = kd
p,tνI, the Fourier kernel in the direction of the

source, d. The noise matrix N has one realisation of ε in each

cell, where
ε ∼ N (0, σ) + iN (0, σ) , (2)

where σ is the variance of the thermal noise. Let us denote each
(t, ν) pair by τ, and ignore the sky’s frequency dependence. The
following scalar formulation is then equivalent to Eq. (1):

Vτ
pq =

∑
d

sdkd
p,τk

d
q,τ

 gτpgτq + ε, (3)

kd
p,τ = exp

(
2πi

(
up,τld + vp,τmd + wp,τ

(
np − 1

)))
. (4)

Calibration is the process of finding an accurate estimate of
gτp for all antennas p, at all times t and frequencies ν. Since we
are in a direction-independent regime, the quality of our cali-
bration then determines the statistical properties of the residual
visibilities (and the image-plane equivalent, the residual image).
The residual visibilities associated with calibration solutions are
defined as our measured visibilities minus the gain-corrupted
model visibilities. The variable ĝτp then denotes our calibra-
tion estimate for gτp. We now begin to limit the generality of
our framework by assuming that all sufficiently bright sources
have been modelled and subtracted: unmodelled flux is then
negligible. We can then write the residual visibilities as

r̃τpq =
∑

d

sd

(
kd

p,τk
d
q,τ

) (
gτpg

τ
q − ĝ

τ
pĝ

τ
q

)
+ ε. (5)

The flux values in the image-plane pixels2 are the Fourier
transform of the visibility values mapped onto each pixel. This
can be written as

ỹ =


...∑

pq Ir
pq,lm
...

 (6)

Ir
pq,lm =

∑
τ

ωpq,τr̃τpqklm
pq,τ, (7)

where lm are the directional cosine positions of a given pixel,
and klm

pq,τ = kd
p,τk

d
q,τ the Fourier coefficient mapping a point in

Fourier space to a point on the image-plane. The scalar ωpq,τ is
the weight associated to a given visibility. Let us now write this
using a matrix formalism. The contribution of a single visibility
b = (pq, τ) to the image-plane residuals can be written as

ỹb = F
H
Sbωb (κbγ̃ + ε) , (8)

ỹ =
∑

b

ỹb, (9)

where ε is a vector of the ε of Eq. (2) and ỹ is a vector of size
npix, with

κb =
∑

d

sdκ
d
b , (10)

κd
b = kd

p,τk
d
q,τ = klm

pq,τ, (11)

γ̃b = g
τ
pg

τ
q − ĝ

τ
pĝ

τ
p, (12)

γ̃ =


...
γ̃b
...

 , (13)

2 As opposed to the Fourier-plane pixels, which are the elements of the
grid onto which the measured visibilities are mapped for imaging.
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and wb is the scalar weight associated with each visibility. By
default, wb =

1
nb

: all visibilities then have the same weight, and
ỹ then becomes the average of all ỹb. Here, γ̃ is a vector of all
γ̃b, and thus of size nb. Similarly, F is the Fourier kernel, of size
npix×npix. Finally, Sb is a matrix of size npix×nb: its purpose is to
encode the uv-coverage. Each Sb contains only a single non-zero
cell, different for different Sb. The height (number of rows) of Sb
is determined by the size of the uv-grid, and its length (number
of columns) by the number of visibilities.

The order of operations is thus the following: each residual
visibility (κbγ̃ + n) is assigned some weight wb and its uv-
coordinates are set by Sb. The inverse Fourier transform (FH)
is then applied to this grid, and so we recover its image-plane
fringe. By averaging over all fringes, we recover the dirty image.
The residual image will thus depend on three quantities: the
residual gains, the flux in the image, and the weighting scheme.
Let us consider the relationship between the statistics of residual
visibilities and the variance at a given point in the corresponding
residual image.

2.2. Statistical analysis

In the following analysis, we treat our gain solutions and thermal
noise as random variables in order to compute the covari-
ance matrix of our residual image, Cov{ỹ}. The diagonal of
this matrix gives the variance for each pixel, while the wings
give the covariance between pixels. Using the property that
Cov{Ax} = ACov{x}AH , we can apply the Cov{} operator to
Eq. (9) to write

Cov{ỹ} =
∑
bb′
F

H wbwb′κbκb′︸      ︷︷      ︸
def
= φbb′

SbCov{γ̃}ST
b′F (14)

+
∑

b

w2
bσ

2
F

HSbIST
bF︸        ︷︷        ︸

def
= Cb

(15)

=
∑
bb′

φbb′F
HSbCov{γ̃}ST

b′F +
∑

b

w2
bσ

2
Cb. (16)

So far, we have only applied definitions. The net effect of
SbCov{γ̃}ST

b′ (dimensions of npix × npix) is to encode where a
given baseline samples the uv-plane, and map one cell at matrix
coordinates (b, b′) from the correlation matrix Cov{γ̃} onto the
visibility grid. The matrix Sb is not the gridding kernel, but
rather the sampling matrix, which determines where we have
measurements and where we do not. We can thus write that
SbCov{γ̃}ST

b′ = [Cov{γ̃}]bb′Sb11T ST
b′ , where [Cov{γ̃}]bb′ is the

value from the appropriate cell and 1 is the vector-of-ones of
appropriate length (here, nb). This allows us to write

