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In this paper, we outline several recent insights for the priorities and challenges for

future research for reducing phosphorus (P) based water eutrophication in the agricultural

landscapes of Northwest Europe. We highlight that new research efforts best be focused

on headwater catchments as they are a key influence on the initial chemistry of the larger

river catchments, and here many management interventions are most effectively made.

We emphasize the lack of understanding on how climate change will impact on P losses

from agricultural landscapes. Particularly, the capability to disentangle current and future

trends in P fluxes, due to climate change itself, from climate driven changes in agricultural

management practices and P inputs. Knowing that, future climatic change trajectories

for Western Europe will accelerate the release of the most bioavailable soil P. We stress

the ambiguities created by the large varieties of sources and storage/transfer processes

involved in P emissions in landscapes and the need to develop specific data treatment

methods or tracers able to circumvent them, thereby helping catchment managers to

identify the ultimate P sources that most contribute to diffuse P emissions. We point

out that soil and aqueous P exist not only in various chemical forms, but also in range

of less considered physical forms e.g., dissolved, nanoparticulate, colloidal and other

particulates, all affected differently by climate as well as other environmental factors, and

require bespoke mitigation measures. We support increased high resolution monitoring

of headwater catchments, to not only help verify the effectiveness of catchments

mitigation strategies, but also add data to further develop new water quality models

(e.g., those include Fe-P interactions) which can deal with climate and land use change

effects within an uncertainty framework. We finally conclude that there is a crucial

need for more integrative research efforts to deal with our incomplete understanding
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of the mechanisms and processes associated with the identification of critical source

areas, P mobilization, delivery and biogeochemical processing, as otherwise even high-

intensity and high-resolution research efforts will only reveal an incomplete picture of

the full global impact of the terrestrial derived P on downstream aquatic and marine

ecosystems.

Keywords: phosphorus, cycling, soil, eutrophication, climate change, colloidal and particulate, water quality

INTRODUCTION

The increasing world-wide issue of the eutrophication of our
lakes, reservoirs, rivers and coastal waters has highlighted an
urgent need for interdisciplinary action across research fields
(e.g., Moss, 2012; Withers et al., 2014; Elmgren et al., 2015; Pinay
et al., 2017; Charlton et al., 2018). It is now well documented
that anthropogenically derived phosphorus (P) and nitrogen
(N) pollution are currently the main drivers of eutrophication,
with the excessive inputs of these two nutrients into freshwater
and estuarine water bodies being considered as one of the
most urgent environmental issues that human societies face
(Rockström et al., 2009; Steffen et al., 2015; George et al., 2017).
Agricultural activities and urbanization can both deliver excess
P and N to aquatic ecosystems, which may cause eutrophication
of water courses and which in turn may alter the native
ecological communities, degrade ecosystem services and directly
or indirectly impact water supply, recreational uses, and human
health (e.g., cyanobacteria blooms). Already, in the late 1960s a
fundamental change started to occur inmost developed countries
regarding the type of P input (see Table S1 for P terminology
and additionally Haygarth and Sharpley, 2000), namely a very
marked decrease of point-source P due to an increased waste
water treatment (Persson, 2001; Billen et al., 2007; Grizzetti et al.,
2012; Scavia et al., 2014; Minaudo et al., 2015). This decrease
has had rapid and marked effects on the P loading and trophic
status of downstream water bodies (e.g., a 75% reduction in
25 years of the P flux in the Seine River and Lake Geneva;
disappearance of cyanobacteria blooms in some lakes, such as
Lake Erie in the USA, Lake du Bourget in France, and Lake
Mjosa in Norway; Nesheim et al., 2010; Jacquet et al., 2014; Scavia
et al., 2014; Romero et al., 2016). However, this reduction in
point sources has been counterbalanced by the stagnation or
even the increase of diffuse P emissions from agricultural soils
(Scavia et al., 2014; Dupas et al., 2015d; Stoddard et al., 2016).
This has happened even despite the fact that overall fertilizer
usage in NW Europe since the 1980’s has decreased significantly
(Schoumans et al., 2015). For example in Sweden, lower P
fertilizer use is now accompanied by more or less balanced P
inputs and outputs in agriculture (Bergström et al., 2015). Both
dissolved/colloidal P, i.e., the most bio-available forms of P for
algae (Dupas et al., 2015a; Mellander et al., 2016; Gu et al.,
2017), as well as particulate P (Bechmann and Deelstra, 2013) are
involved in this increase of P emissions from agricultural soils.
For Norway increased delivery of particulate P to surface waters
can partly be assigned to higher soil erosion due to climate change
effects (i.e., increased runoff) (Deelstra et al., 2011). Whereas,

for Sweden a modeling study (Arheimer and Donnelly, 2013)
suggested that the total mean load to the Baltic Sea will increase
for P, but may decrease for N by 2100 due to climate-induced
changes. Enhanced particulate P can be formed in the surface
waters due to the discharge of iron (Fe) and calcium (Ca)-bearing
groundwater and subsequent precipitation of P-rich minerals
(Baken et al., 2013; Van der Grift et al., 2014, 2018). Depending
on the receiving water body, most of this particulate P could in
the long run become available to algae (e.g., Yang et al., 2016; Yao
et al., 2017).

Maintaining high levels or even increasing diffuse P
losses from agricultural landscapes hampers any expected
improvements in water quality, thereby challenging our society’s
ability to combat eutrophication. The issue here concerns not
only lakes, rivers and estuaries, but also the multitude of small
water bodies of natural and artificial origin, some which may
serve as reservoirs for drinking water production.

