K. H. Chan, K. K. Zhang, J. Zou, and G. Schubert, A non-linear, 3-D spherical ??2 dynamo using a finite element method, Physics of the Earth and Planetary Interiors, vol.128, issue.1-4, pp.35-50, 2001.
DOI : 10.1016/S0031-9201(01)00276-X

K. H. Chan, K. Zhang, L. Li, and X. Liao, A new generation of convection-driven spherical dynamos using EBE finite element method, Physics of the Earth and Planetary Interiors, vol.163, issue.1-4, pp.251-265, 2007.
DOI : 10.1016/j.pepi.2007.04.017

U. R. Christensen and J. Wicht, Numerical Dynamo Simulations, Treatise on Geophysics, pp.245-282, 2007.

U. R. Christensen, A numerical dynamo benchmark, Physics of the Earth and Planetary Interiors, vol.128, issue.1-4, pp.25-34, 2001.
DOI : 10.1016/S0031-9201(01)00275-8

URL : https://hal.archives-ouvertes.fr/insu-00447063

U. R. Christensen, Erratum to ''A numerical dynamo benchmark'' [Phys, Earth Planet. Int. Phys. Earth Planet. Inter, vol.128, issue.172, p.356, 2001.
URL : https://hal.archives-ouvertes.fr/insu-00447063

C. Figure, Number of radial grid points (expressed as radial DOFs) needed to satisfy 1% error tolerance for all six required solution variables (E kin , E mag and B h ; see section A3) for codes using spherical harmonic expansion. Results for the insulating boundary case are plotted by open circles, and those for pseudo-insulating boundary case are shown by asterisks

C. Figure, Cube root of DOFs needed to satisfy 1% error tolerance for all six solution variables and B h ; see section A3) in reported data of the accuracy benchmark. Results for the insulating boundary case are plotted with open circles, and for the pseudoinsulating boundary case with asterisks. Results from GeoFEM are not plotted since GeoFEM's solution does not satisfy the 1% tolerance for all the solution variables

C. J. Davies, D. Gubbins, and P. K. Jimack, Scalability of pseudospectral methods for geodynamo simulations, Concurrency and Computation: Practice and Experience, vol.18, issue.1, pp.38-56, 2011.
DOI : 10.1002/sapm1971504293

E. Dormy, P. Cardin, and D. Jault, MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field, Earth and Planetary Science Letters, vol.160, issue.1-2, pp.15-30, 1998.
DOI : 10.1016/S0012-821X(98)00078-8

C. Engelmann, Scaling to a million cores and beyond: Using light-weight simulation to understand the challenges ahead on the road to exascale, Future Generation Computer Systems, vol.30, pp.59-65, 2014.
DOI : 10.1016/j.future.2013.04.014

N. Featherstone and B. W. Hindman, THE SPECTRAL AMPLITUDE OF STELLAR CONVECTION AND ITS SCALING IN THE HIGH-RAYLEIGH-NUMBER REGIME, The Astrophysical Journal, vol.818, issue.1, pp.10-3847, 2016.
DOI : 10.3847/0004-637X/818/1/32

G. A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. the model and method, Journal of Computational Physics, vol.55, issue.3, pp.461-484, 1984.
DOI : 10.1016/0021-9991(84)90033-0

G. A. Glatzmaier and P. H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, vol.377, issue.6546, pp.203-209, 1995.
DOI : 10.1038/377203a0

J. Guermond, R. Laguerre, J. , and C. Nore, An interior penalty Galerkin method for the MHD equations in heterogeneous domains, Journal of Computational Physics, vol.221, issue.1, pp.349-369, 2007.
DOI : 10.1016/j.jcp.2006.06.045

J. Guermond, R. Laguerre, J. , and C. Nore, Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method, Journal of Computational Physics, vol.228, issue.8, pp.2739-2757, 2009.
DOI : 10.1016/j.jcp.2008.12.026

H. Harder and U. Hansen, A finite-volume solution method for thermal convection and dynamo problems in spherical shells, Geophysical Journal International, vol.161, issue.2, pp.522-532, 2005.
DOI : 10.1007/978-3-642-58239-4

R. Hollerbach, A spectral solution of the magneto-convection equations in spherical geometry, International Journal for Numerical Methods in Fluids, vol.298, issue.7, pp.773-797, 2000.
DOI : 10.1111/j.1365-8711.1998.01762.x

H. Hotta, M. Rempel, and T. Yokoyama, Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations, Science, vol.711, issue.5266, pp.1427-1430, 2016.
DOI : 10.1088/0004-637X/711/1/424

A. Jackson, A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions, Geophysical Journal International, vol.692, issue.6, pp.712-723, 2014.
DOI : 10.1017/jfm.2011.521

