M. Brown, Granite: from genesis to emplacement, Geol. Soc. Am. Bull, vol.125, pp.1079-1113, 2013.

A. E. Patiño-douce and N. Harris, Experimental constraints on Himalayan anatexis, J. Petrol, vol.39, pp.689-710, 1998.

A. G. Whittington, A. M. Hofmeister, and P. I. Nabelek, Temperaturedependent thermal diffusivity of the Earth's crust and implications for magmatism, Nature, vol.458, pp.319-321, 2009.

P. I. Náb?lek, A. G. Whittington, and A. M. Hofmeister, Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens: Implications of temperature-dependent thermal diffusivity and rheology, J. Geophys. Res, vol.115, p.12417, 2010.

M. Searle, Crustal melting, ductile flow, and deformation in mountain belts: cause and effect relationships, Lithosphere, vol.5, pp.547-554, 2013.

L. Y. Aranovich, A. R. Makhluf, C. E. Manning, R. C. Newton, and J. L. Touret, Fluids, melting, granulites and granites: a controversy-reply to the Commentary of, Precambrian Res, vol.278, pp.400-404, 2016.

J. D. Clemens, I. S. Buick, and G. Stevens, Fluids, melting, granulites and granites: a commentary, Precambrian Res, vol.278, pp.394-399, 2016.

S. Guillot and P. Le-fort, Geochemical constraints on the bimodal origin of High Himalayan leucogranites, Lithos, vol.35, pp.221-234, 1995.

L. Labrousse, T. Duretz, and T. Gerya, H 2 O-fluid-saturated melting of subducted continental crust facilitates exhumation of ultrahigh-pressure rocks in continental subduction zones, Earth Planet. Sci. Lett, vol.428, pp.151-161, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198656

C. Yakymchuk, Decoding polyphase migmatites using geochronology and phase equilibria modelling, J. Metamorph. Geol, vol.33, pp.203-230, 2015.

O. Laurent, Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U-Pb dating in the eastern French Massif Central, Int. J. Earth Sci, vol.106, pp.421-451, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01474160

C. Beaumont, R. A. Jamieson, M. H. Nguyen, and B. Lee, Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, vol.414, pp.738-742, 2001.

C. L. Rosenberg and M. R. Handy, Experimental deformation of partially melted granite revisited: implications for the continental crust, J. Metamorph. Geol, vol.23, pp.19-28, 2005.

G. W. Lederer, J. M. Cottle, M. J. Jessup, J. M. Langille, and T. Ahmad, Timescales of partial melting in the Himalayan middle crust: insight from the Leo Pargil dome, northwest India, Contrib. Mineral. Petrol, vol.166, pp.1415-1441, 2013.

Q. Wang, Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow, Nat. Commun, vol.7, p.11888, 2016.

K. D. Nelson, Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results, Science, vol.274, pp.1684-1688, 1996.

M. J. Unsworth, Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data, Nature, vol.438, pp.78-81, 2005.

R. A. Jamieson, C. Beaumont, S. Medvedev, and M. H. Nguyen, Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen, J. Geophys. Res. Solid Earth, vol.109, p.6407, 2004.

S. Li, Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data, Geophys. J. Int, vol.153, pp.289-304, 2003.

W. Wei, Detection of widespread fluids in the Tibetan crust by magnetotelluric studies, Science, vol.292, pp.716-719, 2001.

R. Gao, Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya, Nat. Geosci, vol.9, pp.555-560, 2016.

L. Hashim, Experimental assessment of the relationships between electrical resistivity, crustal melting and strain localization beneath the Himalayan-Tibetan Belt, Earth Planet. Sci. Lett, vol.373, pp.20-30, 2013.

A. Yin and T. M. Harrison, Geologic evolution of the Himalayan-Tibetan Orogen, Annu. Rev. Earth Planet. Sci, vol.28, pp.211-280, 2000.

M. P. Searle, J. M. Cottle, M. J. Streule, and D. J. Waters, Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms, Earth Environ. Sci. Trans. R. Soc. Edinb, vol.100, pp.219-233, 2010.
DOI : 10.1130/2010.2472(15)

A. Yin, Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation, Earth Sci. Rev, vol.76, pp.1-131, 2006.

K. V. Hodges, R. R. Parrish, and M. P. Searle, Tectonic evolution of the central Annapurna Range, Nepalese Himalayas, Tectonics, vol.15, pp.1264-1291, 1996.

M. A. Murphy and T. Mark-harrison, Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet, Geology, vol.27, pp.831-834, 1999.
DOI : 10.1130/0091-7613(1999)027<0831:rblatq>2.3.co;2

P. H. Leloup, The South Tibet detachment shear zone in the Dinggye area: time constraints on extrusion models of the Himalayas, Earth Planet. Sci. Lett, vol.292, pp.1-16, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00475652

Z. Guo and M. Wilson, The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting, Gondwana Res, vol.22, pp.360-376, 2012.