For 30 years or more, much knowledge has been gained on
the basic physico-chemical processes by which P is mobilized
in soils and transported to rivers, as well as on the chemical
forms of the mobilized and transported P. For example, the
role of wetting-drying cycles as catalysts for the production
and transfer of dissolved and colloidal phosphorus is now well
known (e.g., Turner et al., 2003; Butterly et al., 2011; Blackwell
et al., 2013; Chen et al., 2016; Gu et al., 2018). In particular,
the important role of colloids to serve as carrier of P in soils
and waters has been highlighted (e.g., Henderson et al., 2012;
Gottselig et al., 2014; Liu et al., 2014; Baken et al., 2016; Jiang
et al., 2017; Gu et al., 2018; Missong et al., 2018). Also well-
constrained is the capacity of P to bind withmanganese (Mn) and
iron oxides and the influence the redox state of soils and waters
has on P mobility in the environment (Scalenghe et al., 2012;
Van der Grift et al., 2014; Jiang et al., 2015a,b; Smolders et al.,
2017). Along with these understandings, novel high resolution
P water quality monitoring, such as sensor technology, can be
used to understand the processes of dissolved and particle-bound
substances in waters. For example by using turbidity as a proxy
for particulate P we can now reliably achieve high-frequency
observations of P losses from agricultural landscapes over multi-
annual periods (Jordan et al., 2007; Skarbøvik and Roseth, 2014;
Rode et al., 2016; Shore et al., 2017). This information, combined
with ever advancing analytical techniques (Kruse et al., 2015)
as well as improvements in landscape visualization tool kits, is
helping to facilitate efforts to better quantify P dynamics in time
and space, from plot to catchment and landscape.

Transforming this knowledge into appropriate cost effective
mitigation strategies remains a major challenge (Schoumans
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et al., 2014, 2015; Dodds and Sharpley, 2015; Kleinman et al.,
2015; Sharpley et al., 2015; Withers et al., 2015a,b; Rowe et al.,
2016). The degree of integration and knowledge is such today
that some of the most recent studies can go as far as integrating
the costs of management in the reduction of diffuse phosphorus
emissions, in connection with national or local legislation or land
property issues (e.g., McDowell et al., 2016; Vinten et al., 2017;
Zhang et al., 2017).

The EU Water Framework Directive (WFD) has since its
emergence in the beginning of this millennium set the scene for
water management in Europe. Its implementation has resulted
in massive efforts to classify all water bodies according to their
ecological status, within this context monitoring of European
waters has, at least tentatively, become more harmonized
through the Common Implementation Strategy (CIS) guidelines.
Achieving Good Ecological Status of waterbodies across Europe
under the Water Framework Directive will require an improved
understanding of the link between P concentrations, loads and
sources in the soil and recipient freshwater ecosystems within
the context of multiple stressors (Whitehead and Crossman,
2012; Crossman et al., 2013). However, in this paper, we will not
focus on all the aspects of the WFD or other EU legislation, but
only few aspects that are linked to the main foci of our review.
These include the types of monitoring that can give new insight
into catchment processes, including investigative monitoring and
source apportionment.

Furthermore, we are taking into account the considerable
amount of papers already published on the topic of P transfer
and P management in agricultural landscapes, including several
recent review papers (e.g., Kleinman et al., 2011; Chowdhury
et al., 2014; Schoumans et al., 2014; Sharpley et al., 2015; Kadlec,
2016; McDowell et al., 2016). As well as related contemporary
topical reviews on aspects like scenario analysis and mitigation
(Roberts et al., 2012; Schoumans et al., 2014; Dodd and Sharpley,
2016; Ahmad et al., 2017; Liu et al., 2017; Wu et al., 2017), policy
and implementation (Christen and Dalgaard, 2013; McDowell
et al., 2016), novel modeling approaches and management
insights Shepherd et al., 2011; Radcliffe et al., 2015; Xie et al.,
2015; Ouyang et al., 2017, water quality modeling (Rode et al.,
2010; Wellen et al., 2015; Hashemi et al., 2016), erosion (Panagos
et al., 2017) and other more general appraisal of future needs and
directions (Fernandez-Mena et al., 2016; Garnache et al., 2016).
Hence our intention in this article is not to produce an exhaustive
review which also covers the state of knowledge in these related
research fields. Rather, our paper is aimed at highlighting certain
important knowledge gaps and research challenges on P cycling
and transfer processes in agricultural landscapes in Northwest
Europe in relation to the continued issue of eutrophication
of inland and coastal surface waters. Thereby, implicitly also
identifying research needs for these 4 key challenges. These
main challenges for us concern: (i) a better understanding of
the processes and variables controlling P mobilization and P
transfer in headwater catchments, (ii) a better consideration of
how the basic mechanisms involved in P mobilization in soils
at the small scale aggregate themselves at larger scales, and
how this aggregation ultimately control P diffuse emissions in
agricultural landscapes, (iii) the resolution of ambiguities in the

interpretation of river P dynamics for identification of sources
in catchments, and (iv) a better understanding and prediction of
the effects of climate change on P fluxes and P physical-chemical
forms.

HEADWATER CATCHMENTS: THE RIGHT
PLACE TO BE TO MANAGE AND MONITOR
DIFFUSE PHOSPHORUS EMISSIONS

Combating eutrophication relies on effective reduction in P
losses from land to water through appropriate management of
P sources and pathways in the landscape. The key scientific
and management questions are: where is the excess P coming
from? How are these P sources mobilized and delivered to
surface waters? What is their impact on water bodies? For still
unknown reasons, some headwater catchments (surface area
<50 km2) in agricultural landscapes appear more resilient (have
more buffering capacity) than others with regards to P loading,
resulting in huge differences in average annual P concentrations
and annual P fluxes, as exemplified by the case of Brittany,
one of the most intensively farmed regions of France (Legeay
et al., 2015; Abbott et al., 2017). This increased variability of P
concentration and P fluxes with decreasing catchment size is as a
result of headwater catchments having lower intense cultivation
rates. In fact the majority of these Brittany headwater catchments
shown in Figure 1 are intensively cultivated (>80% of arable
land) throughout (Legeay et al., 2015; Abbott et al., 2017).
They were also found to be insensitive to the general decreased
particulate P emissions that has been recorded in Brittany since
the beginning of the 1990’s, as this decrease left the amplitude of
particulate P flux variability in headwater catchments unchanged
(see Figure 1).

