M. Alpers, R. Eixmann, C. Fricke-begemann, M. Gerding, and J. Höffner, Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering, Atmos. Chem. Phys, vol.4, pp.793-800, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00295440

J. P. Apruzese, D. F. Strobel, and M. R. Schoeberl, Parameterization of IR cooling in a Middle Atmosphere Dynamics Model: 2. Non-LTE radiative transfer and the globally averaged temperature of the mesosphere and lower thermosphere, J. Geophys. Res.-Atmos, vol.89, pp.4917-4926, 1984.

P. S. Argall, Upper altitude limit for Rayleigh lidar, CPC Team: NDACC Data, vol.25, pp.19-25, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00318251

D. P. Donovan, J. A. Whiteway, and A. I. Carswell, Correction for nonlinear photon-counting effects in lidar systems, Appl. Opt, vol.32, pp.6742-6753, 1993.

X. Dou, T. Li, J. Xu, H. Liu, X. Xue et al., Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations, J. Geophys. Res.-Atmos, vol.114, p.20103, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00406337

M. García-comas, B. Funke, A. Gardini, M. López-puertas, A. Jurado-navarro et al., MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE, vol.7, pp.3633-3651, 2014.

S. Godin-beekmann, J. Porteneuve, and A. Garnier, Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at Observatoire de Haute-Provence (43.92 ? N, 5.71 ? E), J. Environ. Monitor, vol.5, pp.57-67, 2003.

M. R. Gross, T. J. Mcgee, R. A. Ferrare, U. N. Singh, and P. Kimvilakani, Temperature measurements made with a combined Rayleigh-Mie and Raman lidar, Appl. Opt, vol.36, pp.5987-5995, 1997.

A. Hauchecorne and M. Chanin, Density and temperature profiles obtained by lidar between 35 and 70 km, Geophys. Res. Lett, vol.7, pp.565-568, 1980.

P. Keckhut, A. Hauchecorne, and M. Chanin, A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars, J. Atmos. Ocean. Tech, vol.10, pp.850-867, 1993.

P. Keckhut, S. Mcdermid, D. Swart, T. Mcgee, S. Godin-beekmann et al., Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change, J. Environ. Monit, vol.6, pp.721-733, 2004.

J. Khanna, R. J. Sica, and C. T. Mcelroy, Atmospheric temperature retrievals from lidar measurements using techniques of non-linear mathematical inversion, AGU Fall Meeting Abstracts, 2011.

J. Khanna, J. Bandoro, R. J. Sica, and C. T. Mcelroy, New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion, Appl. Opt, vol.51, pp.7945-7952, 2012.

S. M. Khaykin, S. Godin-beekmann, P. Keckhut, A. Hauchecorne, J. Jumelet et al., Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations, Atmos. Chem. Phys, vol.17, pp.1829-1845, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01373472

V. S. Kumar, P. B. Rao, M. Krishnaiah, T. Leblanc, I. S. Mcdermid et al., Lidar measurements of stratosphere' mesosphere thermal structure at a low latitude: Comparison with satellite data and models, J. Geophys. Res.-Atmos, vol.108, pp.6177-6187, 1998.

T. Leblanc, I. S. Mcdermid, P. Keckhut, A. Hauchecorne, C. Y. She et al., Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes, J. Geophys. Res.-Atmos, vol.103, pp.17191-17204, 1998.

H. B. Mann and D. R. Whitney, On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Ann. Math. Statist, vol.18, pp.50-60, 1947.

T. J. Mcgee, R. A. Ferrare, D. N. Whiteman, J. J. Butler, J. F. Burris et al., Lidar measurements of stratospheric ozone during the STOIC campaign, J. Geophys. Res.-Atmos, vol.100, pp.9255-9262, 1995.

J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLM-SISE 00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space, vol.107, 2002.

E. E. Remsberg, B. T. Marshall, M. Garcia-comas, D. Krueger, G. S. Lingenfelser et al., Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER, J. Geophys. Res.-Atmos, vol.113, p.25, 2008.

R. Sica and A. Haefele, Retrieval of temperature from a multiple-channel Rayleigh-scatter lidar using an optimal estimation method, Appl. Opt, vol.54, pp.1872-1889, 2015.

U. N. Singh, P. Keckhut, T. J. Mcgee, M. R. Gross, A. Hauchecorne et al., Stratospheric temperature measurements by two collocated NDSC lidars during UARS validation campaign, J. Geophys. Res.-Atmos, vol.101, pp.10287-10297, 1996.

V. Sivakumar, P. Vishnu-prasanth, P. Kishore, H. Bencherif, and P. Keckhut, Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratospheremesosphere temperature over a southern sub-tropical site, Ann. Geophys, vol.29, pp.649-662, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00586264

A. Taori, A. Jayaraman, K. Raghunath, and V. Kamalakar, A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O 2 airglow temperatures measurements, Ann. Geophys, vol.30, pp.27-32, 2012.

A. Taori, V. Kamalakar, K. Raghunath, S. Rao, R. et al., Simultaneous Rayleigh lidar and airglow measurements of middle atmospheric waves over low latitudes in India, J. Atmos. Sol.-Terr. Phy, pp.62-69, 2012.

J. W. Tukey, Comparing Individual Means in the Analysis of Variance, Biometrics, vol.5, pp.99-114, 1949.

R. Wing, A. Hauchecorne, P. Keckhut, S. Godin-beekmann, S. Khaykin et al., Lidar temperature series in the middle atmosphere as a reference data set. Part B: Assessment of temperature observations from MLS/Aura and SABER/TIMED satellites, Atmos. Meas. Tech. Discuss, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01784812

C. Yue, G. Yang, J. Wang, S. Guan, L. Du et al., Lidar observations of the middle atmospheric thermal structure over north China and comparisons with TIMED/SABER, J. Atmos. Sol.-Terr. Phy, vol.120, pp.80-87, 2014.