G. A. Abers, Slip on shallow-dipping normal faults, vol.37, pp.767-768, 2009.
DOI : 10.1130/focus082009.1.

G. A. Abers, C. Z. Mutter, and J. Fang, Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark-D'Entrecasteaux rift system, J. Geophys. Res, vol.102, pp.301-316, 1997.

S. Allerton and M. A. Tivey, Magnetic polarity structure of the lower oceanic crust, Geophys. Res. Lett, vol.28, pp.423-426, 2001.

S. Allerton, D. Wallis, J. Derrick, D. Smith, and C. J. Macleod, New wireline seafloor drill augers well, Eos Trans. AGU, vol.80, issue.33, p.367, 1999.

E. M. Anderson, The Dynamics of Faulting, 0206.

W. Bach, C. J. Garrido, H. Paulick, J. Harvey, and M. Rosner, Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N, Geochem. Geophys. Geosyst, vol.5, pp.9-26, 2004.

A. G. Baines, M. J. Cheadle, H. J. Dick, A. Scheirer, B. E. John et al., Mechanism for generating the anomalous uplift of oceanic core complexes, Geology, vol.31, pp.1105-1108, 2003.

D. Berthé, P. Choukroune, and P. Jegouzo, Orthogneiss, mylonite and non coaxial deformation of granites: The example of the South Armorican Shear Zone, J. Struct. Geol, vol.1, pp.90019-90020, 1979.

D. K. Blackman, Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the evolution of an ultramafic oceanic core complex, Mar. Geophys. Res, vol.23, pp.443-469, 2002.

D. K. Blackman, B. Ildefonse, B. E. John, Y. Ohara, D. J. Miller et al., Proceedings of the Integrated Ocean Drilling, 2006.

. Program-;-tex, D. K. Blackman, G. D. Karner, and R. C. Searle, Three-dimensional structure of oceanic core complexes: Effects on gravity signature and ridge flank morphology, Mid-Atlantic Ridge, Geochem. Geophys. Geosyst, vol.304, p.6007, 2006.

C. Boschi, G. L. Früh-green, and J. Escartín, Occurrence and significance of serpentinite-hosted, talc-and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: An overview, Ofioliti, vol.31, pp.129-140, 2006.

W. R. Buck, Flexural rotation of normal faults, Tectonics, vol.7, pp.959-973, 1988.

W. R. Buck, L. L. Lavier, and A. N. Poliakov, Modes of faulting at mid-ocean ridges, Nature, vol.434, pp.719-723, 2005.

J. D. Byerlee, Friction of rocks, Pure Appl. Geophys, vol.116, pp.615-626, 1978.

M. Campani, F. Herman, and N. Mancktelow, Twoand three-dimensional thermal modeling of a low-angle detachment: Exhumation history of the Simplon Fault Zone, central Alps, J. Geophys. Res, vol.115, p.10420, 2010.

J. P. Canales, R. A. Sohn, and B. J. Demartin, Crustal structure of the TAG segment (Mid-Atlantic Ridge, 26°10?N): Implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges, Geochem. Geophys. Geosyst, vol.8, p.8004, 2007.

J. P. Canales, B. E. Tucholke, M. Xu, J. A. Collins, and D. L. Dubois, Seismic evidence for large-scale compositional heterogeneity of oceanic core complexes, Geochem. Geophys. Geosyst, vol.9, p.8002, 2008.

J. R. Cann, D. K. Blackman, D. K. Smith, E. Mcallister, B. Janssen et al., Corrugated slip surfaces formed at North Atlantic ridge-transform intersections, Nature, vol.385, pp.329-332, 1997.
DOI : 10.1038/385329a0

M. Cannat and J. F. Casey, An ultramaphic lift at the Mid-Atlantic Ridge: Successive stages of magmatism in serpentinized peridotites from the 15°N region, Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites, pp.5-34, 1995.

M. Cannat, Y. Lagabrielle, H. Bougault, J. Casey, N. De-coutures et al., Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: Geological mapping in the 15°N region, Tectonophysics, vol.279, pp.193-213, 1997.

M. Cannat, D. Sauter, J. Escartín, and S. Picazo, Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges, Earth Planet. Sci. Lett, vol.288, pp.174-183, 2009.

J. P. Cogné, Paleomac: A Macintosh application for treating paleomagnetic data and making plate reconstructions, Geochem. Geophys. Geosyst, vol.4, issue.1, p.1007, 2003.