The increased variability of P emissions when moving
upstream in headwater catchments is found both for dissolved
and particulate P fluxes (Figure 1). Land use, and especially
the share of arable land within a catchment, is known to have
a strong positive relationship on nutrient losses (Evans et al.,
2014). Indeed, plotting median TP (total P) losses against the
share of arable land in Swedish catchments included in the
monitoring program River outlets and Trend Watercourses
results in strong (R2 = 0.79, p < 0.005) and positive relationship
(Figure 2). However, long term data from another Swedish water
quality program, monitoring program arable catchments, also
highlighted an inherent great variability in nutrient delivery
among small catchments (<50 km2) with high portion of
the arable land (Figure 2). For these small catchments with
high share of arable land, the relationship was not statistically
significant at all (R2 = 0.02, p = 0.41). Consequently, measured
P concentrations from some small catchments were remarkably
low in spite of intensive agricultural production, whereas other
catchments were found to be less resilient and much more
vulnerable to P losses.

The high spatial variability observed among headwater
catchments appears persistent over time suggesting that
occasional synoptic sampling of headwater catchments can
provide valuable information for catchment characterization and
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FIGURE 1 | The relationship between dissolved an particulate P fluxes and drainage areas as observed in Brittany rivers, Western France. Fluxes have been

calculated as average values for periods of four consecutive years, in order to minimize flux uncertainities. The two plots data from 117 monitoring station. Drainage

areas ranges from 11 to 4,000 km2. For both dissolved and particulate P fluxes, an increase variability is observed when moving from large rivers toward headwater

catchments, the maximum of variability occurring for headwater catchments of drainage area <50 km2 (Legeay et al., 2015).

FIGURE 2 | The relationship between the portion of a arable land and median total phosphorus (TP) concentration for the period 2000–2016 included in two Swedish

water equality monitoring program: (a) 77 catchments (area 8–50,110 km2). River outlets and trend watercourses (black filled circles) and (b) 36 smaller (area 1.8–54

km2) catchments dominated by agriculture (red filled circles). The size of the filled circles is proportional to the catchment area, and the label value stands for the log10
area of the catchment (km2).

Original source data:

Monitoring programs River outlets and Trend Watercourses: http://miljodata.slu.se/

Monitoring programs Arable catchments:;http://jordbruksvatten.slu.se/.

management with regards to P emissions. This finding also raises
the question of the spatial threshold at which the landscape splits
into poorly and highly contributing headwater catchments with
regards to P emissions, which has been recently referred as to
the “landscape grain size” concept (Abbott et al., 2017). There
are many potential parameters that could modify the capacity of
headwater catchments to release P to river networks, and thus
create variations in P emission properties at a specific spatial
threshold, or given landscape grain size (see also Dodds and

Oakes, 2008; Haygarth et al., 2012). Included are the extent of
preferential flow paths in soils and aquifers, which determine
residence times in different catchment components, as well as
the connectivity between land and water which may strongly
vary among headwater catchments (Dahlke et al., 2012; Dupas
et al., 2015d, 2016; Mellander et al., 2015). Differences in P
applied to or present in soils, the biogeochemical cycling in soils,
linked with variations in groundwater dynamics, themselves
influenced topography, could be also involved (e.g., Gu et al.,
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2017). Differences in past land-use history and soil properties
will likewise will play a role (Stutter et al., 2015; Gu et al.,
2017).

Irrespective of the processes and factors that control the ability
of headwater catchments to act as sinks or sources for P, the
understanding where P is coming from is important both to
target and reduce these sources and also to establish who is
responsible for their management according to the polluter pays
principle (as defined in theWFD). There is however less clarity in
WFD who will pay for the monitoring to obtain this information,
in fact, the direct monitoring of point sources is often left to the
owner of the waste water treatment plants (Skarbøvik et al., 2014).

Knowing the spatial structure and the typical grain size of
source and sink headwater catchments with regards to diffuse
P emissions in the landscape could improve site selection for
targeted management efforts. Should the difference in resilience
properties be of high spatial and temporal stability as found by
Legeay et al. (2015) and Abbott et al. (2017), then the intervention
in those headwater catchments showing the lowest resilience
or highest source properties would potentially yield the largest
catchment-level improvements at the lowest cost.

Knowing the landscape typical threshold or grain size could be
also helpful for rationalizing water quality monitoring networks.
Owing to the temporal stationarity of the spatial distribution
of poorly and highly contributing headwater catchments,
occasional synoptic sampling of headwater catchments would
provide valuable information for identifying high and low
contributing headwater catchments in agricultural landscapes.
The redistribution of agricultural activity based on the difference
in P emission properties of headwater catchments could be a
cost effective management strategy for decreasing P loads of
larger rivers. This could be implemented even in the absence
of a clear understanding of the underlying mechanisms and
factors that cause differences in headwater catchment properties.
The implementation over the long-term of high frequency
monitoring devices at the outlet of larger river basins where the
river channel integrates multiple headwater catchments would
make it possible to assess the effectiveness of the mitigation
strategies thus deployed in the most contributive headwater
catchment areas.

