Raman spectra of Martian glass analogues: A tool to approximate their chemical composition - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research. Planets Année : 2016

Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

Résumé

Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm À1 and 820-980 cm À1. On the other hand, Raman spectra regions between 250-550 cm À1 and 1000-1250 cm À1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm À1 related to the high iron content of these glasses (~7-17 wt % of FeO tot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

Domaines

Géochimie
Fichier principal
Vignette du fichier
2016JE005010.pdf (2.82 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

insu-01905196 , version 1 (25-10-2018)

Identifiants

Citer

Danilo Di Genova, Stephan Kolzenburg, Alessandro Vona, Magdalena Oryaëlle Chevrel, Kai-Uwe Hess, et al.. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition. Journal of Geophysical Research. Planets, 2016, 121 (5), pp.740 - 752. ⟨10.1002/2016je005010⟩. ⟨insu-01905196⟩
683 Consultations
125 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More