C. Crouzet, H. Stang, E. Appel, E. Schill, and P. Gautam, Detailed analysis of successive pTRMs carried by pyrrhotite in Himalayan metacarbonates: An example from Hidden Valley, central Nepal, Geophys. J. Int, vol.146, pp.607-618, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00736902

A. Dannowski, C. R. Grevemeyer, G. Ranero, M. Ceuleneer, J. P. Maia et al., Seismic structure of an oceanic core complex at the Mid-Atlantic Ridge, 22 degrees 19?N, J. Geophys. Res, vol.115, p.7106, 2010.

R. Day, M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter, vol.13, pp.260-267, 1977.
DOI : 10.1016/0031-9201(77)90108-x

B. J. Demartin, R. A. Sohn, J. Canales, and S. E. Humphris, Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge, Geology, vol.35, pp.711-714, 2007.

C. Demets, R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions, Geophys. J. Int, vol.101, pp.425-478, 1990.

C. Demets, R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett, vol.21, pp.2191-2194, 1994.

H. J. Dick, A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge, Earth Planet. Sci. Lett, vol.179, pp.31-51, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02109387

D. J. Dunlop, Theory and application of the Day plot (M rs /M s versus H cr /H c ) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res, vol.107, issue.B3, p.2056, 2002.

D. J. Dunlop and M. Prevot, Magnetic properties and opaque mineralogy of drilled submarine intrusive rocks, Geophys. J. R. Astron. Soc, vol.69, pp.763-768, 1982.
DOI : 10.1111/j.1365-246x.1982.tb02774.x

URL : https://academic.oup.com/gji/article-pdf/69/3/763/1754597/69-3-763.pdf

J. Escartín and M. Cannat, Ultramafic exposures and the gravity signature of the lithosphere near the FifteenTwenty Fracture Zone (Mid-Atlantic Ridge, 14°-16.5°N), Earth Planet. Sci. Lett, vol.171, pp.169-176, 1999.

J. Escartín, G. Hirth, and B. Evans, Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges, Earth Planet. Sci. Lett, vol.151, pp.181-189, 1997.

J. Escartín, G. Hirth, and B. Evans, Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere, Geology, vol.29, pp.1023-1026, 2001.

J. Escartín, C. Mével, C. J. Macleod, and A. M. Mccaig, Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45?N, Geochem. Geophys. Geosyst, vol.4, issue.8, p.1067, 2003.

J. Escartín, M. Andreani, G. Hirth, and B. Evans, Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures, Earth Planet. Sci. Lett, vol.268, pp.463-475, 2008.

J. Escartín, D. K. Smith, J. R. Cann, H. Schouten, C. H. Langmuir et al., Central role of detachment faults in accretion of slow-spreading oceanic lithosphere, Nature, vol.455, pp.790-794, 2008.

R. A. Fisher, Dispersion on a sphere, Proc. R. Soc. London, Ser. A, vol.217, pp.295-305, 1953.

G. L. Früh-green, J. A. Connolly, and A. Plas, Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity, The Subseafloor Biosphere at Mid-Ocean Ridges, vol.144, pp.119-136, 2004.

T. Fujiwara, J. Lin, T. Matsumoto, P. B. Kelemen, B. E. Tucholke et al., Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma, Geochem. Geophys. Geosyst, vol.4, issue.3, p.1024, 2003.

M. Garcés and J. S. Gee, Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge, Geology, vol.35, pp.279-282, 2007.

C. B. Grimes, B. E. John, M. J. Cheadle, and J. L. Wooden, Protracted construction of gabbroic crust at a slow-spreading ridge, Constraints from 206 Pb/ 238 U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR), vol.9, p.8012, 2008.

S. Hreinsdottir and R. A. Bennett, Active aseismic creep on the Alto Tiberina low-angle normal fault, Geology, vol.37, pp.683-686, 2009.

B. Ildefonse, D. K. Blackman, B. E. John, Y. Ohara, D. J. Miller et al., Oceanic core complexes and crustal accretion at slow-spreading ridges, and the Integrated Ocean Drilling Program Expeditions 304/305 Science Party, vol.35, pp.623-626, 2007.

B. John, Geometry and evolution of a midcrustal extension fault system: Chemehuevi Mountains, southeastern California, Continental Extensional Tectonics, vol.28, pp.313-335, 1987.