DIFFICULTIES IN DISENTANGLING
POINT-SOURCE, DIFFUSE PHOSPHORUS
EMISSIONS AND PRE-AGRICULTURAL
PHOSPHORUS CONCENTRATION
BASELINES

Load apportionment models are often used to distinguish
between diffuse (mainly from agriculture) and point P sources
(sewage treatments, industry sources, fish farming etc.) (Bowes
et al., 2008). In many European countries, monitoring networks
(statutory monitoring) were established well before 2000 to
monitor pollution from point sources and to assess long-term
water quality status (Bieroza et al., 2014; Kyllmar et al., 2014),
but recently more new emphasis has been put on such networks
as part of the obligations and the verification of compliance

with EU legislative directives (e.g., WFD). Furthermore, both the
location of the sampling points and the monitoring interval are
not always suitable to capture the spatial and temporal dynamics
of diffuse sources (Jordan and Cassidy, 2011; Bieroza et al., 2014).
Thus, targeting diffuse P is difficult, since the sources operate
sparsely in both space and time, except for specific locations in
the catchment, so-called Critical Source Areas (CSA), and during
specific times e.g., rainfall and snowmelt events (Djodjic and
Villa, 2015).

Haygarth and Jarvis (1999) stated that having good
quantitative knowledge of the baseline P concentrations is
necessary when assessing spatiotemporal trends in water quality
in agricultural areas. This is also a requirement in the WFD,
which states that the environmental goals should deviate
only slightly from the background or reference conditions.
However, the baseline P concentrations can be expected to vary
widely among regions. For example, Phillips and Pitt (2015)
demonstrated the differences between European countries of
nutrient boundaries used for the WFD. This may be due to
natural variations in soil types and topography, but may also be
a result of limitations in catchment understanding.

At any rate, such baseline levels should be based on scientific
methods, and not on political concerns. Estimations of baseline
P is especially difficult in the lower lying areas where the land
has been used for agricultural production for centuries, and
where such baseline P concentrations must either be modeled or
estimated based on limited data. Additionally, those P sources
originating from forests and highlands areas (“background
runoff”), which are generally poorly quantified themselves, do
also contribute to overall baseline P concentrations in the waters
of agricultural and urban catchments. Furthermore, the baseline
P values may also change, due to large-scale changes such as
climate change or the reductions in acid rain. The latter has led
to brownification (increased darkening of the water color, due to
the increase of dissolved organic carbon content) of Scandinavian
waters, which again may have impacted on P losses (Fölster et al.,
2014).

CHALLENGES TO MONITOR AND MODEL
PHOSPHORUS TRANSFER AT THE
LANDSCAPE SCALE

Monitoring and modeling of P transport pathways in the
landscape remains a challenge. This is particularly true for the
transfer of particulate P, which is a highly dynamic process, and
targeting particulate P sources depends on the exact timing of
mitigationmeasures in relation to plant growth, soil management
and soil moisture. Modeling approaches based on detailed
measurements of topography (e.g., Lidar) are normally used
to target both sources and pathways (e.g., erosion gullies) of
sediment-bound P (Thomas et al., 2016). On tile drained soils,
significant amounts of particulate P can also be transferred
through macropores, which are difficult to monitor and manage
(Bechmann et al., 2017a). In addition, elucidating the sources
and pathways of dissolved P is also a challenge since it
involves understanding of sub-surface pathways (e.g., shallow

Frontiers in Marine Science | www.frontiersin.org 5 August 2018 | Volume 5 | Article 276

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Bol et al. Reducing Phosphorus Based Water Eutrophication

groundwater) and their connectivity with water bodies as well
as its interactions with soil chemistry governing P sorption
and release. Shallow sub-surface pathways and hyporheic flow
have been found to be important for dissolved P delivery
to streams (Bieroza and Heathwaite, 2015; Mellander et al.,
2015). Recent advances in high-temporal resolution sampling
with in situ analyzers and sensors have yielded information
to help delineate potential pathways through hysteresis pattern
analysis (Bieroza and Heathwaite, 2015; Dupas et al., 2015b).
Furthermore, establishing robust correlations between routinely
measured parameters (e.g., turbidity) or smart environmental
tracers and P fractions can further help to gain improved
understanding of processes and assist to reduce the monitoring
cost (Bieroza and Heathwaite, 2016; Minaudo et al., 2017; Stutter
et al., 2017).

Statutory monitoring data are used to assess chemical and
ecological status of water bodies and to evaluate the impacts
of diffuse pollution on stream nutrient concentrations. Despite
intensive efforts to reduce these negative impacts, many rural
catchments still show increasing long-term P concentration
trends (Bechmann et al., 2017b), possibly due to the influence
of weather events on local landscape P dynamics, highlighting
the continued need for a deeper understanding of these weather-
related processes (Bieroza et al., 2014). Seemingly similar
catchments (e.g., percentage arable land in a catchment) are
known to show opposing nutrient trends, which in turn may
indicate a differing resilience to environmental change (Legeay
et al., 2015). The observed disconnection between management
practices and water quality in many catchments necessitates
further efforts to better target P sources and pathways in space
and time. The persistence of P pollution also requires more
catchment-tailored approaches to mitigate diffuse pollution. Use
of high-resolution mapping of CSAs, including soil chemistry,
topography and soil type, can help to identify locations in
the landscape that will benefit most from the implementation
of mitigation measures (Thomas et al., 2016; Djodjic et al.,
2017). Using statutory and high-frequency P monitoring in
parallel could further help in identifying the most critical
time periods and pathways of diffuse pollution (Dupas et al.,
2015c). Additionally, new upscaling modeling approaches are
needed to link single location patterns to landscape-wide process
understanding.

