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E
CPlant communities play an important role in the C-sink function of peatlands. However,

global change and local perturbations are expected to modify peatland plant communities,
leading to a shift from Sphagnum mosses to vascular plants. Most studies have focused on
the direct effects of modification in plant communities or of global change (such as climate
warming, N fertilization) in peatlands without considering interactions between these
disturbances that may alter peatlands' C function. We set up a mesocosm experiment to
investigate how Greenhouse Gas (CO2, CH4, N2O) fluxes, and dissolved organic carbon (DOC)
and total dissolved N (TN) contents are affected by a shift from Sphagnum mosses to Molinia
caerulea dominated peatlands combined with N fertilization. Increasing N deposition did
not alter the C fluxes (CO2 exchanges, CH4 emissions) or DOC content. The lack of N effect
on the C cycle seems due to the capacity of Sphagnum to efficiently immobilize N.
Nevertheless, N supply increased the N2O emissions, which were also controlled by the
plant communities with the presence of Molinia caerulea reducing N2O emissions in the
Sphagnum mesocosms. Our study highlights the role of the vegetation composition on the C
and N fluxes in peatlands and their responses to the N deposition. Future research should
now consider the climate change in interaction to plants community modifications due to
their controls of peatland sensitivity to environmental conditions.
© 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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1. Introduction

Peatlands currently act as a major long-term carbon (C) sink
ecosystem. Although these wetlands cover only 3% of the land
area, they have stored a third of the global soil C since the
early Holocene (Turunen et al. 2002). Most Sphagnum
peatlands (up to 80%) are located at high latitudes of the
northern hemisphere in the cool temperate zone in associa-
tion with waterlogged, nutrient poor conditions and the
presence of Sphagnum mosses (e.g. Gorham 1991). To cope
with low nutrient concentrations, Sphagnum mosses have
developed mechanisms to efficiently use nutrients thanks to
their high cation exchange capacity, nutrient translocation
and atmospheric interception, reducing the nutrient avail-
ability to vascular plants (e.g. Turetsky et al. 2012). However,
northern temperate ecosystems receive four times more
airborne nitrogen (N) today than 150 years ago (Holland et al.
1999; Lamarque et al. 2005). Increased N deposition leads to a
progressive N saturation of Sphagnum mosses, thus favoring
the invasion of vascular plants and reducing Sphagnum moss
growth (Limpens et al. 2011). Such changes seem to reduce the
C sequestration rates in peatlands (Bragazza et al. 2006;
Gunnarsson et al. 2008), even if they increase the vascular
plants' productivity (Wu et al. 2015). However, the effect of the
increase in N loads on stocks and exchanges of N and C are
still understudied in peatlands, although they are known to
generally increase N2O emissions to the atmosphere (e.g.
Nykänen et al. 2002; Francez et al. 2011). Peatland C-storage
capacity is often considered alone to assess the effects of
climate change on peatlands without considering the N stored
in the ecosystems that could account for a significant N2O
source and therefore act as a positive feedback to climate
change (Repo et al. 2009).

The increase in vascular plant cover due to human
activities such as nutrient supply, e.g., atmospheric N
deposition, or drainage, increases organic matter decomposi-
tion (Gogo et al. 2016) and modulates CO2 and CH4 emissions
in peatlands (Ward et al. 2013; Leroy et al. 2017). The
combined effects of vascular plant invasion with N deposition
on both C and N cycles and stocks still remain to be
elucidated. N fertilization generally stimulates the vascular
plant biomass, thereby contributing to higher primary pro-
duction. However, it also leads to a higher decomposition rate
due to a reduction in the C/N ratio and more root exudates
that generate additional respiration (Wu et al. 2015). Our aim
was therefore to assess the effect of N supply on both C and N
dynamics in peat mesocosms collected in a Sphagnum-
dominated peatland invaded by a vascular plant, Molinia
caerulea. All the peat mesocosms contained Sphagnum
rubellum, and half of them also contained M. caerulea. Half of
each plant community mesocosm was subjected to an
increase in N deposition by a weekly amendment to reach
an addition of 3.2 g N/(m2·year). Thus, the hypotheses
investigated are that N deposition will lead to the following
processes under the two plant communities:

(i) Processes involving the C cycle: (a) an increase in C
fluxes by promoting ecosystem respiration (ER) due to a
faster decomposition of plant tissues containing more
Please cite this article as: Leroy, F., et al., Response of C and Ncyc
mesocosms..., J. Environ. Sci. (2018), https://doi.org/10.1016/j.jes.20
F

N (Bragazza et al. 2006); (b) stimulation of the gross
primary production (GPP) by an enhancement of both
Sphagnum mosses and graminoid biomass (e.g.
Tomassen et al. 2003; Granath et al. 2009); (c) a rise in
CH4 emissions through a higher OM decomposition and
increase in root exudates.