Cov{ỹ} =
∑
bb′

φbb′ [Cov{γ̃}]bb′F bb′ +
∑

b

w2
bσ

2
Cb, (17)

with F bb′ = (F b)H
F b′︸︷︷︸

def
= 1TST

b′F

. (18)

Here, Cb is a Toeplitz matrix, that is, a convolution matrix, asso-
ciated with baseline b. The set of all Cb defines the convolution
kernel that characterises the point-spread function (henceforth
PSF) associated with a given uv-coverage, of size npix × npix. The
matrix F bb′ , meanwhile, is not generally Toeplitz. Its cells can
be written as

F bb′ [d, d′] = e2iπ(ubld−ub′ ld′+vbmd−vb′md′+(nd−1)wb−(nd′−1)wb′ ). (19)

Let us investigate how the sky brightness distribution (i.e. d-
dependence) affects the noise map. We can write the sum over
bb′ as two sums: one over b, b′ = b and one over b, b′ , b. Thus

Cov{ỹ} =
∑

b

(
φbb[Cov{γ̃}]bb + w

2
bσ

2
)
Cb

+
∑

b,b′,b

φbb′ [Cov{γ̃}]bb′F bb′. (20)

The only direction-dependent terms in the above are sd and κd
b ,

which are both inside φbb′ (for both b = b′ and b , b′). By
making the approximation that the Fourier kernels of different
sources are orthogonal (i.e. that κd

bκ
d′
b′ = (κd

b)2δbb′ )3 we can write

φbb′ = wbwb′κbκb′ (21)

= wbwb′

∑
d

sdκ
d
b

 ∑
d′

sd′κ
d′
b′

 (22)

≈
∑

d

wbwb′ s2
dκ

d
bκ

d
b′ (23)

φbb′ ≈
∑

d

φd
bb′. (24)

We note that F bb = Cb, since those are the coordinates along
the diagonal; for these values, the matrix-of-ones at the centre of
F bb′ becomes the identity matrix. We note also that φd

bb = w
2
bs2

d,

since κd
bκ

d
b = 1. We can then write Eq. (20) as

Cov{ỹ} =
∑

d

(∑
b

φd
bb

[Cov{γ̃}]bb +
w2

bσ
2

φbb

Cb

+
∑

b,b′,b

φd
bb′ [Cov{γ̃}]bb′F bb′

)
, (25)

where we have now limited our formalism to the case where the
sky is dominated by distant point-like sources. This is our fun-
damental result: assuming unpolarised emission coming from
distant point sources and normally-distributed thermal noise, it
gives a direct relationship between the covariance of the residual
visibilities and the covariance of the residual image-pixel val-
ues. We thus call it the Cov-Cov relationship. It describes the
statistical properties of the image plane as the result of a convo-
lution process changing an average noise level at different points
in the image plane, allowing us to describe the behaviour of vari-
ance and covariance in the image. Let us focus on the first. By
applying the Diag {} operator (which returns the diagonal of an
input matrix as a vector) to both sides of Eq. (25), we can find an
expression for the variance map in the image plane:

Var{ỹ} =Diag {Cov{ỹ}} (26)

=
∑

d

(∑
b

(
φd

bb[Cov{γ̃}]bb + w
2
bσ

2
)

Diag {Cb}︸     ︷︷     ︸
=1

+
∑

b,b′,b

φd
bb′ [Cov{γ̃}]bb′Diag {F bb′ }

)
, (27)

where ld = (ld,md, (nd − 1)) , (28)
δubb′ = (δubb′ , δvbb′ , δwbb′ ) (29)

= (ub − ub′ , vb − vb′ , wb − wb′ ) . (30)
3 This hypothesis is equivalent to assuming that the sky is dominated
by distant point sources, where “distant” means that the sources are
multiple PSF full-width half-maximum apart
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Fig. 1. Panel a: PSF image of a simulated 1Jy source at phase centre. Colour-bar units are in Jansky. Panel b: associated UV track, panel c:
the corresponding (δu, δv) tracks. The δuδv plane does not have a homogeneous point density, but is denser near its origin: here, this is shown by
plotting only one random point in 10 000.

In Eq. (27), we have

Diag {F bb′ } [d] = e2iπld ·δubb′ . (31)

For b , b′, the diagonals of F bb′ are the Fourier kernels map-
ping δuδv space to δlδm. Applying F bb′ can then be thought of
as performing a Fourier transform. It is not a diagonal matrix. It
behaves as a covariance fringe, allowing us to extend standard
interferometric ideas to covariance space. Each fringe can be
thought of as a single “spatial filter” applied to the pixel covari-
ance matrix. Just as a given baseline has coordinates in uv-space,
a given correlation between baseline residual errors has coordi-
nates in uv correlation space, which we will henceforth refer to
as δuδv-space.