AMBIGUITIES IN THE INTERPRETATION
OF RIVER P DYNAMICS FOR
IDENTIFICATION OF SOURCES IN
CATCHMENTS

In order to limit P transfer and reduce eutrophication, it is
important to identify the sources and the mobilization/delivery
mechanisms of P into rivers. One commonly used method
for source identification is statistical analysis of water quality
time series. In particular, load apportionment models (LAMs)
based on concentration - discharge (C-Q) relationships (Bowes
et al., 2008, 2014, 2015; Greene et al., 2011; Lamba et al., 2015;
Crockford et al., 2017; Glendell et al., 2018) or the identification

of periods of the year when one source is believed to dominate
over other sources, a method is used to disentangle point sources
from diffuse sources (Legeay et al., 2015). Equations in LAMs
all rely on the assumption that point source emissions are
constant in time (leading to negative C-Q relationships due to
dilution when discharge increases) while diffuse source emissions
increase with discharge (leading to positive C-Q relationships
due to mobilization and delivery of P during storm events).
Furthermore, analysis of C-Q hysteresis loops during storm
events has been used to distinguish proximal (remobilization of
stream bed sediments, bank erosion, erosion of riparian area)
and distal sources (hillslope erosion, subsurface transfer) (Stutter
et al., 2008; Outram et al., 2014, 2016; Bieroza and Heathwaite,
2015; Bowes et al., 2015; Dupas et al., 2015a,b; Perks et al., 2015;
Sherriff et al., 2016). Clockwise loops are often interpreted as
originating from proximal sources whereas anticlockwise loops
are interpreted as originating from distal sources. However the
interpretation of P dynamics observed in rivers, and both LAMs
and analysis of C-Q hysteresis loops are subject to “ambiguity”
problems. Here, the term ambiguity describes situations when
several processes (or sources) can lead to the same observed
P dynamics in rivers. This can lead to difficulties in inferring
the dominant controlling process (or source) from statistical
analysis of water quality time series. Jarvie et al. (2012) have
shown that remobilization of streambed sediment during winter
high flow is often (wrongly) attributed to diffuse source, whereas
these sediments may have been enriched by point sources during
the summer low flow period, and thus the primary source
is predominantly a point source. This ambiguity may lead to
overestimation of diffuse sources in LAMs.

The reductive dissolution of Fe oxyhydroxides in sediments
of lowland rivers (Smolders et al., 2017) or riparian wetlands in
upland systems (Dupas et al., 2017) can lead to soluble reactive
phosphorus (SRP) release during summer low flows, increasing
summer SRP concentrations in rivers in the same manner as
does an undiluted point source. This ambiguity may lead to
overestimation of point sources in LAMs. Likewise, ambiguities
in river P dynamics have been highlighted in the identification
of proximal versus distal sources within hillslopes. Bieroza and
Heathwaite (2015) have shown that in the case of two successive
storm events, the first event could transport a distal P source
to the near-stream zone, which can be remobilized during a
second event (exhibiting a clockwise hysteresis loop). Therefore,
if only the second event was monitored, there is an ambiguity in
the location (proximal/distal) of the primary source, because the
primary mobilization of a proximal source can lead to the same
observed P dynamics pattern as the secondary mobilization of
a distal source (both would exhibit clockwise hysteresis loops).
Furthermore, in-situmonitoring of uncultivated soils in the near
stream zone have highlighted that these zones represented a
significant contribution to annual SRP exports in a temperate
agricultural catchment (Gu et al., 2017). However, it is not clear
to which extend these zones are primary sources (due to legacy
P inputs before their conversion into uncultivated buffers) or
secondary sources (as they accumulate and re mobilize P rich
eroded soils from cultivated upslope areas). At the scale of the
hyporheic zone, Van der Grift et al. (2014, 2018) have shown that
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SRP via Fe(II) oxidatie at the groundwater-surface water interface
can be followed by remobilization of newly formed particulate P.
Thus, there can be an ambiguity in the location (proximal/distal)
of the source of the particulate P, which can be attributed to
a proximal source (the river bank) whereas it may stem from
remobilization of a more distal primary source. Another example
of ambiguity is the P release pulses observed in summer from
river sediments whose ultimate source can be a mixture of several
point and diffuse sources, located further upstream (Cooper et al.,
2015a; Dupas et al., 2017; Smolders et al., 2017).

Given the important implications of these ambiguities in the
identification of P sources and pathways in rural landscapes,
several improved methods can be proposed. Firstly, it is possible
to use tracers (e.g., stable isotopes and plant-specific biomarkers)
and/or complementary water quality parameters in addition to
P (Jarvie et al., 2012; Cooper et al., 2015b; Alewell et al., 2016;
Glendell et al., 2018) to trace the primary sediment source.
For example, Ahlgren et al., 2012 found Barium (Ba) being a
promising tracer element, being present in significantly higher
amounts in waters affected by agricultural runoff. Whereas
Paruch and co-authors developed microbial source-tracking
techniques based on advanced DNA methods to distinguish
between different sources of microbial contamination (Paruch
et al., 2015; Paruch and Paruch, 2017). Furthermore, recent
work do suggest that the composition of P carrier colloids could
also be a ‘tracer/fingerprint’ the source of P (Missong et al.,
2018). Secondly, more observational data is needed, combining
monitoring at the catchment outlet with in situ observation
within functional zones such as riparian wetland or groundwater
(Mellander et al., 2016; Gu et al., 2017) to disentangle primary
mobilization from secondary delivery/remobilization. Thirdly,
interpretation of long term change in water quality dynamics
(“trajectory”) in catchments where management changes, such as
removal of point sources, decrease in soil P status or installation
of buffer zones, have been recorded over several decades (Bieroza
et al., 2014) may help to resolve ambiguities in river P dynamics.
Therefore, meta-analysis of large catchment datasets may help to
identify typical situations where one mechanism (e.g., summer
sediment P release versus point source P input) dominates over
others. In doing so, “typical” situations can be identified without
ambiguity and the P dynamics pattern can be transferred to
other, less studied areas as a guide to infer what are the key
mechanisms controlling P loads. Finally, consideration of time
lags and legacy effects is crucial when communicating results of
source identification studies to catchment managers, so that they
do not only target secondary proximal sources (short term vision)
but also primary more distal sources (long term vision).

