Performance benchmarks for a next generation numerical dynamo model - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Geochemistry, Geophysics, Geosystems Year : 2016

Performance benchmarks for a next generation numerical dynamo model

Hiroaki Matsui
  • Function : Author
Eric M. Heien
  • Function : Author
  • PersonId : 883116
Julien Aubert
Jonathan Aurnou
  • Function : Author
Margaret Avery
  • Function : Author
Ben Brown
  • Function : Author
Bruce A Buffett
  • Function : Author
Friedrich Busse
  • Function : Author
Ulrich R Christensen
Christopher J Davies
  • Function : Author
Nicholas Featherstone
  • Function : Author
Thomas Gastine
Gary A Glatzmaier
  • Function : Author
David Gubbins
  • Function : Author
Jean-Luc Guermond
  • Function : Author
Yoshi-Yuki Hayashi
  • Function : Author
Rainer Hollerbach
Lorraine J Hwang
  • Function : Author
Andrew Jackson
  • Function : Author
Chris A Jones
  • Function : Author
Weiyuan Jiang
  • Function : Author
Louise H Kellogg
  • Function : Author
Weijia Kuang
  • Function : Author
Maylis Landeau
Philippe Marti
  • Function : Author
Peter Olson
  • Function : Author
Adolfo Ribeiro
  • Function : Author
Youhei Sasaki
  • Function : Author
Nathanaël Schaeffer
Radostin D Simitev
  • Function : Author
Andrey Sheyko
  • Function : Author
Luis Silva
  • Function : Author
Sabine Stanley
  • Function : Author
Futoshi Takahashi
  • Function : Author
Shin-Ichi Takehiro
  • Function : Author
Johannes Wicht
Ashley P Willis
  • Function : Author

Abstract

Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(10 6) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to $10 6 processor cores, paving the way for more realistic simulations in the next model generation.
Fichier principal
Vignette du fichier
Matsui_et_al-2016-Geochemistry%2C_Geophysics%2C_Geosystems.pdf (2.48 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

insu-01857606 , version 1 (16-08-2018)

Identifiers

Cite

Hiroaki Matsui, Eric M. Heien, Julien Aubert, Jonathan Aurnou, Margaret Avery, et al.. Performance benchmarks for a next generation numerical dynamo model. Geochemistry, Geophysics, Geosystems, 2016, 17 (5), pp.1586-1607. ⟨10.1002/2015GC006159⟩. ⟨insu-01857606⟩
369 View
224 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More