This δuδv space warrants further discussion. Figure 1 shows,
for a given uv-track (Fig. 1b), both the corresponding δuδv
domain (Fig. 1c) and point-spread function (Fig. 1a). The sym-
metric, negative uv-track is treated as a separate track, and thus
ignored. This means that we do not fully constrain the noise PSF
(since the covariance matrix of the symmetric track is simply the
Hermitian of the first), but we do not seek to constrain it in this
section, but rather to show that our results hold. We can see that
the δuδv-tracks are symmetrical about the origin. The δuδv space
corresponding to a given uv-track can thus be most concisely
described as a “filled uv-track”, with its boundaries defined by
the ends of the uv-track. The set of F bb′ , each of which maps
one value of the covariance matrix to a fringe in the image plane,
would then characterise a PSF equivalent for the noise distribu-
tion, which we refer to as the noise PSF. In our formalism, the
only source of statistical effects in the field are calibration errors
and thermal noise. The average variance in all pixels will be
given by the diagonal of the covariance matrix and the thermal
noise, provided that it truly follows a normal distribution. The
only effects which will cause the variance in the image plane to
vary from one pixel to the next are those mapped onto the covari-
ance fringes; such position-dependent variance fluctuations will
be caused by correlated gain errors, which are spurious signal
introduced by erroneous gain estimates. Assuming all sources
in the field are point-like and distant, then these variance fluc-
tuations will follow a specific distribution, convolved to every
source in the field. Since the variance fluctuations act as tracers
for calibration artefacts, artefacts in the image can be understood
as one realisation of the variance map, which is characterised
by an average level determined by the variance in the gains and

thermal noise, and a noise PSF convolved with the sky brightness
distribution. The actual artefacts in the image will still be noisy,
as a realisation of the true variance map. For the same reason,
in the absence of correlated gain errors, [Cov{γ̃}]b,b′ are all zero
and Cov{γ̃} is a diagonal matrix. We then recover a “flat” noise
map: the variance will be the same in all pixels, as the noise PSF
is absent. In the ideal case, were we to recover the true value of
the gains for all times and frequencies, this would become pure
thermal noise.

2.3. Noise-map simulations

We have shown in Eq. (25) that there exists an analytical rela-
tionship between residual visibility statistics and image-plane
residual statistics. This section gives details of simulations we
have performed to support our claims about this “Cov-Cov”
relationship. Specifically, we simulate residual visibilities for a
single baseline by generating a set of correlated random num-
bers with zero mean and a distribution following a specified
covariance matrix C. It contains a periodic function of period
T along the diagonal, which is then convolved with a Gaussian
of width στ corresponding to the characteristic scale of corre-
lation. The values of these parameters are chosen arbitrarily. A
small constant term is added on the diagonal, the net value of
which is strictly positive. This simulates a low thermal noise.
Finally, singular value decomposition is used to ensure that
this matrix is Hermitian positive semi-definite. The net effect
is a non-stationary correlation: some residuals are correlated
with their neighbours, and uncorrelated with others. An exam-
ple of this covariance matrix for arbitrary parameter values is
shown in Fig. 2. We see that, for any given point, correlation
is stronger with some neighbours than others (as determined by
στ). Samples are drawn as follows: C is built following user spec-
ifications as described above. We then find its matrix square root
C0 so as to apply it to random numbers generated from a nor-
mal distribution. We generate 2000 realisations i of our random
variables ri:

ỹi =
∑

b

F bri with ri =C0x, (32)

and x←N (0, 1) , (33)

ỹ =
(
. . . ỹi . . .

)
, (34)
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Fig. 2. Example of a non-stationary covariance matrix, which can be
used to simulate Cov{γ̃}. The colour bar units are Jy2. The correlation
scale στ is 40 cells, and the variability period is 500 cells. The matrix is
made positive semi-definite (and therefore a covariance matrix) through
SVD decomposition. The maximum size of the “bubbles” is determined
by στ.

where ỹ is a matrix of dimensions nrealis × nb. Since x follows
a normal distribution, Cov{x} = I and the covariance matrix of
each ỹi is, by construction, C = C0CH

0 . The covariance matrix of
ỹ is thus also C.

As for the uv-track, our simulations read a single one from
a specified dataset. In this case, we read an eight-hour uv-track
for a baseline between two arbitrary LOFAR (LOw Frequency
Array) stations (specifically, CS001HBA0 and RS310HBA) in
an observation of the Bootes extragalactic field. The effective
baseline length varies between 37.9 km and 51.8 km. The dataset
includes 20 channels, each with a spectral width of 97.7 kHz;
the central observing frequency is 139 MHz. The temporal
resolution is one measurement per second.

We compare the measured variance map Vm
y , built by mea-

suring the variance across realisations at each pixel in the
image-plane, with the predicted variance map Var{ỹ}, built using
the Cov-Cov relationship (Eq. (25)). Since we are only interested
in the variance map, rather than the covariance between pixels,
we compute only the diagonal terms,

Vm
ỹ = Diag

{
ỹỹH

}
, (35)

Vpr
ỹ =

∑
b

[C]bbI +
∑

b,b′,b

Diag {F bb′ } [C]bb′, (36)

where the thermal noise is already incorporated into the diagonal
of C and Eq. (36) is merely the diagonal operator applied to the
Cov-Cov relationship.