B. E. John and D. A. Foster, Structural and thermal constraints on the initiation angle of detachment faulting in the southern Basin and Range: The Chemehuevi Mountains case study, Geol. Soc. Am. Bull, vol.105, pp.1091-1108, 1993.

J. A. Karson, Seafloor spreading on the Mid-Atlantic Ridge: Implications for the structure of ophiolites and oceanic lithosphere produced in slow-spreading environments, Ophiolites and Oceanic Crustal Analogues: Proceedings of the Symposium, pp.125-130, 1987.

J. A. Karson, G. L. Früh-green, D. S. Kelley, E. A. Williams, D. R. Yoerger et al., Geochem. Geophys. Geosyst, vol.30, p.6016, 2006.

P. B. Kelemen, Proceedings of the Ocean Drilling Program, vol.209, 2004.

P. B. Kelemen, E. Kikawa, D. J. Miller, and S. Party, Leg 209 summary: Processes in a 20-km-thick conductive boundary layer beneath the MidAtlantic Ridge, vol.209, pp.1-33, 2007.

J. Kirschvink, The least-squares line and plane and the analysis of paleomagnetic data: Examples from Siberia and Morocco, Geophys. J. R. Astron. Soc, vol.62, pp.699-718, 1980.

Y. Lagabrielle, D. Bideau, M. Cannat, J. A. Karson, and C. Mével, Ultramafic-mafic plutonic rock suites exposed along the Mid-Atlantic Ridge, pp.10-30, 1998.

, Symmetrical-asymmetrical distribution and implications for seafloor spreading processes, in Faulting and Magmatism at Midocean Ridges, Geophys. Monogr. Ser, vol.106, pp.153-176

L. L. Lavier, W. R. Buck, and A. N. Poliakov, Selfconsistent rolling-hinge model for the evolution of largeoffset low-angle normal faults, Geology, vol.27, pp.1127-1130, 1999.

E. Lecomte, L. Jolivet, O. Lacombe, Y. Denèle, L. Labrousse et al., Geometry and kinematics of Mykonos detachment, vol.29, p.5012, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591569

C. J. Macleod, L. M. Parson, and W. W. Sager, Identification of tectonic rotations in boreholes by the integration of core information with Formation MicroScanner and Borehole Televiewer images, Geological Applications of Wireline Logs II, vol.65, pp.235-246, 1992.

C. J. Macleod, L. M. Parson, and W. W. Sager, Reorientation of core using the Formation MicroScanner and Borehole Televiewer: Application to structural and palaeomagnetic studies with the Ocean Drilling Program, Proc. Ocean Drill. Program Sci. Results, vol.135, pp.301-311, 1994.

C. J. Macleod, B. Célérier, and P. K. Harvey, Further techniques for core reorientation by core-log integration: Application to structural studies of lower oceanic crust in Hess Deep, eastern Pacific, Sci. Drill, vol.5, pp.77-86, 1995.

C. J. Macleod, Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15°45?N, Geology, vol.30, pp.879-882, 2002.

C. J. Macleod, R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows et al., Precise geological and geophysical mapping of the 15°20?N Fracture Zone on the MARTectonic extension and its consequent exposure of ultramafic and plutonic rocks along the magma, and MODE'98 Leg 1 Scientific Party, vol.287, pp.13-17, 1998.

A. M. Mccaig, B. Cliff, J. Escartín, A. E. Fallick, and C. J. Macleod, Oceanic detachment faults focus very large volumes of black smoker fluids, Geology, vol.35, pp.935-938, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00311895

A. M. Mccaig, A. Delacour, A. E. Fallick, T. Castelain, and G. L. Früh-green, Detachment fault control on hydrothermal circulation systems: Interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, vol.188, pp.207-240, 2010.

D. E. Moore and D. A. Lockner, Talc friction in the temperature range 25°C-400°C: Relevance for fault zone weakening, Tectonophysics, vol.449, pp.120-132, 2008.

D. E. Moore and D. A. Lockner, Frictional strengths of talc-serpentine and talc-quartz mixtures, J. Geophys. Res, vol.116, p.1403, 2011.
DOI : 10.1029/2010jb007881

A. Morris, J. S. Gee, N. Pressling, B. E. John, C. J. Macleod et al., Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples, Earth Planet. Sci. Lett, vol.287, pp.217-228, 2009.
DOI : 10.1016/j.epsl.2009.08.007

A. Nur, H. Ron, and O. Scotti, Fault mechanics and the kinematics of block rotations, Geology, vol.14, pp.746-749, 1986.

J. E. Pariso, J. H. Scott, E. Kikawa, and H. P. Johnson, A magnetic logging study of Hole 735B gabbros at the Southwest Indian Ridge, Proc. Ocean Drill. Program Sci. Results, vol.118, pp.309-321, 1991.

