E. Aker, K. J. Maloy, A. Hansen, and G. Bartouni, A two-dimensional network simulator 636 for two-phase flow in porous media, Transport in Porous Media, vol.32, issue.2, pp.163-186, 1998.
DOI : 10.1023/A:1006510106194

C. A. Aggelopoulos and C. D. Tsakiroglou, A multi-flow path model for the interpretation 638 of immiscible displacement experiments in heterogeneous soil columns, J. Contam, p.639, 2009.

, Hydrol, vol.105, pp.146-160

A. , R. Gerhard, J. I. Kueper, and B. H. , Hydraulic displacement of dense 641 nonaqueous phase liquids for source zone stabilization, Ground Water, vol.50, pp.765-774, 2012.

R. I. Al-raoush and C. S. Willson, A pore-scale investigation of a multiphase porous media system, Journal of Contaminant Hydrology, vol.77, issue.1-2, pp.67-89, 2005.
DOI : 10.1016/j.jconhyd.2004.12.001

B. Bettahar, J. Ducreux, G. Schäfer, and V. Van-dorpe, , 1999.

, Remediation of LNAPL Contaminated Aquifers: Large Scale Studies on a Controlled 646

, Experimental Site. Transp. Porous Med, vol.37, pp.276-186

A. Birovljev, L. Furuberg, J. Feder, T. Jøssang, K. J. Måløy et al., Gravity invasion percolation in two dimensions: Experiment and simulation, Physical Review Letters, vol.46, issue.5, pp.584-587, 1991.
DOI : 10.1103/PhysRevA.34.1380

M. Bohy, L. Dridi, G. Schäfer, and O. Razakarisoa, Transport of a Mixture of Chlorinated Solvent Vapors in the Vadose Zone of a Sandy Aquifer, Vadose Zone Journal, vol.5, issue.2, pp.539-553, 2006.
DOI : 10.2136/vzj2005.0079

URL : https://hal.archives-ouvertes.fr/hal-00096928

I. Brailovsky, A. Babchin, M. Frankel, and G. Sivashinsky, Fingering Instability in Water-Oil Displacement, Transport in Porous Media, vol.8, issue.3, pp.363-380, 2006.
DOI : 10.2118/4268-PA

R. Brooks and A. Corey, Hydraulic Properties of Porous Media, Colorado State, vol.656, issue.3, p.28, 1964.

T. Bultreys, L. Van-hoorebeke, and V. Cnudde, Multi-scale, micro-computed 658 tomography-based pore network models to simulate drainage in heterogeneous rocks, p.659, 2015.

, Adv. Water Resour, vol.78, pp.36-49

Z. Cheng, B. Gao, H. Xu, Y. Sun, X. Shi et al., Effects of surface active agents on DNAPL migration and distribution in saturated porous media, Science of The Total Environment, vol.571, issue.662, pp.1147-1158, 2016.
DOI : 10.1016/j.scitotenv.2016.07.109

S. Cotel, Étude des transferts sol/nappe/atmosphère/bâtiments : Application aux sols 664 pollués par des composés organiques volatils, Thèse de doctorat, 2008.

. Fourier, , pp.203-666

J. A. Dodds, The porosity and contact points in multicomponent random sphere 667 packings calculated by a simple statistical geometric model, J. Colloid and Interface Sci, vol.668, pp.77-317, 1980.

H. Dong and M. J. Blunt, Pore-network extraction from micro-computerized-tomography 670 images, Phys. Rev, 2009.

B. Dong, Y. Yan, and W. Z. Li, LBM Simulation of Viscous Fingering Phenomenon in Immiscible Displacement of Two Fluids in Porous Media, Transport in Porous Media, vol.3, issue.4, pp.293-673, 2011.
DOI : 10.1016/S1672-6529(07)60001-8

K. Erning, S. Grandel, A. Dahmke, and D. Schäfer, Simulation of DNAPL infiltration 675 and spreading behaviour in the saturated zone at varying flow velocities and alternating 676, 2012.
DOI : 10.1007/s12665-011-1361-9