2.3.1. Simulation with a single point source

We model our sky as containing a single 1 Jy point source at
phase centre: we thus have φbb = w

2
b. The source as seen through

the set of uv-tracks used in our simulation, along with their corre-
sponding (δu, δv) space, are shown in Fig. 1. The simulated noise
map is calculated by drawing a large sample (nrealis = 2000) of
random numbers from the correlated distribution, thereby cre-
ating 2000 sets of residual visibilities. By Fourier-transforming
the visibilities to the image plane and taking the variance of the
values for each image pixel (i.e. each l,m pair) as per Eq. (35),

we can estimate Var{ỹ}. The predicted noise map, meanwhile,
was found by assigning each cell of C to the appropriate point
in the (δu, δv) plane and Fourier transforming from this plane
into the image plane, as per Eq. (36). We compare the outcome
of simulating a large number nrealis of realisations and taking
the variance across these realisations for each pixel with map-
ping the covariance matrix onto the δuδv-plane and using the
Cov-Cov relationship.The results of our simulations are shown
side-by-side in Fig. 4: the predicted and simulated noise PSFs
match. The peak-normalised predicted noise PSF is less noisy, as
shown in Fig. 3 for different correlation scales. This is expected,
since it is calculated directly from the underlying distribution,
rather than an estimate thereof. As nrealis → ∞, we expect the
two methods to fully converge. As the maximum characteristic
correlation length στ increases, the variance becomes ever more
sharply peaked.

Since our simulated sky consists of a 1Jy source at phase
centre, there is only one noise PSF to modulate the average noise
map, and it lies at phase centre. Let us test our formalism further
by considering a model with multiple point sources.

2.3.2. Simulation with three point sources

We wish to test our prediction that the noise map can be
described as a convolutional process modulating an average
noise level. We thus perform another simulation, this time with
three 1 Jy point sources. The associated dirty image is shown in
Fig. 5d.

This dirty image simply consists of performing a direct
Fourier transform (i.e. without using a Fast Fourier Transform
algorithm) on simulated visibilities corresponding to these three
point sources. We now perform a similar test as above on this
field. Firstly, we “apply” gain errors to these visibilities by mul-
tiplying our model with our residual gain errors. This allows us
to find 2000 realisations of residual visibilities, and find the vari-
ance for each pixel across these realisations. This gives us the
simulated noise map, shown in Fig. 5a. Secondly, we perform
a Direct Fourier Transform (DFT) from the differential Fourier
plane to the (l,m) plane as before, assigning one cell of Cov{γ̃}
to each point of the differential Fourier plane. This time, how-
ever, φd

bb′ is not simply unity for all points in the differential
Fourier plane. Instead, it is calculated for the three-point-source
model, and applied for each point. This gives us the predicted
noise map in Fig. 5b. Finally, Fig. 5c shows the absolute value of
the difference between the two images. We see that there is some
structure present in these residuals: this is expected, as the PSF
of the sources in the dirty images clearly overlap. We are thus not
quite in the regime where emission is fully spatially incoherent.
Nevertheless, our predictions hold to better than 5% accuracy.

It bears repeating that, for correlated noise, this map can be
understood as a distribution map for calibration artefacts: the
amount of spurious correlated emission seen by each baseline
will determine the noise map, and the true image-plane artefacts
will then be one set of realisations of this underlying distribution.

3. Adaptive quality-based weighting schemes

As discussed in Sect. 1, some intervals of an observation will
have lower gain variability. These will show up in the gain
covariance matrix as intervals with lower variance. Similarly,
those with larger intrinsic gain variability will have greater error
in their gain estimate. By giving greater weights to the former,
and lower weights to the latter, we expect to be able to improve
image reconstruction. We thus talk of adaptive quality-based
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Fig. 3. Three lines in each figure corresponding to three horizontal cross-sections from images in Fig. 4. The units on the y-axis are dimensionless
[Jy2/Jy2]. στ is the maximum characteristic error correlation length. In decreasing intensity, they correspond to m = 0′′, m = 4′′, and m = 8′′. The
dashed lines correspond to the variance measured with 2000 realisations for each pixel, while the solid line corresponds to the predicted value at
that pixel. There are 31 pixels. We do not show cross-sections for negative m due to image symmetry about the origin.

Fig. 4. Simulated noise maps, compared with theoretical prediction.
The pixel values are normalised by the average value of the covariance
matrix: the units of the colour bar are thus dimensionless (Jy2/Jy2).
These are on the same angular scale as the source shown in Fig. 1.

Fig. 5. Noise map of sky with correlated gain errors and three point
sources. The colour bars of (a), (b), and (c) have dimensionless units,
while that of (d) is in Jansky. We note the presence of structure in the
residuals (c): these show the limits of our hypothesis that sources are
spatially incoherent.

weighting, as the weights will adapt based on the calibration
quality.

The pixel variance is determined by the visibility covari-
ance matrix, as shown in Eq. (27). The diagonal of the visibility
covariance matrix will add a flat noise to all pixels, while
its wings will determine the calibration artefact distribution,
which will be convolved to the sky brightness distribution. We
thus have two sources of variance in the image plane. Min-
imising the far-field noise (i.e. the variance far from sources)
in an image would involve down-weighting noisier calibration
intervals while up-weighting the more quiescent ones, without
taking noise correlation between visibilities into account. This
is because the far-field noise will be dominated by the diag-
onal component of the covariance matrix (cf. Eq. (27)). By
the same token, minimising calibration artefacts would involve
down-weighting measurements with strongly-correlated noise,
and up-weighting the less-correlated. This would not, however,
minimise the diagonal component: in fact, it will likely exag-
gerate its up-weighting and down-weighting. As such, it will
increase the constant level of the noise map, but flatten the noise-
PSF’s contribution. There are thus two competing types of noise
that we seek to minimise: uncorrelated noise, which corresponds
to δuδv = 0 (i.e. the diagonal components of the gain covariance
matrix), and correlated noise, which corresponds to δuδv , 0
(i.e. its wings). Minimising the first will minimise far-field noise
without optimally reducing artefacts, while minimising the last
will minimise noise near sources at a cost to far-field noise. In
the following sub-sections, we will discuss weighting schemes
used to accomplish this.