B. Scaillet and M. P. Searle, Mechanisms and timescales of felsic magma segregation, ascent and emplacement in the Himalaya, Geol. Soc. Lond. Spec. Publ, vol.268, pp.293-308, 2006.

C. Groppo, F. Rolfo, and A. Indares, Partial melting in the Higher Himalayan crystallines of Eastern Nepal: the effect of decompression and implications for the 'channel flow' model, J. Petrol, vol.53, pp.1057-1088, 2012.

L. Fort and P. , Crustal generation of the Himalayan leucogranites, Tectonophysics, vol.134, pp.39-57, 1987.

M. J. Streule, M. P. Searle, D. J. Waters, and M. S. Horstwood, Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology, Tectonics, vol.29, p.5011, 2010.
DOI : 10.1029/2009tc002533

URL : http://onlinelibrary.wiley.com/doi/10.1029/2009TC002533/pdf

B. R. Arora, M. J. Unsworth, and G. Rawat, Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications, Geophys. Res. Lett, vol.34, p.4307, 2007.

L. Chen, Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying, Science, vol.274, pp.1694-1696, 1996.
DOI : 10.1126/science.274.5293.1694

W. B. Caldwell, S. L. Klemperer, S. S. Rai, and J. F. Lawrence, Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion, Tectonophysics, vol.477, pp.58-65, 2009.

L. D. Brown, Bright spots, structure, and magmatism in Southern Tibet from INDEPTH seismic reflection profiling, Science, vol.274, pp.1688-1690, 1996.
DOI : 10.1126/science.274.5293.1688

Y. Makovsky, INDEPTH wide-angle reflection observation of P-wave-toS-wave conversion from crustal bright spots in Tibet, Science, vol.274, pp.1690-1691, 1996.
DOI : 10.1126/science.274.5293.1690

Y. Makovsky and S. L. Klemperer, Measuring the seismic properties of Tibetan bright spots: Evidence for free aqueous fluids in the Tibetan middle crust, J. Geophys. Res. Solid Earth, vol.104, pp.10795-10825, 1999.

G. Rawat, B. R. Arora, and P. K. Gupta, Electrical resistivity cross-section across the Garhwal Himalaya: proxy to fluid-seismicity linkage, Tectonophysics, vol.637, pp.68-79, 2014.
DOI : 10.1016/j.tecto.2014.09.015

B. Scaillet, M. Pichavant, and J. Roux, Experimental crystallization of Leucogranite Magmas, J. Petrol, vol.36, pp.663-705, 1995.

M. Laumonier, F. Gaillard, and D. Sifre, The effect of pressure and water concentration on the electrical conductivity of dacitic melts: implication for magnetotelluric imaging in subduction areas, Chem. Geol, vol.418, pp.66-76, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01092317

D. Sifré, L. Hashim, and F. Gaillard, Effects of temperature, pressure and chemical compositions on the electrical conductivity of carbonated melts and its relationship with viscosity, Chem. Geol, vol.418, pp.189-197, 2015.

A. G. Jones, D. M. Fountain, R. J. Arculus, and R. W. Kay, Continental Lower Crust, pp.81-143, 1992.

X. Yang, Origin of high electrical conductivity in the Lower Continental Crust: a review, Surv. Geophys, vol.32, pp.875-903, 2011.

A. Shimojuku, T. Yoshino, and D. Yamazaki, Electrical conductivity of brinebearing quartzite at 1 GPa: implications for fluid content and salinity of the crust, Earth Planets Space, vol.66, pp.1-9, 2014.

D. L. Newell, Aqueous and isotope geochemistry of mineral springs along the southern margin of the Tibetan plateau: implications for fluid sources and regional degassing of CO 2, Geochem. Geophys. Geosyst, vol.9, p.8014, 2008.

J. A. Connolly, Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett, vol.236, pp.524-541, 2005.

F. Gaillard and G. I. Marziano, Electrical conductivity of magma in the course of crystallization controlled by their residual liquid composition, J. Geophys. Res. Solid Earth, vol.110, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00023414

J. King, N. Harris, T. Argles, R. Parrish, and H. Zhang, Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet, Geol. Soc. Am. Bull, vol.123, pp.218-239, 2011.

P. I. Náb?lek and J. L. Náb?lek, Thermal characteristics of the Main Himalaya Thrust and the Indian lower crust with implications for crustal rheology and partial melting in the Himalaya orogen, Earth Planet. Sci. Lett, vol.395, pp.116-123, 2014.