, subsurface geometries. Environ. Earth Sci, vol.65, pp.1119-1131

H. I. Essaid, B. A. Bekins, and I. M. Cozzarelli, , p.678, 2015.

, the subsurface: evolution of knowledge and understanding, Water Resour. Res, vol.51, issue.679, pp.4861-4874

R. P. Ewing and B. Berkowitz, A generalized growth model for simulating initial migration of dense non-aqueous phase liquids, Water Resources Research, vol.27, issue.11, pp.611-622, 1998.
DOI : 10.1103/PhysRevB.27.5686

M. J. Fayer and C. S. Simmons, Modified Soil Water Retention Functions for All Matric Suctions, Water Resources Research, vol.3, issue.5, pp.1233-1238, 1995.
DOI : 10.2136/sssaj1980.03615995004400050002x

F. J. Fayers and D. Zhou, On the importance of gravity and three-phase flow in gas displacement processes, Journal of Petroleum Science and Engineering, vol.15, issue.2-4, pp.321-341, 1996.
DOI : 10.1016/0920-4105(96)00010-1

M. Ferer, G. S. Bromhal, and D. H. Smith, Crossover from capillary fingering to compact invasion for two-phase drainage with stable viscosity ratios, Advances in Water Resources, vol.30, issue.2, pp.284-299, 2007.
DOI : 10.1016/j.advwatres.2005.10.016

S. Gao, J. N. Meegoda, and L. Hu, Two methods for pore network of porous media, International Journal for Numerical and Analytical Methods in Geomechanics, vol.236, issue.6, p.690, 2012.
DOI : 10.1002/nag.1134

, J. Numer. Anal. Methods Geomech, vol.36, 1954.

R. J. Glass, S. H. Conrad, and L. Yarrington, Gravity-destabilized nonwetting phase invasion in macroheterogeneous porous media: Near-pore-scale macro modified invasion percolation simulation of experiments, Water Resources Research, vol.57, issue.1, pp.1197-1207, 2001.
DOI : 10.1088/0305-4470/16/14/028

K. Helge, D. A. Michael, and A. Celia, A dynamic network model for two-phase 695, 1999.

, immiscible flow. Comput. Geosci, vol.3, pp.1-22

L. Hao and P. Cheng, Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method, International Journal of Heat and Mass Transfer, vol.53, issue.9-10, pp.1908-1913, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2009.12.066

C. Jia, K. Shing, and Y. C. Yortsos, Visualization and simulation of non-aqueous phase liquids solubilization in pore networks, Journal of Contaminant Hydrology, vol.35, issue.4, pp.363-387, 1999.
DOI : 10.1016/S0169-7722(98)00102-8

A. P. Jivkov, C. Hollis, F. Etiese, S. A. Mcdonald, and P. J. Withers, A novel architecture 701 for pore network modelling with applications to permeability of porous media, J. Hydrol, vol.702, pp.486-246, 2013.

V. Joekar-niasar and S. M. Hassanizadeh, Analysis of fundamentals of two-phase flow 704 in porous media using dynamic pore-network models: A review, Environ. Sci. Technol, vol.705, pp.42-1895, 2012.

V. Joekar-niasar, S. M. Hassanizadeh, L. J. Pyrak-nolte, and C. Berentsen, Simulating 707 drainage and imbibition experiments in a high-porosity micromodel using an 708 unstructured pore network model, Water Resour. Res, pp.10-1029, 2009.