3.1. Optimising sensitivity

The Cov-Cov relationship (Eq. (25)) tells us that, far from any
sources, the variance map (Eq. (27)) is dominated by a constant
term: the contribution from thermal noise and the diagonal of
the residual visibility covariance matrix. Maximising sensitiv-
ity far from sources therefore implies minimising Diag {Cov{γ̃}}.
This is equivalent to assigning visibilities weights inversely
proportional to their variance:

wb =
1

Var{γ̃b}.
(37)
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For each baseline, those times with larger variance in the
residuals will be down-weighted, and those with smaller vari-
ance will be up-weighted; this scheme does not require informa-
tion about the underlying gains, only the error on our solutions.
Since we are treating σ2

n as a constant for all antennas and all
times, those times where our gains estimate is closer to the
true gains will be up-weighted, and those moments where they
are farther from the actual gains will be down-weighted: hence
the term “adaptive quality-based weighting”. We note that the
diagonal of the weighted residuals’ covariance matrix should
therefore become constant: this weighting scheme explicitly
brings the residuals closer to what is expected in the case of per-
fect calibration, assuming uncorrelated noise. For the remainder
of this paper, we will refer to these weights as sensitivity-optimal
weighting.

3.2. Minimising calibration artefacts

Minimising calibration artefacts - optimising the sensitivity near
bright sources - means flattening the noise map. Since the noise
map can be understood as a noise PSF convolved with all the
modelled sources in the sky modulating the background vari-
ance level, it will be flattest when its peak is minimised. From
the Cov-Cov relationship (Eq. (25)), we can see that, at the peak
of the noise PSF (which would be the variance at the pixel where
l = m = 0), the Fourier kernel is unity: the variance for that
pixel is thus the sum of all the cells in the covariance matrix.
By accounting for normalisation, we can write the variance at
the centre of the noise-PSF as

V (w) =
wT Cov{γ̃}w
wT 11Tw

. (38)

Our optimality condition is then, after some algebra,

0 =
∂

∂w
(V) , (39)

↔Cov{γ̃}w = 11Tw
(
wT 11Tw

)−1
wT Cov{γ̃}w. (40)

We find that one w which satisfies the above is

w = Cov{γ̃}−11, (41)

where 1 is a vector of ones. These weights depend only on
calibration quality: badly-calibrated cells will include spurious
time-correlated signal introduced by trying to fit the noise n on
visibilities. Down-weighting these cells helps suppress artefacts
in the field, at the cost of far-field sensitivity. This weighting
scheme is thus only a function of the relative quality of cali-
bration at different times, boosting better-calibrated visibilities
and suppressing poorly-calibrated visibilities. For the remainder
of this paper, we will refer to these weights as artefact-optimal
weighting.

4. Estimating the covariance matrix

In our simulations, we have worked from a known covariance
matrix and shown that our predictions for the residual image’s
behaviour hold. With real data, however, we do not have access
to this underlying covariance matrix. Since our weights are
extracted from said matrix, estimating it as accurately as pos-
sible remains a challenge; this is in turn limited by the number
of samples that can be used for each cell.

Each cell in the covariance matrix is built by averaging a
number of measurements or samples. The more samples avail-
able, the better our estimate becomes. Once we have more
samples than degrees of freedom, we say that our estimation
is well-conditioned. Otherwise, it is poorly-conditioned. In this
section, we will discuss ways in which we can improve the
conditioning of the covariance matrix estimation.

4.1. Baseline-based estimation

One way to improve the conditioning of our covariance matrix
estimation is to make the same hypothesis as the calibration
algorithm: we can treat the underlying gains as constant within
each calibration interval. Provided this interval is known, this
allows us to find a single estimate for each interval block of
the covariance matrix, turning a nb × nb matrix into a smaller
nintervals × nintervals equivalent, where nintervals is the number of
solution intervals used to find the gain solutions. We then
improve our conditioning by a factor of nint, which is the num-
ber of samples in a calibration interval. The estimate Ĉov{γ̃}of
the covariance matrix Cov{γ̃} is built by applying the covariance
operator

Ĉov{γ̃} def
= Ĉγ̃ =

1
nint

∑
i∈nint

(γ̃i − 〈γ̃〉) (γ̃i − 〈γ̃〉)H , (42)

where the 〈. . .〉 operator denotes taking the average over the full
vector. If the calibration solver’s gain estimates are unbiased
(i.e. E{ĝ} = g) and the model of the sky is sufficiently complete,
this quantity should be zero. Having created Ĉγ̃, which will
be of size nb × nb, its cells can now be averaged over blocks
of nint × nint. This allows us to estimate the weights for each
baseline and each time.