(ii) Processes involving the N cycle: (a) higher concentra-
tions of the dissolved NH4

+ and NO3
− and of the N stored

by Sphagnum mosses; (b) an increase in N2O emissions
under both plant communities (Roobroeck et al. 2010).

(iii) Processes involving M. caerulea occurrence: an increase
in the C fluxes in peatlands (CO2, CH4) and DOC content
and a decrease in the ecosystem C sink function
compared to Sphagnum-dominated peatland due to the
promotion of peat decomposition (Leroy et al. 2017).
E
D
 P

R
O2. Materials and methods

2.1. Experimental design

Twelve peat mesocosms (depth and diameter: 30 cm) were
collected in March 2015 at La Guette peatland, an acidic fen
invaded by M. caerulea (pH about 4, 47°19′44″N, 2°17′04″E,
France). Themean annual precipitation and temperature of La
Guette peatland are 883mm and 11°C, respectively (Gogo et al.
2011). The mesocosms were buried outdoors (N 47°50′01″, E
1°56′34″, ISTO, Orléans) and surrounded with a tarpaulin
containing water from the peatland. Air and soil temperature
at 5 and 20cm depth were monitored in each mesocosm at 15
minute intervals. The water table level (WTL) was measured
by using piezometers in all the mesocosms. For each gas
measurement, peat water was collected from the piezometer
and filtered at 0.45μm to analyze DOC and TN concentrations
([DOC] and [TN]) with a Shimadzu TOC-5000 analyzer and NH4

+

and NO3
− concentrations by Dionex ICS 900 and 1100 ion

chromatography. The mesocosms were first separated into
two different plant communities: six containing only S.
rubellum (called ‘Sphagnum’ mesocosms) and six containing
both S. rubellum and M. caerulea (called ‘Sphagnum + Molinia’
mesocosms).Molinia caerulea growth started in May. The plant
covered up to 60% of mesocosms until its senescence in
November. Mesocosms of both plant communities were
separated into two treatments with (called ‘Fertilized’
mesocosms) and without (called ‘Control’ mesocosms) addi-
tions of NH4NO3, commonly used as an agricultural fertilizer.
A powder of NH4NO3 was dissolved in peat water and added
every week to reach 3.2gN/(m2·year), which represents 3.7gN/
(m2·year) during the 14 months of the experiment. This
enrichment is higher than that currently observed in
peatlands (Bragazza et al. 2004), but could reflect the N
deposition expected for 2100 (Lamarque et al. 2005).

At the end of the mesocosm experiment (June 2016), C and
N content (%) in Molinia leaves and litter, Sphagnum capitula
(0–0.5cm), living Sphagnum (0.5–2.5cm) and in peat cubes (5×5
× 5 cm) at 2.5–7.5, 7.5–12.5, 12.5–17.5 and 17.5–22.5 cm depth
were measured for each mesocosm with an elementary
analyzer (Thermo-126 FLASH 2000 CHNS/O Analyzer). For
each mesocosm at the previously mentioned depths, cubes
les to N fertilization in Sphagnum and Molinia-dominated peat
18.08.003
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measuring 5cm per side were prepared and oven dried at 50°C
to calculate peat bulk density (g/cm3, Table S1) in order to
evaluate the C and N stock in each layer (Eq. (1)):

C or N stocks g=m3� � ¼ C or N content %ð Þ � Peat bulk densityð1Þ

2.2. Greenhouse gas (GHG) measurements

GHG measurements were performed with the closed cham-
ber method between once to twice per week during the
growing season (April–October 2015 and April–June 2016) and
every 2 weeks during winter (November 2015–March 2016).
CO2 fluxes were measured during 5 minute using a GMP343
Vaisala probe inserted in a transparent PVC chamber
(D'Angelo et al. 2016). A clear chamber was used to measure
the net ecosystem exchange (NEE), the balance between GPP
(absorption of CO2 by photosynthesis) and ER (release of CO2

into the atmosphere). ER was measured by placing an opaque
cover on the chamber to block photosynthesis (D'Angelo et al.
2016). CH4 andN2O emissionsweremeasured during 15minute
by using SPIRIT, a portable infrared laser spectrometer
(Guimbaud et al. 2011).