R. A. Jamieson and C. Beaumont, On the origin of orogens, Geol. Soc. Am. Bull, vol.125, pp.1671-1702, 2013.

L. Caricchi, C. Annen, J. Blundy, G. Simpson, and V. Pinel, Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy, Nat. Geosci, vol.7, pp.126-130, 2014.
DOI : 10.1038/ngeo2041

E. Rivalta, B. Taisne, A. P. Bunger, and R. F. Katz, A review of mechanical models of dike propagation: schools of thought, results and future directions, Tectonophysics, vol.638, pp.1-42, 2015.

C. Annen, B. Scaillet, and R. S. Sparks, Thermal constraints on the emplacement rate of a large intrusive complex: the Manaslu Leucogranite, Nepal Himalaya, J. Petrol, vol.47, pp.71-95, 2006.

B. R. Hacker, M. H. Ritzwoller, and J. Xie, Partially melted, mica-bearing crust in Central Tibet, Tectonics, vol.33, pp.1408-1424, 2014.
DOI : 10.1002/2014tc003545

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014TC003545

L. Pape and F. , Constraints on the evolution of crustal flow beneath Northern Tibet. Geochem. Geophys. Geosyst, vol.16, pp.4237-4260, 2015.

P. D. Ihinger, R. L. Hervig, and P. F. Mcmillan, Analytical methods for volatiles in glasses, Rev. Mineral. Geochem, vol.30, pp.67-121, 1994.

X. Guo, L. Zhang, H. Behrens, and H. Ni, Probing the status of felsic magma reservoirs: Constraints from the P-T-H 2 O dependences of electrical conductivity of rhyolitic melt, Earth Planet. Sci. Lett, vol.433, pp.54-62, 2016.

A. Pommier and E. Le-trong, SIGMELTS": a web portal for electrical conductivity calculations in geosciences, Comput. Geosci, vol.37, pp.1450-1459, 2011.
DOI : 10.1016/j.cageo.2011.01.002

URL : https://hal.archives-ouvertes.fr/insu-00860545

T. J. Holland and R. Powell, An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol, vol.16, pp.309-343, 1998.

R. Coggon and T. J. Holland, Mixing properties of phengitic micas and revised garnet-phengite thermobarometers, J. Metamorph. Geol, vol.20, pp.683-696, 2002.
DOI : 10.1046/j.1525-1314.2002.00395.x

R. C. Newton and H. Haselton, Thermodynamics of Minerals and Melts, pp.131-147, 1981.

R. W. White, R. Powell, T. J. Holland, and B. A. Worley, The effect of TiO 2 and Fe 2 O 3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K 2 O-FeO-MgO-Al 2 O 3-SiO 2-H 2 O-TiO 2-Fe 2 O 3, J. Metamorph. Geol, vol.18, pp.497-511, 2000.

R. W. White, R. Powell, and T. J. Holland, Calculation of partial melting equilibria in the system Na 2 O-CaO-K 2 O-FeO-MgO-Al 2 O 3-SiO 2-H 2 O (NCKFMASH), J. Metamorph. Geol, vol.19, pp.139-153, 2001.

G. Richard, M. Monnereau, and M. Rabinowicz, Slab dehydration and fluid migration at the base of the upper mantle: implications for deep earthquake mechanisms, Geophys. J. Int, vol.168, pp.1291-1304, 2007.

K. J. Miller, W. Zhu, L. G. Montési, and G. A. Gaetani, Experimental quantification of permeability of partially molten mantle rock, Earth Planet. Sci. Lett, vol.388, pp.273-282, 2014.

B. Scaillet, F. Holtz, M. Pichavant, and M. Schmidt, Viscosity of Himalayan leucogranites: implications for mechanisms of granitic magma ascent, J. Geophys Res. Solid Earth, vol.101, pp.27691-27699, 1996.
URL : https://hal.archives-ouvertes.fr/insu-00717683

G. C. Richard, S. Kanjilal, and H. Schmeling, Solitary-waves in geophysical twophase viscous media: a semi-analytical solution. Phys. Earth Planet, pp.61-66, 2012.
DOI : 10.1016/j.pepi.2012.03.001

M. Grégoire, M. Rabinowicz, and A. J. Janse, Mantle mush compaction: a key to understand the mechanisms of concentration of Kimberlite melts and initiation of swarms of Kimberlite dykes, J. Petrol, vol.47, pp.631-646, 2006.

, leucogranitic bulk rocks and the thin sections of gneisses from Purang county and Nyalam county in Tibet of China P.R., David Sifré for helping us with the experiments of electrical conductivity measurements, and Giada Iacono Marziano and Ida Di Carlo for analytical assistance