Science with e-ASTROGAM: A space mission for MeV-GeV gamma-ray astrophysics

A. de Angelis 1 V. Tatischeff 2 I. Grenier 3 J. Mcenery 4 M. Mallamaci 1 M. Tavani 5 U. Oberlack 6 L. Hanlon 7 R. Walter A. Argan 8 P. von Ballmoos 9 A. Bulgarelli A. Bykov M. Hernanz 10 G. Kanbach 11 I. Kuvvetli 12 M. Pearce A. Zdziarski J. Conrad G. Ghisellini 13 A. Harding J. Isern 14 M. Leising F. Longo G. Madejski M. Martinez M. Mazziotta J. Paredes 15 M. Pohl 16 R. Rando M. Razzano A. Aboudan 17 M. Ackermann A. Addazi M. Ajello C. Albertus J. Alvarez G. Ambrosi 18 S. Anton 19 A. Antonelli A. Babic B. Baibussinov M. Balbo L. Baldini S. Balman C. Bambi U. Barres de Almeida 20 A. Barrio R. Bartels D. Bastieri W. Bednarek D. Bernard 21 E. Bernardini T. Bernasconi B. Bertucci A. Biland E. Bissaldi 22 M. Boettcher V. Bonvicini V. Bosch-Ramon E. Bottacini 23, 24 V. Bozhilov T. Bretz M. Branchesi V. Brdar T. Bringmann A. Brogna C. Budtz Jørgensen G. Busetto S. Buson M. Busso A. Caccianiga S. Camera R. Campana P. Caraveo M. Cardillo P. Carlson Sébastien Célestin 25 M. Cermeno A. Chen C. Cheung E. Churazov 26 S. Ciprini A. Coc 2 S. Colafrancesco A. Coleiro 27 W. Collmar P. Coppi R. Curado da Silva S. Cutini 28 F. d'Ammando 29 B. de Lotto D. de Martino A. de Rosa 30 M. del Santo L. Delgado R. Diehl 31 S. Dietrich A. Dolgov A. Dominguez D. Dominis Prester I. Donnarumma D. Dorner M. Doro M. Dutra 32 D. Elsaesser 33 M. Fabrizio 34 A. Fernández-Barral 35 V. Fioretti L. Foffano V. Formato N. Fornengo 36 L. Foschini 37 A. Franceschini 38 A. Franckowiak 39 S. Funk F. Fuschino D. Gaggero 40 G. Galanti F. Gargano D. Gasparrini R. Gehrz P. Giammaria N. Giglietto P. Giommi 41 F. Giordano 42 M. Giroletti 43 G. Ghirlanda 13 N. Godinovic C. Gouiffes 20 J. Grove C. Hamadache 44 Daniel Hartmann 45 M. Hayashida A. Hryczuk P. Jean 46 T. Johnson J. José S. Kaufmann B. Khelifi 27 J. Kiener 2 J. Knödlseder 9 M. Kole J. Kopp V. Kozhuharov C. Labanti S. Lalkovski P. Laurent 27 O. Limousin 20 M. Linares 47 E. Lindfors M. Lindner J. Liu S. Lombardi F. Loparco 42 R. Lopez-Coto M. Lopez Moya B. Lott 48 P. Lubrano D. Malyshev N. Mankuzhiyil K. Mannheim J. Marcha A. Marciano 49 B. Marcote 50 M. Mariotti M. Marisaldi S. Mcbreen S. Mereghetti 51 A. Merle R. Mignani 52 G. Minervini A. Moiseev 4 A. Morselli F. Moura K. Nakazawa 45 L. Nava 53 D. Nieto M. Orienti 54 M. Orio 55 E. Orlando P. Orleanski S. Paiano R. Paoletti A. Papitto M. Pasquato B. Patricelli A. Perez-Garcla M. Persic 56 G. Piano 8 A. Pichel M. Pimenta C. Pittori T. Porter J. Poutanen E. Prandini N. Prantzos 57 N. Produit 58 S. Profumo S. Queiroz S. Raino A. Raklev M. Régis 59, 60 I. Reichardt Y. Rephaeli J. Rico W. Rodejohann G. Rodriguez Fernandez M. Roncadelli L. Roso A. Rovero R. Ruffini 61 G. Sala 62 A. Sanchez-Conde A. Santangelo P. Saz Parkinson T. Sbarrato A. Shearer R. Shellard K. Short T. Siegert C. Siqueira P. Spinelli A. Stamerra S. Starrfield 63 A. Strong 31 I. Striimke F. Tavecchio 64 R. Taverna T. Terzic J. Thompson O. Tibolla 65 F. Torres R. Turolla 23 A. Ulyanov A. Ursi A. Vacchi 66 J. van den Abeele G. Vankova-Kirilovai C. Venter 4 F. Verrecchia P. Vincent 67 X. Wang 68 C. Weniger X. Wu G. Zaharijas 66 L. Zampieri S. Zane S. Zimmer A. Zoglauer
Abstract : e-ASTROGAM (‘enhanced ASTROGAM’) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV – the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
Document type :
Journal articles
Complete list of metadatas

Cited literature [858 references]  Display  Hide  Download

https://hal-insu.archives-ouvertes.fr/insu-01864552
Contributor : Nathalie Rouchon <>
Submitted on : Thursday, August 30, 2018 - 10:29:41 AM
Last modification on : Thursday, December 12, 2019 - 2:24:01 PM

File

1-s2.0-S2214404818300168-main....
Files produced by the author(s)

Identifiers

Citation

A. de Angelis, V. Tatischeff, I. Grenier, J. Mcenery, M. Mallamaci, et al.. Science with e-ASTROGAM: A space mission for MeV-GeV gamma-ray astrophysics. Journal of High Energy Astrophysics, 2018, 19, pp.1-106. ⟨10.1016/j.jheap.2018.07.001⟩. ⟨insu-01864552⟩

Share

Metrics

Record views

1915

Files downloads

214