DIFFICULTIES IN PREDICTIONS OF
DISSOLVED/COLLOIDAL/PARTICULATE
CATCHMENT PHOSPHORUS “HOT
SPOTS” AND “HOT/CRITICAL” MOMENTS

The difficulty in attributing spatio-temporal variations in P fluxes
and P concentrations in streams and rivers draining agricultural
landscapes to specific sources or specific mobilization/transfer

processes is well known (e.g., Haygarth et al., 2005; Edwards
and Withers, 2007; Granger et al., 2010; Trevisan et al., 2012;
Hahn et al., 2013; Sharpley et al., 2015). This difficulty mainly
arises from the fact that the transfer of P in agricultural
landscapes is not often caused by a single process or a single
source, rather being the consequence of a series of processes,
mobilizing P from several permanent or temporary sources.
A good illustration of this difficulty and of the ambiguities it
may create in terms of process and source identification was
provided by the dissolved/colloidal P release pulses observed in
riparian wetland zones. Riparian zones in agricultural catchments
are active in transforming poorly mobile particulate P into
highly mobile dissolved and colloidal P, which is directly or
indirectly bioavailable (Stutter et al., 2009; Dupas et al., 2015a;
Gu et al., 2017). Indeed, these P release pulses come from the
solubilisation of particulate P eroded from the upland cultivated
fields which are temporarily accumulated in wetland zones. This
implies that the primary sources of the released P are the upland
cultivated fields from which P originates. Quite clearly, such
entanglement of processes and existence of temporary sources
may lead to ambiguities in the clear identification of the zones
and processes contributing most to the risk of P mobilization and
P transfer at the catchment scale. Therefore, moving toward full
understanding the overall sequence of transfer and retainment of
P process chain and how P release capacities vary in space and
time is challenging, but it is a knowledge prerequisite to better
control and reduce P loss in agricultural landscapes.

In order to better evaluate and quantify how the above
mentioned processes control P emissions in catchments, we
need to understand how their spatio-temporal occurrence and
intensity is controlled by landscape properties, and how the zones
where these processes take place are connected with each other
and to the river network. Though relevant for particulate P,
the issue is particularly relevant for dissolved and colloidal P,
which both appearmuchmore significant contributors to P losses
from agricultural lands than previously assumed (Kleinman et al.,
2011, 2015; Dupas et al., 2015c; Jiang et al., 2015a; Mellander
et al., 2015, 2016; Gu et al., 2017), and are also potentially
bioavailable P forms. From the perspective of locating dissolved
and colloidal P sources in the landscape, the way landscape
structures, in interaction with climatic variables, control ground-
and surface water dynamics is of fundamental importance.
Groundwater level changes in the overall landscape, in response
to precipitation and evapotranspiration, influence the location,
timing and duration of soil water saturation and wetting-drying
episodes that in turn cause reduction of soil Fe-oxyhydroxides.
Ground- and surface water dynamics are thus anticipated to
be the important determinants of hot spots and hot moment
release of dissolved/colloidal P in catchments. An example
of such complex control of landscape structure on P release
dynamics in catchments has been provided in a recent study
conducted on riparian wetlands in a small French catchment
(Gu et al., 2017). Large differences have been observed with
regards to P release dynamics in the riparian zone, depending
on the topography and the control it exerts on the location and
timing of biogeochemical processes such as soil Fe-oxyhydroxide
reduction or P leaching following soil rewetting. This study
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has led to the development of a coherent, spatially integrated
concept of “landscape biogeochemistry” (see Figure 3) in which
the topography, as a first-order control on spatial variation of
hydrological conditions (Sørensen et al., 2006), appears to control
spatial and temporal distribution of P release processes, the
inputs of P from cultivated soils situated upslope (control of
topography on soil erosion) and the organic and inorganic nature
of released P through indirect control of topography on the rate
of soil organic matter mineralization.

The chemistry of P in the soil-water continuum is often
controlled through interactions with iron (Fe). Iron is a
redox sensitive element and is commonly present in the
soil-groundwater-surface water system. Mechanisms such as
reduction of soil Fe-oxyhydroxides or rewetting of dried soils
are known to trigger the release of P in soils, notably that
of dissolved and colloidal P fractions (Turner and Haygarth,
2001; Stutter et al., 2009; Blackwell et al., 2010, 2013; Obour
et al., 2011; Scalenghe et al., 2012; Gu et al., 2017; Missong
et al., 2018). Redox gradients also result in the precipitation or
dissolution of Fe-rich particles, which have a major impact on
the fate and bioavailability of P (Jiang et al., 2017). Particulate
or colloidal P is formed at the groundwater-surface water
interface in groundwater-fed lowland catchments (Van der Grift
et al., 2014, 2018; Baken et al., 2015). The formation of Fe
hydroxyphosphate precipitates, with molar P/Fe ratio of 0.5 is
the main immobilization process of dissolved P during Fe(II)
oxidation (Voegelin et al., 2013; Van der Grift et al., 2016)
and therefore a major control on the P retention in natural
waters that drain anaerobic aquifers. As a consequence, Fe-
bound P can be the dominant P fraction in suspended particulate
matter under such conditions (Van der Grift, 2017). The Fe(II)
oxidation may also lead to formation of Fe(III) bearing colloids.
Furthermore, redox mediated P release from river sediments
in lowland rivers has been identified as dissolved reactive P
(DRP) release mechanism during summer anoxia (Smolders
et al., 2017). Reductive dissolution of ferric Fe oxides was found
to be associated with mobilization of P to the water column
from sediments with a molar P/Fe ratio >0.4. In contrast,
no sediment DRP release was found for a lower P/Fe ratio
irrespective of temperature and dissolved oxygen treatments.
Hence, the P/Fe molar ratio in sediments is an indicator for P
mobilization. Clearly, Fe redox dynamics should be taken into
account when describing and predicting P transfer from both
soils and sediments to surface water.