Mathematically, we retrace the steps of Sect. 2. In the
absence of direction-dependent effects, we define the residual
visibilities as before, and use them to define the normalised
residual visibilities ρb:

rb =wbκbγ̃b + ε, (43)

ρb =
rb

kb
. (44)

We then organise the residuals in cells:

rC =


...

ρb∈C
...

 , (45)

R =
(
. . . rC . . .

)
. (46)

The matrix R contains all the residual visibilities within one
calibration cell C, that is, for b ∈ C where gC = const. It is
therefore of size nintervals × nC, where nintervals is the number of
calibration intervals in the observation. Normalising the residual
visibilities by kb allows us to recover the underlying covariance
matrix by multiplying the residual visibility matrix R with its
Hermitian conjugate,

Ĉγ̃[b ∈ C, b′ ∈ C′] =
(
RH R

)
[C,C′]. (47)

We have divided the noise term by the flux model S b, which can
be very small in some cells. As such, care must be taken not to
cause the relative thermal noise contribution to explode. Those
cells where this would occur are dominated by thermal noise and
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information on the covariance matrix cannot be recovered from
them.

In this framework, we simply treat the index C as containing
all the times and frequencies, for individual baselines, corre-
sponding to a single calibration interval. The matrix Ĉγ̃ is then
an estimate of the residual visibility covariance matrix.

4.2. Antenna-based estimation

In the sub-section above, we assumed that finding one solution
per interval would give us strong enough constraints to make the
problem of estimating the covariance matrix well-conditioned:
this may not be true in all cases. Conditioning may then need
to be improved further: in this sub-section, we show one way in
which this can be done. There are others, for example using the
rank of the matrix itself to find better-conditioned estimates of
the covariance matrix at a lower resolution (i.e. a single estimate
for a greater number of cells). They will not be presented in this
paper, but are a possible avenue for future work on this topic.

In estimating the covariance matrix for each baseline and
each calibration cell, we are severely limited by the small num-
ber of samples in each cell. One way to overcome this problem is
to find estimates for the variance of antenna gains and use these
to return to the baseline variances. In this formalism, we extend
C to include all visibilities pointing at a single antenna at a given
time. Let us begin by writing an expression for the gain vector,
which contains the gains for all antennas and all calibration cells,

ĝc =


...

ĝτ∈cp
...

 , (48)

Ĝ =
(
. . . ĝc . . .

)
, (49)

and the variance on each antenna in each calibration cell is then

=E{ĝcĝH
c } − E{ĝc}E{ĝc}

H︸        ︷︷        ︸
=gcgH

c

. (50)

As we can see, Eq. (50) is simply a vector form of Eq. (12).
The residual gains of Eq. (12) can now be understood as random
samples of the covariance between the gains for antennas p and
q at a given time, assuming complete sky-model subtraction. We
can thus define the variance sample matrix as an estimate of the
variance matrix:

V̂C =V̂ar{gc} (51)

=
∑
τ∈C

(
ĝτĝ

H
τ − gτg

H
τ

)
. (52)

We define the residual matrix as

rτ =
∑

d

sd Kd,τ

(
ĝτĝ

H
τ − gτg

H
τ

)
KH

d,τ + ε, (53)

where we explicitly place ourselves in the limits of our formal-
ism, that is, we do not have direction-dependent gains. We now
see that at the core of Eq. (53) lies V̂ĝτ , where

∑
τ∈C V̂ĝτ = V̂C.

The K-matrix is defined as

Kd,τ =


kd

p,τ 0
kd

q,τ

0
. . .

 . (54)

Since the residual matrix depends on the gains, we define the
residual visibility vectors as

rC =


...

rτ∈C
...

 , (55)

R =
(
. . . rc . . .

)
. (56)

The matrix rC contains all the residual visibilities within one
calibration cell C, that is, for τ ∈ C where gC = const. Let us
define nC as the number of elements in each calibration cell. The
residual variance sample matrix can now be built by multiplying
the residual visibility matrix with its Hermitian conjugate:

=RH R. (57)

We do this because it allows us to turn a single noise realisation
ε into a statistical quantity σ. We can relate to the variance of
individual antenna gains:

=
∑
τ∈C

∑
d,d′

sd Kd,τ

(
V̂C

)H
KH

d,τsd′Kd′,τ

(
V̂C

)
KH

d′,τ + Iσ2

 . (58)

To reach this point, in Eq. (23), we made the hypothesis that the
sky brightness distribution is dominated by spatially incoherent
emission. Applying this hypothesis again here, we can make the
approximation that the cross terms in the sum over d, d′ average
to zero:

∑
d,d′,d ≈ 0. We then have:

≈
∑
τ

∑
d

s2
d Kd,τ

(
V̂C

)H (
V̂C

)
KH

d,τ + Iσ2

 (59)

=
(
V̂C

)2
◦


∑
τ

∑
d

s2
d kd,τkH

d,τ︸               ︷︷               ︸
def
= S


+ nCIσ2, (60)

V̂C =
√
S◦−1

(
− nCIσ2

)
, (61)

where ◦ denotes the Hadamard or entrywise product and
k = Diag {K}. Thus, allows us to estimate the variance of each
antenna and for each calibration cell by using all the visibilities
pointing to that antenna within that calibration cell. With this
information, we can then rebuild the baseline-dependent matrix,
having improved our sampling by a factor of nant.