W. Kallel, M. J. Van-dijke, K. S. Sorbie, and R. Wood, Pore-scale modeling of wettability alteration during primary drainage, Water Resources Research, vol.2, issue.6, pp.1891-1907, 2017.
DOI : 10.1039/b105078h

S. Khataniar and E. J. Peters, The effect of reservoir heterogeneity on the performance of unstable displacements, Journal of Petroleum Science and Engineering, vol.7, issue.3-4, pp.263-281, 1992.
DOI : 10.1016/0920-4105(92)90023-T

M. Khlosi, W. M. Cornelis, D. Gabriels, and G. Sin, Simple modification to describe the 714 soil water retention curve between saturation and oven dryness, Water Resour. Res, pp.715-725, 2006.
DOI : 10.1029/2005wr004699

URL : http://onlinelibrary.wiley.com/doi/10.1029/2005WR004699/pdf

D. Kiriakidis, G. E. Mitsoulis, and G. H. Neale, Linear displacement of a wetting fluid by 717 an immiscible non-wetting fluid in a porous medium: a predictive algorithm, Can. J, p.718, 1991.

, Chem. Eng, vol.69, pp.557-563

A. Kokkinaki, D. M. O-'carroll, C. J. Werth, and B. E. Sleep, Coupled simulation of DNAPL infiltration and dissolution in three-dimensional heterogeneous domains: Process model validation, Water Resources Research, vol.102, issue.3-4, pp.7023-7036, 2013.
DOI : 10.1016/j.jconhyd.2008.05.007

J. Koplik and T. J. Lasseter, Two-Phase Flow in Random Network Models of Porous Media, Society of Petroleum Engineers Journal, vol.25, issue.01, pp.89-100, 1985.
DOI : 10.2118/11014-PA

B. H. Kueper and E. O. Frind, An overview of immiscible fingering in porous media, Journal of Contaminant Hydrology, vol.2, issue.2, p.725, 1989.
DOI : 10.1016/0169-7722(88)90001-0

, Contam. Hydrol, vol.2, pp.95-110

F. Laroche and O. Vizika, Two-phase flow properties prediction from small-scale data 727 using pore-network modeling, Transp. Porous Med, vol.6, pp.77-91, 2005.

R. Lenormand, E. Touboul, and C. Zarcone, Numerical models and experiments on immiscible displacements in porous media, Journal of Fluid Mechanics, vol.291, issue.-1, pp.165-187, 1998.
DOI : 10.1017/S0022112083003110

H. Liu, A. J. Valocchi, C. Werth, Q. Kang, and M. Oostrom, Pore-scale simulation of 731 liquid CO2 displacement of water using a two-phase lattice Boltzmann model, p.732, 2014.

, Water Resour, vol.73, pp.144-158

H. Liu, Y. Zhang, and A. J. Valocchi, Lattice Boltzmann simulation of immiscible fluid 734 displacement in porous media: Homogeneous versus heterogeneous pore network. Phys, p.735, 2015.

, Fluids

H. Liu, A. J. Valocchi, Q. Kang, and C. Werth, Pore-scale simulations of gas displacing 737 liquid in a homogeneous pore network using the lattice Boltzmann method. Transp, p.738, 2013.

, Porous Med, vol.99, pp.555-580

D. Nayagum, G. Schäfer, and R. Mose, Modeling two-phase incompressible flow in 740 porous media using mixed hybrid and discontinuous finite elements, Comput. Geosci, vol.8, pp.741-790, 2004.

H. F. Nordhaug, M. Celia, and H. K. Dahle, A pore network model for calculation of interfacial velocities, Advances in Water Resources, vol.26, issue.10, pp.1061-1074, 2003.
DOI : 10.1016/S0309-1708(03)00100-3

K. Nsir and G. Schäfer, A pore-throat model based on grain-size distribution to quantify gravity-dominated DNAPL instabilities in a water-saturated homogeneous porous medium, Comptes Rendus Geoscience, vol.342, issue.12, pp.881-891, 2010.
DOI : 10.1016/j.crte.2010.09.001

URL : https://hal.archives-ouvertes.fr/insu-00579357

K. Nsir, G. Schäfer, R. Di-chiara, O. Razakarisoa, and R. Toussaint, Laboratory experiments on DNAPL gravity fingering in water-saturated porous media, International Journal of Multiphase Flow, vol.40, issue.749, pp.83-92, 2012.
DOI : 10.1016/j.ijmultiphaseflow.2011.12.003