Particulate P, the dominant P form in many agricultural
areas in Northwest European countries like Norway (Bechmann
et al., 2008), may be transferred within the headwater catchments
adsorbed onto soil particles, but it may also be released from
the soil particles when it reaches the recipient waterbody. In
addition, some algae can also use particulate P directly. When
soil particles do contain high levels of P (high soil P status), these
particles may release high amounts of P when diluted in water.
Therefore, the importance of particulate (including colloidal)
associated phosphorus for algal growth, both on a short and
long-term time-scale requires further investigation.

Locating and apportionment of the sources and fluxes of the
dissolved vs. collodial P conveyed by rivers in landscapes remains

a longstanding and fundamental challenge for catchment
scientists (see McClain et al., 2003; Bol et al., 2016; Gottselig
et al., 2017b; Missong et al., 2018), with major implications for
land management and nutrient pollution mitigation strategies.
Colloidal P is characterized as dissolved P in most routine water
quality monitoring programs (Gottselig et al., 2017a), however,
it is believed to have reduced bioavailability compared to the
truly dissolved P (Baken et al., 2014). Furthermore, colloids
which consist of organic matter, Fe/Al oxyhydroxides and clay
minerals (Jiang et al., 2015a; Missong et al., 2017) are important
P carriers in and to surface waters (Gottselig et al., 2014,
2017a,b) and thus should be more explicitly accounted for in P
budgets. These interactions between P and colloids need to be
understood to better assess and predict P mobility, availability
and eutrophication in surface waters, such as homo- and hetero-
aggregation behavior of colloidal particles as a controlling factor
for P retention. While the mobilization and retention of P cannot
be fully understood without understanding its interaction with Fe
it is currently omitted from current water quality models and one
of their important limitations.

UNCERTAIN IMPACTS OF WEATHER AND
CLIMATE CHANGE ON P STATUS

Human influence on the global climate and a range of future
climate projections are now well established (Jenkins et al., 2010;
IPCC, 2014). However, less information is currently available
in the literature on how climate change will impact on current
and future P losses from agricultural landscapes (Ockenden
et al., 2017). Similarly, how to disentangle current and future
trends in P fluxes due to climate change itself from those
related to climate driven changes in agricultural management
practices and P inputs (Dupas et al., 2016; Bussi et al., 2017).
Furthermore, the responses to climate change could vary widely
across geographical scales due to localized differences in the
sensitivity of catchment P losses to climatic drivers (Mellander
et al., 2018), thus highlighting the need to establish climate
vulnerability maps for better assessments of the sensitivity of P
water quality trends (such as eutrophication potential) to climatic
factors. For example, in Western Europe the weather patterns
are influenced by both anthropogenic warming and by decadal
trends in the North Atlantic Oscillation (NAO) (Hurrell, 1995).
Thus long term changes in weather are not spatially uniform and
the effects on water quality are expected to vary for different
physical and chemical settings, making an area more or less
susceptible to P loss (Mellander et al., 2018). We therefore need
to better understand both the heterogeneity in large scale weather
changes and the influence on small scale processes of P release,
retention and transfer pathways within the landscape, as each
pathway has a different impact on water quality at the catchment
scale. This knowledge is needed both in order to assess current
water quality trends (concentrations and loads) and to model
future scenarios for specific regions.

As said, while the impacts of projected climate on river
hydrological regimes are widely studied, fewer projections of
the likely impact on future P pollution in running waters exist
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FIGURE 3 | Sketch illustrating the concept of landscape biogeochemistry applied to dissolved, colloidal and particulate P emissions in catchments (adapted from Gu

et al., 2017).

FIGURE 4 | Overland flow on an arable field with well drained soils (country Wexford, Ireland), following heavy rainfall in November 2014 [photo: Michael Fleming].
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(Whitehead et al., 2009; Dunn et al., 2015; Mehdi et al., 2015;
Hesse and Krysanova, 2016; Ockenden et al., 2016, 2017). This
may be related to the continuing complexity of human activities
and its impact on water quality across a range of different
spatial scales, including the small headwater catchment scale,
while climate scientists traditionally focus their work mostly
only at the larger scales (Michalak, 2016). In addition, while
it is possible to model the link between precipitation and
discharge with reasonable certainty, the relationship between
climate change and water quality is subject to uncertainties in
our understanding of the potential effects of climate change on
the physical and biogeochemical processes along the nutrient
source-mobilization-delivery-impact continuum. Furthermore,
it is difficult to disentangle direct climate change impacts from
the indirect consequences of adaptive land use mediated by
climate change (Bussi et al., 2016, 2017). Thus, water quality
modeling with respect to climate change impacts is subject
to more weaknesses and uncertainties compared to rainfall-
runoff modeling (Hesse and Krysanova, 2016). Understanding
the impact of climate change on water quality will require an
understanding of the link between P concentrations, loads and
recipient freshwater ecosystems within the context of multiple
stressors (Whitehead and Crossman, 2012; Crossman et al.,
2013), including point source and diffuse pollution sources and
water abstraction.

