G. Benedix, H. Haack, and T. Mccoy, Iron and stony-iron meteorites. Meteorites, Comets, and Planets, Treatise on Geochemistry, Amsterdam), vol.1, pp.41-61, 2014.

J. Wasson and G. Kallemeyn, the IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts, Geochimica et Cosmochimica Acta, vol.66, issue.13, pp.2445-2473, 2002.
DOI : 10.1016/S0016-7037(02)00848-7

R. Clayton, T. Mayeda, E. Olsen, and M. Prinz, Oxygen isotope relationships in iron meteorites, Earth and Planetary Science Letters, vol.65, issue.2, pp.229-232, 1983.
DOI : 10.1016/0012-821X(83)90161-9

C. Burkhardt, Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth, Earth and Planetary Science Letters, vol.312, issue.3-4, pp.390-400, 2011.
DOI : 10.1016/j.epsl.2011.10.010

URL : https://hal.archives-ouvertes.fr/insu-00673509

V. Rai, T. Jackson, and M. Thiemens, Photochemical Mass-Independent Sulfur Isotopes in Achondritic Meteorites, Science, vol.309, issue.5737, pp.1062-1065, 2005.
DOI : 10.1126/science.1112954

T. Kruijer, Protracted core formation and rapid accretion of protoplanets, Science, vol.71, issue.3, pp.1150-1154, 2014.
DOI : 10.1016/j.gca.2006.09.032

T. Schulz, D. Upadhyay, C. Munker, and K. Mezger, Formation and exposure history of non-magmatic iron meteorites and winonaites: Clues from Sm and W isotopes, Geochimica et Cosmochimica Acta, vol.85, pp.200-212, 2012.
DOI : 10.1016/j.gca.2012.02.012

L. Qin, N. Dauphas, M. Wadhwa, J. Masarik, and P. Janney, Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf???182W chronometry and thermal modeling, Earth and Planetary Science Letters, vol.273, issue.1-2, pp.94-104, 2008.
DOI : 10.1016/j.epsl.2008.06.018

J. Huslton and H. Thode, Cosmic-ray produced 36 S and 33 S in metallic phase of iron meteorites, J Geophys Res, vol.70, issue.18, pp.4435-4442, 1965.

X. Gao and M. Thiemens, Systematic study of sulfur isotopic composition in iron meteorites and the occurrence of excess 33S and 36S, Geochimica et Cosmochimica Acta, vol.55, issue.9, pp.2671-2679, 1991.
DOI : 10.1016/0016-7037(91)90381-E

H. Oduro, K. Van-alstyne, and J. Farquhar, Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions, Proceedings of the National Academy of Sciences, vol.62, issue.24, pp.9012-9016, 2012.
DOI : 10.1007/s10872-006-0069-z

T. Sun and H. Bao, Thermal-gradient-induced non-mass-dependent isotope fractionation, Rapid Communications in Mass Spectrometry, vol.262, issue.4, pp.765-773, 2011.
DOI : 10.1016/j.epsl.2007.08.020

J. Farquhar, D. Johnston, and B. Wing, Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction, Geochimica et Cosmochimica Acta, vol.71, issue.24, pp.5862-5875, 2007.
DOI : 10.1016/j.gca.2007.08.028

E. Bullock, K. Mckeegan, M. Gounelle, M. Grady, and S. Russel, Sulfur isotopic composition of Fe-Ni sulfide grains in CI and CM carbonaceous chondrites, Meteoritics & Planetary Science, vol.61, issue.5, pp.885-898, 2010.
DOI : 10.1111/j.1945-5100.1993.tb00248.x

C. Mcewing, H. Thode, and C. Rees, Sulphur isotope effects in the dissociation and evaporation of troilite: A possible mechanism for 34S enrichment in lunar soils, Geochimica et Cosmochimica Acta, vol.44, issue.4, pp.565-571, 1980.
DOI : 10.1016/0016-7037(80)90248-3

J. Eiler, P. Cartigny, A. Hofmann, and A. Piasecki, Non-canonical mass laws in equilibrium isotopic fractionations: Evidence from the vapor pressure isotope effect of SF6, Geochimica et Cosmochimica Acta, vol.107, pp.205-219, 2013.
DOI : 10.1016/j.gca.2012.12.048

H. Thode and C. Rees, Sulphur isotopes in lunar and meteorite samples, Lunar Planet Sci, vol.10, pp.1629-1636, 1979.

B. Wing and J. Farquhar, Planetary sulfur isotopic baseline from lunar basalts, Geochim Cosmochim Acta, 2014.

J. Labidi, P. Cartigny, and M. Moreira, Non-chondritic sulphur isotope composition of the terrestrial mantle, Nature, vol.319, issue.7466, pp.208-211, 2013.
DOI : 10.1126/science.1150988

O. Eugster, G. Herzog, K. Marti, and M. Caffee, Irradiation records, cosmic-ray exposure ages, and transfer times of meteorites. Meteorites and the Early Solar System II, pp.829-851, 2006.