W. Jiang and W. Kuang, An MPI-based MoSST core dynamics model, Physics of the Earth and Planetary Interiors, vol.170, issue.1-2, pp.46-51, 2008.
DOI : 10.1016/j.pepi.2008.07.020

W. Kuang and J. Bloxham, Numerical Modeling of Magnetohydrodynamic Convection in a Rapidly Rotating Spherical Shell: Weak and Strong Field Dynamo Action, Journal of Computational Physics, vol.153, issue.1, pp.51-81, 1999.
DOI : 10.1006/jcph.1999.6274

P. Marti, Convection and boundary driven flows in a sphere, pp.10-3929, 2012.

H. Matsui and H. Okuda, Development of a Simulation Code for MHD Dynamo Processes Using the GeoFEM Platform, International Journal of Computational Fluid Dynamics, vol.190, issue.4, pp.323-332, 2004.
DOI : 10.1016/S0045-7825(01)00196-7

H. Matsui and H. Okuda, Treatment of the magnetic field for geodynamo simulations using the finite element method, Earth, Planets and Space, vol.49, issue.10, pp.945-954, 2004.
DOI : 10.1080/03091928908243466

H. Matsui and H. Okuda, MHD dynamo simulation using the GeoFEM platform???verification by the dynamo benchmark test, International Journal of Computational Fluid Dynamics, vol.148, issue.1, pp.15-22, 2005.
DOI : 10.1006/jcph.1998.6119

H. Matsui, E. King, and B. A. Buffett, Multiscale convection in a geodynamo simulation with uniform heat flux along the outer boundary, Geochemistry, Geophysics, Geosystems, vol.69, issue.1-2, pp.3212-322510, 2014.
DOI : 10.1088/0034-4885/69/5/R06

S. A. Orszag and G. S. Patterson-jr, Numerical simulation of turbulence, Statistical Models and Turbulence, pp.127-147, 1972.
DOI : 10.1007/3-540-05716-1_8

A. Ribeiro, G. Fabre, J. Guermond, and J. M. Aurnou, Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals, Metals, vol.112, issue.372, pp.289-335, 2015.
DOI : 10.1073/pnas.1417741112

Y. Sasaki, S. Takehiro, Y. Hayashi, and S. Group, Project of MHD Dynamo in Rotating Spheres and Spherical Shells, 2012.

N. Schaeffer, Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, Geochemistry, Geophysics, Geosystems, vol.152, issue.1, pp.751-758, 2013.
DOI : 10.1007/s11214-010-9638-y

URL : https://hal.archives-ouvertes.fr/insu-00675145

A. Sheyko, Numerical Investigations of Rotating MHD in a Spherical Shell, pp.10-3929, 2014.

R. D. Simitev and F. H. Busse, Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells, Journal of Fluid Mechanics, vol.532, pp.365-388, 2005.
DOI : 10.1017/S0022112005004398

S. Stanley and G. A. Glatzmaier, Dynamo Models for Planets Other Than Earth, Space Science Reviews, vol.131, issue.1-4, pp.617-649, 2010.
DOI : 10.1029/2000RG000102

F. Takahashi, Implementation of a high-order combined compact difference scheme in problems of thermally driven convection and dynamo in rotating spherical shells, Geophysical & Astrophysical Fluid Dynamics, vol.106, issue.3, pp.231-249, 2012.
DOI : 10.1007/978-3-540-76939-2_4

, Available at https://portal.tacc.utexas, TACC Stampede User Guide, 2013.

A. Tilgner, Spectral methods for the simulation of incompressible flows in spherical shells, International Journal for Numerical Methods in Fluids, vol.160, issue.6, pp.713-724, 1999.
DOI : 10.1126/science.160.3825.259

A. Tilgner and F. H. Busse, Finite-amplitude convection in rotating spherical fluid shells, Journal of Fluid Mechanics, vol.228, pp.359-376, 1997.
DOI : 10.1126/science.260.5108.661

J. Wicht, S. Stellmach, and H. Harder, Numerical Models of the Geodynamo: From Fundamental Cartesian Models to 3D Simulations of Field Reversals, Geomagnetic Field Variations, pp.107-158, 2009.
DOI : 10.1007/978-3-540-76939-2_4

A. P. Willis, B. Sreenivasan, and D. Gubbins, Thermal core???mantle interaction: Exploring regimes for ???locked??? dynamo action, Physics of the Earth and Planetary Interiors, vol.165, issue.1-2, pp.83-92, 2007.
DOI : 10.1016/j.pepi.2007.08.002

URL : https://hal.archives-ouvertes.fr/hal-00532125

G. Geochemistry and G. , , 1002.