Across NW Europe, national scale climate projections vary
from relatively straightforward patterns of drier summers and
wetter winters in the Atlantic climate across the British Isles
(Jenkins et al., 2010), to more complicated regional patterns and
higher uncertainty related to both the direction andmagnitude of
change in precipitation in the more continental climatic regime
of Germany (e.g., Van der Linden and Mitchell, 2009; Gädeke
et al., 2017). Meanwhile, in Scandinavian countries (Norway and
Sweden), climate projections have indicated greater warming in
the northern latitudes than in southern latitudes, particularly
during winter. The precipitation in Sweden is expected to
increase throughout the country but moremoderately in summer
(Lind and Kjellström, 2008), while in Norway precipitation is
expected to increase across the country with the highest increase
expected during spring in Mid-Norway (Hanssen-Bauer et al.,
2009). Air temperatures affect soil P mineralization, therefore
increased temperatures in summer will likely lead to a buildup
of labile P pool in the soil (Turner and Haygarth, 2001), ready
for transfer to waterbodies by the autumn/winter rains. Thus,
areas where both summer temperatures and winter rainfall are
projected to increase are likely to become more prone to P
mobilization and thus vulnerable to P loss to water (Jordan et al.,
2012) (Figure 4). Soil rewetting after a dry summer will mobilize
P of mostly microbial origin, largely controlled by the soil P status
(Dupas et al., 2015a), while prolonged wet periods due to more
rain or more frequent rain may further enhance P release due
to reductive dissolution of Fe (hydr)oxides (Van der Grift et al.,
2016; Gu et al., 2017). In both cases, the mobilized P consists
mainly of dissolved (both organic and inorganic) P forms, i.e.,
of P forms which are potentially highly bioavailable to algae.

Drying-rewetting and freezing-thawing episodes of soils are
two of the most common forms of abiotic soil perturbation,

resulting in solubilisation and release of P (Blackwell et al., 2009).
In response to climate change it is likely that the frequency
of such episodes and/or the duration of the dry and frozen
periods will change differently in different areas. Furthermore,
soil freezing-thawing events can increase the rates of P losses
due to freezing of plant material (e.g., Bechmann et al., 2005).
In Northern European countries, such as Sweden, projected
warmer temperatures will likely shorten the period of persistent
snowpack and cause more soil freezing-thawing episodes
(Mellander et al., 2007) with increased erosion and loss of
particulate P. In German lower mountain ranges snowmelt
events are often an important source of sediment and P loss
(Ollesch et al., 2005, 2006). Increasing temperatures may
therefore shorten periods with snow cover, but could in contrast
to Northern Europe also lower surface runoff due to smaller
number of snowmelt events (Anis and Rode, 2015). These
may mobilize both the dissolved and particulate P. In Norway,
the trend in the number of freeze-thaw events depends on
altitude, with an increasing number observed in the mountains
(Hanssen-Bauer et al., 2009) and a decrease observed in the
lower lying agricultural areas along the coast (Bechmann and
Eggestad, 2016).

Catchments at high risk of P transfer are particularly
responsive to changes in climate. For example, in a
hydrologically flashy agricultural catchment in Ireland the
total reactive phosphorus (TRP) loss was threefold that of a more
hydrologically buffered catchment, despite similar soil P status
(Mellander et al., 2015). The inter-annual variability in P loss
in the flashy catchment was larger than the difference between
the two catchments, highlighting the catchment dependence of
P transfer risk and sensitivity to more rain, or more frequent
rain, to catchment different hydrological flow paths. In another
example from Norway, soil erosion was found to be the main
process of P transfer in agricultural catchments with arable
land and a flashy hydrology. In these catchments the soil P
status appeared to have an influence on the catchment P loss
(Bechmann et al., 2008). Thus changing rainfall patterns and
rainfall intensity under climate change may affect rainfall
erosivity and therefore particulate P mobilization and transfer to
watercourses (Panagos et al., 2017; Poggio et al., 2018).

An understanding of the magnitude of different hydrological
flow paths, their response to climate change and their potential
effects on nutrient and soil loss processes will be necessary for
choosing the right mitigation measures under future climate
scenarios. While the amount of P lost from catchments increases
with runoff, several mitigation measures, such as sedimentation
ponds, have been implemented to reduce P loading from
agricultural catchments, with an effective annual retention of 8–
35% of TP (average 18%) (Blankenberg et al., 2013). However,
a recent study found that current mitigation efforts will not be
sufficient to combat the effects of climate change on P losses,
particularly in areas where increased winter runoff will lead to
an overriding increase in P loads (Ockenden et al., 2017).

The importance of concentrations vs. loads and seasonality
of climate change impacts (i.e., summer vs. winter) will vary
with the type of receptor waterbodies (e.g., headwater catchments
vs. downstream river reaches and lakes) and will have different
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impacts on freshwater ecology. For example, increased winter
river flows may lead to increased total annual P loads (Ockenden
et al., 2017), leading to negative impacts on standing waters such
as lakes and reservoirs during the ecologically active period of
spring and summer (Stamm et al., 2014). Conversely, increased P
concentration during reduced summer flows (Bussi et al., 2017),
could lead to negative impacts on river ecosystems (Stamm et al.,
2014). These likely differential seasonal and water-body effects
will be important to consider when modeling the impact of
climate change scenarios on aquatic ecology. Thus improvement
of our mechanistic understanding at multiple scales along with
development of novel methods for accommodating rigorous
error analysis are the imperative challenges for the future of
integrated water quality modeling (Rode et al., 2010). Meanwhile,
modeling the complex interactions between climate change
impacts, social and economic adaptation and land use change
is not a trivial task and whilst it is critical for future adaptation
policies, to our knowledge, only limited examples of such
integrated analysis are available to date (Dunn et al., 2012; Mehdi
et al., 2015; Sample et al., 2016).

CONCLUSION FOR FUTURE RESEARCH

Independent of the variety of issues highlighted in the present
paper which do highlight the fact that the reduction of
phosphorus (P) based water eutrophication in the agricultural
landscapes of Northwest Europe is neither simple nor
straightforward. We like to conclude that there is a crucial
need for more integrative research efforts to deal with our

incomplete understanding of the mechanisms and processes
associated with the identification of critical source areas,
P mobilization, delivery and biogeochemical processing, as
otherwise even high-intensity and high-resolution research
efforts will likely only reveal an incomplete picture of the full
global impact of the role of terrestrial derived P on downstream
aquatic and marine ecosystems.
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