5. Applying the correction to simulated data

In this section, we show the impact of our weighting schemes
on a noise map made from arbitrarily strongly-correlated resid-
uals. Here, we assume that our sky contains only a single point
source at phase centre: there is thus only a single instance of
the noise PSF, placed at phase centre, to modulate the average
variance level. We sample this instance by taking a cross-section
from (l,m) = 0 to a large l, keeping m constant. The only dif-
ference between these cross-sections is the weighting scheme
applied: unit weights for all visibilities (“Uncorrected”, blue),
sensitivity-optimal weights (green), and artefact-optimal weights
(red). We plot both the result predicted by the Cov-Cov rela-
tionship (solid line) and the variance estimated across 2000
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Fig. 6. Sensitivity-optimal (green) and artefact-optimal (red) weights
both give improvements over the un-weighted noise map (blue).

realisations (dashed line): the result is shown in Fig. 6. The two
remain in such agreement throughout the cross-section as to be
nearly indistinguishable.

There are a few significant points to note on this figure.
Firstly, most of the power in the matrix lies along the diago-
nal; both weighting schemes thus give good improvements in
variance across the map. The artefact-optimal weights, while
decreasing the peak further, as expected, also increase the noise
far from sources. This is due to the fact that the artefact-optimal
weights are in a sense more “selective” than the sensitivity-
optimal weights; they up-weigh and down-weigh more severely,
and will only result in a constant covariance matrix if this matrix
is zero everywhere outside of the diagonal. In effect, the noise
map becomes flatter, but much broader.

6. Applying the correction to real data

In this section, we show the effect of adaptive quality-based
weighting on real data. The dataset used in this section is a sin-
gle sub-band from an eight-hour LOFAR observation centred on
the Extended Groth Strip (α = 14:19:17.84, δ = 52:49:26.49).
The observation was performed on August 28, 2014. The sub-
band includes eight channels of width 24.414 kHz each, for a
total bandwidth ranging from 150.2 to 150.5 MHz. The data
have been averaged in time to one data point per second. The
data were calibrated using Wirtinger calibration (see Tasse 2014;
Smirnov & Tasse 2015, and references therein) and a sky model
consisting only of a nearby calibrator source, 3C295. A refer-
ence image (a cutout of which is shown in Fig. 7a) was made
by calibrating the data according to best practice for LOFAR
survey data: one calibration solution per eight seconds and per
four channels. The residual data was then corrected by the gain
solutions and imaged using Briggs weighting (robust = 0), pixel
size of 1.5′′, and deconvolved using the default deconvolution
algorithm in DDFacet (see Tasse et al. 2018).

The data was then time-averaged to create a new, 2.4 GB
dataset with one data point per eight seconds. Deliberately
poor calibration was then performed on this dataset, solving
for one calibration solution per two minutes (caeteris paribus).
The resulting corrected residual data was imaged using the
same imaging parameters as the reference image, and a cutout
of the result is shown in Fig. 7b. As expected, the very long
calibration intervals introduce calibration artefacts into the

image. The brightest sources are still visible, but much of the
fainter emission is buried under these artefacts. We then have the
case where our residual visibilities are dominated by calibration
error rather than sky model incompleteness.

Weights were then calculated based on the badly-calibrated
residual visibilities. Figure 7c was made using the same visibil-
ities as Fig. 7b and applying baseline-based, sensitivity-optimal
weight. Similarly, Fig. 7d used the poorly-calibrated residual vis-
ibilities with the application of baseline-based, artefact-optimal
weighting. These weights are likely to be poorly-conditioned. In
both cases, all other parameters were conserved.

Applying antenna-based sensitivity-optimal weighting to the
badly-calibrated data (not shown here) allows us to recover the
reference image with only a very small increase in rms (increased
by a factor of 1.14). Further testing on complex field simulations
will be required to ascertain the usefulness of artefact-optimal
weighting; it is likely that it fails to correct the image fully
due to the poor conditioning of the covariance matrix used
here.

The pixel histograms show us that the weights do not
completely mitigate the poor calibration interval choice, but
certainly give a dramatic improvement over the un-weighted,
poorly-calibrated residuals. This is compatible with our state-
ment that the weights give similar residuals in the image with
a dramatic improvement in time at some cost to sensitivity.
It is interesting to note that while Fig. 7d looks noisier than
Fig. 7c, its residual flux histogram is actually closer to that of
Fig. 7a.

As for performance, the weights used for Fig. 7d took eight
hours of computing time on a single core4, working on a 29 GB
dataset, which is not particularly large for LOFAR data. Since
the problem is massively parallel, this cost can be alleviated. The
main bottleneck is likely due to very poor code optimization. As
for the weights used for Fig. 8b, they are computed in 1min6s on
the same single core.

7. Discussion

This paper began by investigating the use of an algorithm
inspired by “lucky imaging” to improve images made using radio
interferometric data. By investigating the statistics of residual
visibilities, we have made the following findings:

– A relationship between the statistics of residual visibilities
and residual pixel values (the “Cov-Cov relationship”).

– A description of the noise map in the image plane as a con-
stant variance level modulated by a noise PSF convolved
with the sources in the field. This gives the variance in the
flux of the image as a function of distance from the sources
in the sky for a given calibration.