T. L. Pettigrew, Proceedings of the Ocean Drilling Program, vol.179, 1999.

X. Quidelleur and V. Courtillot, On low-degree spherical harmonic models of paleosecular variation, Phys. Earth Planet. Inter, vol.95, pp.55-77, 1996.

C. Ranero and T. J. Reston, Detachment faulting at ocean core complexes, Geology, vol.27, pp.983-986, 1999.
DOI : 10.1130/0091-7613(1999)027<0983:dfaocc>2.3.co;2

H. Schouten, D. K. Smith, J. R. Cann, and J. Escartín, Tectonic vs magmatic extension in the presence of core complexes at slow-spreading ridges from a visualization of faulted seafloor topography, Geology, vol.38, pp.615-618, 2010.

T. Schroeder, M. J. Cheadle, H. J. Dick, U. Faul, J. F. Casey et al., Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge: A structural synthesis of, Geochem. Geophys. Geosyst, vol.209, p.6015, 2007.

G. F. Sella, T. H. Dixon, and A. Mao, REVEL: A model for Recent plate velocities from space geodesy, J. Geophys. Res, vol.107, issue.B4, p.2081, 2002.
DOI : 10.1029/2000jb000033

URL : https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1467&context=geo_facpub

D. K. Smith, J. R. Cann, and J. Escartín, Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge, Nature, vol.442, pp.440-443, 2006.
DOI : 10.1038/nature04950

URL : http://darchive.mblwhoilibrary.org/bitstream/1912/1416/1/SmithNatureWithFigures.pdf

D. K. Smith, J. Escartín, H. Schouten, and J. R. Cann, Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, Geochem. Geophys. Geosyst, vol.9, p.3003, 2008.
URL : https://hal.archives-ouvertes.fr/insu-01875666

J. E. Spencer, Geologic continuous casting below continental and deep-sea detachment faults and at the striated extrusion of Sacsayhuamán, Geology, vol.27, pp.327-330, 1999.

D. R. Toomey, S. C. Solomon, G. M. Purdy, and M. H. Murray, Microearthquakes beneath the median valley of the Mid-Atlantic Ridge near 23°N: Hypocenters and focal mechanisms, J. Geophys. Res, vol.90, pp.5443-5458, 1985.

B. E. Tucholke and J. Lin, A geological model for the structure of ridge segments in slow spreading oceanic crust, J. Geophys. Res, vol.99, pp.937-948, 1994.

B. E. Tucholke, J. Lin, and M. Kleinrock, Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge, J. Geophys. Res, vol.103, pp.9857-9866, 1998.

B. E. Tucholke, M. D. Behn, W. R. Buck, and J. Lin, Role of melt supply in oceanic detachment faulting and formation of megamullions, Geology, vol.36, pp.455-458, 2008.

B. Wernicke, Low-angle normal faults and seismicity: A review, J. Geophys. Res, vol.100, pp.159-179, 1995.

B. Wernicke and G. J. Axen, On the role of isostasy in the evolution of normal fault systems, Geology, vol.16, pp.848-851, 1988.

Y. J. Yu, D. J. Dunlop, O. Ozdemir, and H. Ueno, Magnetic properties of Kurokami pumices from Mt, Earth Planet. Sci. Lett, vol.192, pp.439-446, 2001.

X. Zhao and M. Tominaga, Paleomagnetic and rock magnetic results from lower crustal rocks of IODP Site U1309: Implication for thermal and accretion history of the Atlantis Massif, Tectonophysics, vol.474, pp.435-448, 2009.

X. Zhao, P. Riisager, M. Antretter, J. Carlut, P. Lippert et al., Unraveling the magnetic carriers of igneous cores from the Atlantic, Pacific, and the southern Indian oceans with rock magnetic characterization, Phys. Earth Planet. Inter, vol.156, pp.294-328, 2006.

J. D. Zijderveld, A.C. demagnetization of rocks: Analysis of results, Methods in Paleomagnetism, pp.254-268, 1967.