2.3. Data analysis and modeling

C fluxes (in g C/(m2·year)), including the GPP, ER and CH4

emissions, were derived for the entire year at a 15minute time
step following Leroy et al. (in prep) by using CO2 and CH4

measurements to calibrate and validate equations based on
Bortoluzzi et al. (2006) and Kandel et al. (2013) with:

ER ¼ a�
WTL

WTLref

� �
þ b�Mcleavesð Þ

� �
� Ta−Tminð Þ

Tref−Tminð Þ
� �c

ð2Þ

ER is the ecosystem respiration flux (μmol CO2/(m2·s). Tref is
the reference air temperature and Tmin the minimum air
temperature. These two parameters were set as in Bortoluzzi et
al. (2006) at 15 and−5°C, respectively. Ta refers to themeasured
air temperature (°C). The reference for theWTL (WTLref) was set
at −15 cm corresponding to the deepest WTL recorded in the
mesocosms. The coefficients a, b and c (temperature sensitivity
parameters) are empirical parameters.

An equation similar to Eq. (1) was used to model the
emissions (Eq. (2)):

CH4 ¼ d�
WTL

WTLref
þ e

� �
� Ts−Tminð Þ

Tref−Tminð Þ
� � f

ð3Þ

where, WTLref, Tmin, Tref and Tmin were set as for the ER
equation. Ts refers to the measured soil temperature (°C).

The GPP was modelized by using a rectangular hyperbola
saturation curve with the photosynthetic photon flux density
(PPFD) and by taking into account the effect of temperature
and vegetation with the Eq. (3):

GPP ¼ GPPmax
�PPFD

kþ PPFD
� RVI � T−Tminð Þ T−Tmaxð Þ

T−Tminð Þ T−Tmaxð Þ− T−Topt
� �2 ð4Þ

where GPPmax (μmol/(m2·s)) represents the GPP at light
saturation, the parameter k (μmol /(m2·s)) is the half satura-
tion value and RVI are a vegetation index to include the effect
of Molinia leaves number on photosynthesis. Tmin, Topt and
Please cite this article as: Leroy, F., et al., Response of C and Ncyc
mesocosms..., J. Environ. Sci. (2018), https://doi.org/10.1016/j.jes.20
O
F

Tmax represent the minimum, optimum and maximum air
temperature for photosynthesis and were set at 0, 20 and 40
°C, respectively (Kandel et al. 2013).

N fluxes (concerning only N2O emissions, g N/(m2·year))
were extrapolated for the entire year from the mean values of
12months of measurements (in μmol N2O/(m2·s)). Three-way
repeated-measure ANOVAs were used to compare C and N
fluxes and differences in environmental parameters due to
the main effect of ‘Vegetation’ between Sphagnum and
Sphagnum + Molinia mesocosms, and ‘Nitrogen’ between the
Fertilized and Control mesocosms over the measurement
period (Table 1). Two-way ANOVAs were used to compared C
and N content, peat bulk density and C and N stocks per depth
for the main effect of ‘Vegetation’ between Sphagnum and
Sphagnum + Molinia mesocosms, and ‘Nitrogen’ between the
Fertilized and Control ones (Tables 2, S1, S2).
E
D
 P

R
O3. Results

3.1. C and N fluxes

No significant differences in ER, GPP, CH4 emissions or [DOC]
were observed between the Control and Fertilized mesocosms
for the two plant communities (Table 1). Hypothesis (i), which
assumed a promotion of ER, GPP and CH4 emissions, must
therefore be rejected. Differences were driven only by the
plant communities: the presence of M. caerulea increased the
gaseous C fluxes (ER, GPP, CH4 emissions) compared to
Sphagnum mesocosms (Table 1). Furthermore, the number
and height of M. caerulea leaves were similar between the
Control and Fertilized mesocosms and no stimulation of
Molinia growth with addition of N was observed (Table 1).
Neither NH4

+ nor NO3
− concentrations were significantly

influenced by the increase in N deposition, refuting hypoth-
esis (ii, a), i.e. higher NH4

+ and NO3
− concentrations in peat

water due to NH4NO3 additions (Table 1). Water in both plant
communities contained low NO3

− concentrations, and NH4
+

concentrations varied with the vegetation cover (Table 1, Fig.
2), the presence of M. caerulea significantly reducing the NH4

+

concentrations (and also the TN content) compared to
Sphagnum mesocosms (Table 1).