D. Clayton and S. Ramadurai, On presolar meteoritic sulphides, Nature, vol.4, issue.5593, pp.427-428, 1977.
DOI : 10.1038/265427a0

Y. Chin, C. Henkel, J. Whiteoak, N. Langer, and E. Churchwell, Interstellar sulfur isotopes and stellar oxygen burning, Astron Astrophys, vol.305, pp.960-969, 1996.

A. Heger, S. Woosley, T. Rauscher, R. Hoffman, and M. Boyes, Massive star evolution: nucleosynthesis and nuclear reaction rate uncertainties, New Astronomy Reviews, vol.46, issue.8-10, pp.8-10463, 2002.
DOI : 10.1016/S1387-6473(02)00184-7

S. Woosley and A. Heger, Nucleosynthesis and remnants in massive stars of solar metallicity, Physics Reports, vol.442, issue.1-6, pp.269-283, 2007.
DOI : 10.1016/j.physrep.2007.02.009

W. Fujiya, P. Hoppe, E. Zinner, M. Pignatari, and F. Herwig, EVIDENCE FOR RADIOGENIC SULFUR-32 IN TYPE AB PRESOLAR SILICON CARBIDE GRAINS?, The Astrophysical Journal, vol.776, issue.2, p.29, 2013.
DOI : 10.1088/2041-8205/776/2/L29

J. Farquhar, J. Savarino, T. Jackson, and M. Thiemens, Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites, Nature, vol.61, issue.6773, pp.50-52, 2000.
DOI : 10.1016/S0016-7037(97)00246-9

S. Chakraborty, T. Jackson, M. Ahmed, and M. Thiemens, Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis, Proceedings of the National Academy of Sciences, vol.336, issue.6080, pp.17650-17655, 2013.
DOI : 10.1126/science.1217291

M. Pasek, Sulfur chemistry with time-varying oxygen abundance during Solar System formation, Icarus, vol.175, issue.1, pp.1-14, 2005.
DOI : 10.1016/j.icarus.2004.10.012

F. Ciesla, Sulfidization of iron in a dynamic solar nebula and the implications for planetary compositions, Lunar Planet Sci Conf, vol.44, p.1315, 2013.

S. Wolk, Stellar Activity on the Young Suns of Orion: COUP Observations of K5???7 Pre???Main???Sequence Stars, The Astrophysical Journal Supplement Series, vol.160, issue.2, pp.1-49, 2005.
DOI : 10.1086/432099

F. Hersant, D. Gautier, and J. Hure, A Two???dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets, The Astrophysical Journal, vol.554, issue.1, pp.391-407, 2001.
DOI : 10.1086/321355

T. Bethell and E. Bergin, THE PROPAGATION OF Ly?? IN EVOLVING PROTOPLANETARY DISKS, The Astrophysical Journal, vol.739, issue.2, p.78, 2011.
DOI : 10.1088/0004-637X/739/2/78

M. Asplund, N. Grevesse, A. Sauval, and P. Scott, The Chemical Composition of the Sun, Annual Review of Astronomy and Astrophysics, vol.47, issue.1, pp.481-522, 2009.
DOI : 10.1146/annurev.astro.46.060407.145222

K. Keil, Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies, Chemie der Erde - Geochemistry, vol.70, issue.4, pp.295-317, 2010.
DOI : 10.1016/j.chemer.2010.02.002

A. Hubbard and D. Ebel, Protoplanetary dust porosity and FU Orionis outbursts: Solving the mystery of Earth???s missing volatiles, Icarus, vol.237, pp.84-96, 2014.
DOI : 10.1016/j.icarus.2014.04.015

W. Bottke, D. Nesvorný, R. Grimm, A. Morbidelli, O. Brien et al., Iron meteorites as remnants of planetesimals formed in the terrestrial planet region, Nature, vol.63, issue.7078, pp.821-824, 2006.
DOI : 10.1078/0009-2819-00021

URL : https://hal.archives-ouvertes.fr/hal-00388222

H. Franz, Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars, Nature, vol.334, issue.7496, pp.364-368, 2014.
DOI : 10.1016/j.chemgeo.2012.10.028

V. Rai and M. Thiemens, Mass independently fractionated sulfur components in chondrites, Geochimica et Cosmochimica Acta, vol.71, issue.5, pp.1341-1354, 2007.
DOI : 10.1016/j.gca.2006.11.033