– An adaptive quality-based weighting scheme, which reduces
the noise in the image (and the presence of calibration arte-
facts) by minimising either the constant noise term or the
noise PSF.

While our results are not a panacea for poor calibration, they
show that we can not only improve images made with well-
calibrated data, but also mitigate the worst effects of poorly-
calibrated visibilities in otherwise well-calibrated datasets. Pro-
vided that the gain variability timescale is long enough at certain
points of the observation, we can effectively get images of sim-
ilar quality using both the “standard” best-practice calibration
interval for LOFAR survey data (calibration solution interval
of eight seconds) and a significantly larger solution interval

4 Core type: Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz.
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Fig. 7. Restored images of the centre of the Extended Groth Strip, as seen with an eight-hour observation using the full LOFAR array. Panel a:
shows an image of the field made with good calibration intervals; well-calibrated, un-weighted restored image of the sky near the centre of the
Extended Groth Strip. Used for comparison with the other images. Units of colour bar are Janskys. This image was made with data calibrated
following best practice (solution intervals of 8 s, half the bandwidth). rms = 5.87 mJy beam−1. Panel b: shows an image of the field made with
poor calibration intervals; poorly-calibrated, un-weighted restored image of the sky near the centre of the Extended Groth Strip. Units of colour
bar are Janskys. This image was made with the same data as for panel a, but averaged in time and calibrated using larger gain solution intervals:
two minutes and half the bandwidth. rms = 86.4 mJy beam−1. Panel c: shows image made with the same visibilities and imaging parameters, but
with the application of the sensitivity-optimal weighting scheme; image made using the same imaging parameters and corrected visibilities as
panel b, using sensitivity-optimal weighting. Units of colour bar are Janskys. rms = 9.69 mJy beam−1. Panel d: similarly, differs from panel c only
in that artefact-optimal weights, rather than sensitivity-optimal weights, were used; image made using the same imaging parameters and corrected
visibilities as panel b, using artefact-optimal weighting. Units of colour bar are Janskys. rms = 15.8 mJy beam−1. The histograms of pixel values in
each image have 1000 flux bins ranging from –0.16 Jy to 0.16 Jy. Their ordinates are in log scale. Pixel size is 1.5′′ in all images.

of two minutes (frequency interval unchanged). Of course, if
no such stable interval exists, there will be no good intervals
to up-weigh, and we will be left only with equally-poor data
chunks. This means that, in the right conditions, net pipeline
time can be sped up by a factor of nearly three, at a slight
cost to sensitivity. This increase will be greater than what
could be achieved with existing comparable methods such as
“clipping”.

We emphasise that the adaptive quality-based weighting
schemes work because the noise map describes the underlying
noise distribution, of which calibration artefacts are one single
realisation. To fully characterise the artefacts, the correlation
between different pixels (i.e. off-diagonal elements of Cov{ỹ})
must be computed; this has not been done in this paper. Never-
theless, lesser constraints on the spatial distribution of artefacts

can be found using only the diagonal elements of Cov{ỹ}. The
weighting schemes merely seek to minimise this spatial distri-
bution as much as possible; the end result is fewer artefacts,
which can be distributed across a much larger area. This is the
source of the dramatic improvement from Figs. 7b and c. We
have simply down-weighted those visibilities where spurious
signal was introduced by the calibration solutions, and up-
weighted those visibilities where such signal was lesser. Since
this spurious signal is the source of calibration artefacts, down-
weighting the associated visibilities reduces it dramatically. The
poor improvement from Figs. 7b and d is likely due to limits in
the conditioning of our estimation of the covariance matrix.

The work presented here can be improved upon, notably by
working on improving the conditioning of our covariance matrix
estimate; for real observations, it is impossible to have more than
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Fig. 8. Comparison between the well-calibrated image (i.e. the same image as Fig 7a) and antenna-based sensitivity-optimal weights. Units
of both colour bars are Jansky. Panel a: well-calibrated, un-weighted restored image of the sky near the centre of the Extended Groth Strip.
Used for comparison with the other images. Calibration solution intervals used were eight seconds, half the bandwidth. rms = 5.87 mJy beam−1.
Panel b: image made using the same imaging parameters and corrected visibilities as Fig. 7b, with the application of antenna-based, sensitivity-
optimal weighting. Solution interval of two minutes, half the bandwidth. rms = 6.69 mJy beam−1. We see that we recover a very similar image,
despite the fact that the data used for the weighted image are averaged by a factor of 8 compared to those used for the un-weighted image.

one realization of each gain value for all antennas. By treating
each visibility within a calibration interval as a realization of the
true distribution, we can better estimate the covariance matrix
per baseline, and thus reach a better estimate of the variance
in the image plane. Of course, in practice, we can never access
the true, underlying time-covariance matrix for each baseline.
Significant hurdles remain:

– The impact of sky model incompleteness (since calibration
requires a sky model) is ignored in this paper; we start by
assuming that we have a complete sky model. In practice,
of course, acquiring a complete sky model is often a key
science goal in and of itself. The impact of this hypothesis
therefore ought to be investigated in future work.

– The conditioning of our covariance matrix estimation
remains a concern. By using an antenna-based approach,
we can improve conditioning by a factor of nant, but this is
only one approach among many. Further work is needed to
investigate which method, if any, proves optimal.
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