The only significant differences due to the NH4NO3 addi-
tions concerned N2O emissions that increased in Fertilized
mesocosms compared to Control ones for both plant commu-
nities. This confirms our hypothesis (ii, b), i.e. that a higher N
would increase N2O emissions under both plant communities
(Table 1, Figs. 1, 2 and S1). Furthermore, N2O emissions were
also affected by the vegetation composition with a decrease in
N2O emissions in the Sphagnum+Moliniamesocosms compared
to the Sphagnummesocosms (Table 1, Fig. 1).

3.2. C and N stocks

Increasing N deposition triggered a short-term response with
an increase in N concentrations in Sphagnum capitula (0–0.5cm
depth) and in its living tissues (0.5–2.5 cm depth) and in N2O
emissions (Tables 1, 2 and Fig. 1). These effects modified the N
cycles and stocks in the peat mesocosms (Table S2, Fig.2).
Extrapolation of N2O fluxes (in g N/(m2·year) showed that
les to N fertilization in Sphagnum and Molinia-dominated peat
18.08.003
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Table 1t1:1 –Mean values of 12 months' measurements of Net Ecosystem Exchange (NEE), Gross Primary Production (GPP),
t1:2 Ecosystem Respiration (ER), CH4 emissions (CH4), DOC) N2O emissions, TN, NH4

+ and NO3
− contents, air temperature (Ta),

t1:3 Water Table Level (WTL), number and height of Molinia leaves in Sphagnum and Sphagnum + Molinia mesocosms with
t1:4 (Fertilized) or without (Control) NH4NO3 addition.
t1:5t1:6 Sphagnum Sphagnum+Molinia Significance

t1:7 Control Fertilized Control Fertilized Nitrogen Vegetation

Interactiont1:8 C cycle

t1:9 NEE (μmol/(m2·s)) 1.55±0. 26 1.29±0.22 6.50±1.26 7.11±1.32 ***
t1:10 GPP (μmol/(m2·s)) 2.61±0.37 2.28±0.33 10.24±1.92 10.56±1.93 ***
t1:11 ER (μmol/(m2·s)) 1.06±0.26 0.99±0.22 3.75±0.81 3.50±0.75 ***
t1:12 CH4 (μmol/(m2·s)) 0.018±0.007 0.019±0.008 0.130±0.032 0.133±0.03 ***
t1:13 DOC (mg/L) 58.38±8.29 41.71±7.24 35.95±7.34 24.14±5.37 *
t1:14
t1:15 Ncycle
t1:16 N2O (μmol/(m2·s)) 5.26–5±1.48–5 19.41–5±5.38–5 −0.89-5±1.21–5 2.86–5±5.94–6 * *
t1:17 TN (mg/L) 5.27±0.56 4.01±0.36 1.70±0.31 1.14±0.22 **
t1:18 NH4

+ (mg/L) 5.15±0.67 4.11±0.35 0.27±0.13 0.16±0.059 **
t1:19 NO3

− (mg/L) 0.51±0.13 0.46±0.11 0.26±0.09 0.55±0.175
t1:20
t1:21 Environmental parameters
t1:22 Ta (°C) 12.06±1.50 12.14±1.525 14.54±1.57 14.66±1.52
t1:23 WTL (cm) −6.32±0.51 −3.28±0.40 −7.06±0.49 −7.25±0.54
t1:24 Molinia leaves number n. a. n. a. 233.54±46.0 269.94±48.7 n. a. n. a.
t1:25 Molinia leaves height n. a. n. a. 13.04±2.29 12.02±2.14 n. a. n. a.

t1:26 n. a.: not applicable. Data are presented as mean±SE, n=12. Significant differences of repeated-measure ANOVAs are expressed as *p<0.05, **p<
t1:27 0.01,***p<0.001.t1:28

t2:1
t2:2
t2:3t2:4

t2:5

t2:6

t2:7

t2:8

t2:9

t2:10

t2:11

t2:12

t2:13
t2:14

t2:15

t2:16

t2:17

t2:18

t2:19

t2:20

t2:21t2:22
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increasingNdepositionproducedan increase inN2Oemissions
of 0.125gN/(m2·year) in Sphagnummesocosms and of 0.033gN/
(m2·year) in Sphagnum +Molinia mesocosms (Fig. 2). However,
the increase in N2O emissions represents only 4 and 1% of the
total N additions, respectively, in Sphagnummesocosms and in
Sphagnum+Molinia mesocosms. Most of the NH4NO3 load was
stored in Sphagnummosses with an estimated increase of 2.9g
N/m2 in the stocks of Sphagnum+Moliniamesocosmsand of 4.0g
N/m2 in Sphagnum ones in the two first layers of the Fertilized
mesocosms compared to the Control ones.

The NH4NO3 load did not significantly impact C cycles and
stocks (Table 1, Fig. 3). C compartments were only affected by
U
N
C
OTable 2 – C and N content (%) ofMolinia and Sphagnummesocosm

depth (in cm),

Sphagnum Sphagnum+M

Control Fertilized Control

C cycle
0–0.5 40.80±0.39 40.41±0.28 40.13±0.20
0.5–2.5 37.60±1.02 34.69±3.83 39.63±2.59
2.5–7.5 32.54±3.07 31.67±2.43 34.77±1.70
7.5–12.5 37.91±1.05 32.21±2.61 38.05±0.37
12.5–17.5 34.87±1.37 34.14±2.76 37.80±0.26
17.5–22.5 37.29±0.38 33.45±4.37 34.58±2.43

Ncycle
0–0.5 1.10±0.11 2.01±0.13 1.34±0.05
0.5–2.5 0.68±0.09 0.90±0.11 0.74±0.06
2.5–7.5 0.86±0.19 0.98±0.07 0.67±0.12
7.5–12.5 0.99±0.05 1.18±0.28 1.12±0.07
12.5–17.5 1.53±0.08 1.31±0.19 1.49±0.10
17.5–22.5 1.60±0.14 1.37±0.06 1.49±0.05

Data are presented as mean±SE, n=3. Significant differences are express

Please cite this article as: Leroy, F., et al., Response of C and Ncyc
mesocosms..., J. Environ. Sci. (2018), https://doi.org/10.1016/j.jes.20
Ethe vegetation cover which modified C absorption and
mineralization (Fig. 3). The shift from Sphagnum to Molinia
dominated peatland increased C emissions and absorption
and led to an increase in the C balance (Table 1, Fig. 3, Leroy et
al., in prep). This refutes our hypothesis (iii) which assumed a
decrease in the ecosystem C balance with M. caerulea
occurrence. Only the M. caerulea effect was modeled on the C
flux since it was the only significant effect observed on the
CO2 and CH4 fluxes (Fig. 2, Leroy et al., in prep). C contents
were similar between vegetation treatments (Table 2), but the
density was higher in Sphagnum plots than in Sphagnum +
Molinia mesocosms (Table S1). Consequently, the C stock was
s with (Fertilized) or without (Control) NH4NO3 addition per

olinia Significance

Fertilized Nitrogen Vegetation Interaction

39.37±0.72 –
38.40±2.32 –
31.42±2.41
37.22±1.95 –
36.38±1.05
36.65±0.98

1.73±0.10 *** *
1.14±0.12 *
0.77±0.10
1.51±0.36
1.72±0.18
1.64±0.07 –

ed as – for 0.05<p<0.1, *p<0.05, **p<0.01, ***p<0.001.
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density between vegetation did not affect the stoichiometry of
the peat. The C/N ratio was only affected by the N treatment
in the top two layers (0–0.5 and 0.5–2.5 cm) with a lower ratio
in the Fertilized plots than in the Control ones (Fig.4).
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4.1. N retention by Sphagnum

The number and height of M. caerulea leaves were similar
between the Control and the Fertilized mesocosms and no
stimulationofMoliniagrowthwasobserved. This is in agreement
with the results of Tomassen et al. (2003) who found an effect of
N addition onM. caerulea biomass only after 3years ofN input. In
addition, the different forms of N dissolved in peat water were
not affected by the N addition treatment (Table 1). However, N
addition inducedan increase in the concentration andstockofN
in the living parts of Sphagnum (the first two layers of the peat
mesocosms: 0–0.5 cm and 0.5–2.5 cm; Table 2, Fig. 2). Thus, the
lack of a short-termeffect of N fertilization onM. caerulea growth
can be explained by the high capacity of Sphagnum mosses to
retain N deposition (van Breemen, 1995). Indeed, Sphagnum
species can capture the atmospheric N supply, limiting its
availability for the surrounding vascular plants (van Breemen,
1995; Tomassen et al. 2003). Such amechanism can have a long-
term effect on OM decomposition. The N enrichment of living
Sphagnum by increased N atmospheric deposition leads to a
lowerC:N ratio (Fig. 4). Suchachange inpeat stoichiometrycould
increase the decomposition rate of Sphagnum litters and in the
long term, could negatively affect the C balance of Sphagnum-
dominated peatlands (Aerts et al. 1992).
Please cite this article as: Leroy, F., et al., Response of C and Ncyc
mesocosms..., J. Environ. Sci. (2018), https://doi.org/10.1016/j.jes.20
E
D

Despite the N retention by Sphagnum mosses, increasing
NH4NO3 inputs enhances N2O emissions under both plant
communities (Fig. 1). When error terms are considered, the
amount of N added in Sphagnum mesocosms (3.7 g N/m2) is
recovered in the amount of N found in the combined N2O
emissions and N stocks in Sphagnum layers (4.0 g N/m2 on
average; Fig. 2). NootherNoutput or stock is required to close the
N balance. These results suggest that increased N2O emissions
may be generated by a stimulation of denitrification triggered by
an increase in N availability (Hayden and Ross 2005; Francez et
al. 2011). This stimulation ismodulated by the vegetation.

4.2. Effect of Molinia caerulea on the N cycle

Vegetation composition was also found to impact N2O
emissions (Table 1) with lower N2O emissions in the presence
of M. caerulea (Fig. 1). The dissolved NO3

− concentration (Table
1) and the N content of living Sphagnum (Table S1) did not
differ between Sphagnum and Sphagnum+Molinia mesocosms.
Furthermore, the above-ground biomass production of M.
caerulea was not stimulated by N addition (Table 1; Fig. 2). The
combined increase in N2O emissions and N stocks (2.9 gN/m2)
in Fertilized mesocosms compared to the Control ones
represents 80% of the N additions. The fraction of N lacking
may have been either denitrified to N2 (not possible to observe
with our technique) or incorporated into the root biomass.

The competition between M. caerulea, a nitrophilous grass
(Tomassen et al. 2004), and denitrifiers for mineral N could
limit the substrate's availability for denitrification, leading to
a reduction in N2O emissions (Repo et al. 2009; Roobroeck et al.
2010). The utilization of N for biomass building by M. caerulea
is supported by the reduction in dissolved NH4

+ concentration
in presence of M. caerulea, as this plant can use NH4

+ as an N
source (Troelstra et al. 1995). In any case, these results clearly
les to N fertilization in Sphagnum and Molinia-dominated peat
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showed that the occurrence ofM. caeruleamodifies the C cycle
either by increasing root biomass (with further modification
of the C cycle) or by modulating the denitrifier microbial
communities (from N2O to N2 emission), or both. Further
studies should thus focus on the OM dynamics associated
with the M. caerulea rhizosphere.
383

384
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386387

388

389

390
5. Conclusions

Increasing N deposition did not impact the C fluxes (CO2, CH4),
[DOC], stocks or above-ground biomass of M. caerulea in this
short-term experiment. This was due to the high capacity of
Sphagnum mosses to intercept atmospheric N, limiting the N
input effect. Despite the low N availability, NH4NO3 addition
promoted N2O emissions, which were also influenced by the
Please cite this article as: Leroy, F., et al., Response of C and Ncyc
mesocosms..., J. Environ. Sci. (2018), https://doi.org/10.1016/j.jes.20
vegetation composition with the lowest emissions with M.
caeruleaoccurrence.ThismodificationinN2Oemissionsprobably
results from an alteration of the denitrification activity linked to
the availability of mineral N. Our results indicate that N
deposition alters the N cycling in peatlands with also an
important regulatory role of plant communities on C and also
onNdynamics. Nonetheless, peatland ecosystem reactions toN
deposition should be considered in the longer term, especially in
peatlandswith a Sphagnum layer N-saturated.
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