URL : https://hal.archives-ouvertes.fr/hal-00701964

M. Prodanovic, W. Lindquist, and R. S. Seright, 3D image-based characterization of fluid displacement in a Berea core, Advances in Water Resources, vol.30, issue.2, pp.214-226, 2007.
DOI : 10.1016/j.advwatres.2005.05.015

A. Raoof and S. M. Hassanizadeh, A New Method for Generating Pore-Network Models of Porous Media, Transport in Porous Media, vol.16, issue.8, pp.391-407, 2010.
DOI : 10.1111/j.1365-2818.1993.tb03324.x

URL : https://link.springer.com/content/pdf/10.1007%2Fs11242-009-9412-3.pdf

A. Raoof, S. M. Hassanizadeh, and A. Leijnse, Upscaling Transport of Adsorbing Solutes in Porous Media: Pore-Network Modeling, Vadose Zone Journal, vol.9, issue.3, pp.624-636, 2010.
DOI : 10.2136/vzj2010.0026

URL : http://www.geo.uu.nl/hydrogeology/raoof/Papers_Amir_web/3_Upscaling%20Network_Amir%20Raoof_Majid%20Hassanizadeh.pdf

A. Riaz and H. A. Tchelepi, Influence of Relative Permeability on the Stability Characteristics of Immiscible Flow in Porous Media, Transport in Porous Media, vol.3, issue.8, pp.315-338, 2006.
DOI : 10.2118/83915-PA

Y. Rouault and S. Assouline, A probabilistic approach towards modeling the relationships between particle and pore size distributions: the multicomponent packed sphere case, Powder Technology, vol.96, issue.1, pp.33-41, 1998.
DOI : 10.1016/S0032-5910(97)03355-X

C. Rossi and J. R. Nimmo, Modeling of soil water retention from saturation to oven dryness, Water Resources Research, vol.44, issue.3, pp.701-708, 1994.
DOI : 10.2136/sssaj1980.03615995004400050002x

L. Schneider, R. Di-chiara-roupert, G. Schäfer, and P. Helluy, Highly gravity-driven flow 764 of an NAPL in water-saturated porous media using Discontinuous Galerkin Finite, p.765, 2015.
DOI : 10.1007/s10596-015-9494-7

, Element Method with a generalised Godunov scheme, ComputGeosci, vol.19, pp.855-876

Q. Sheng and K. Thompson, Dynamic coupling of pore-scale and reservoir-scale models for multiphase flow, Water Resources Research, vol.1, issue.4, pp.5973-5988, 2013.
DOI : 10.1007/s11440-006-0018-4

O. Silva and J. Grifoll, Non-passive transport of volatile organic compounds in the unsaturated zone, Advances in Water Resources, vol.30, issue.4, pp.794-807, 2007.
DOI : 10.1016/j.advwatres.2006.06.004

B. E. Sleep, S. Beranger, S. Reinecke, and Y. Filion, DNAPL accumulation in well sand 771 DNAPL recovery from wells: Model development and application to a laboratory study, p.772, 2015.

, Adv. Water Resour, vol.85, pp.109-119

M. Singh and K. K. Mohenty, Dynamic modeling of drainage through three-dimensional porous materials, Chemical Engineering Science, vol.58, issue.1, pp.1-18, 2003.
DOI : 10.1016/S0009-2509(02)00438-4

M. Tuller and D. Or, Water films and scaling of soil characteristic curves at low water 776 contents, Water Resour. Res, pp.10-1029, 2005.

G. Tørå, P. E. Øren, and A. Hansen, A Dynamic Network Model for Two-Phase Flow in Porous Media, Transport in Porous Media, vol.7, issue.3, pp.145-164, 2012.
DOI : 10.2118/20538-PA

M. T. Van-genuchten, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, Soil Science Society of America Journal, vol.44, issue.5, pp.892-898, 1980.
DOI : 10.2136/sssaj1980.03615995004400050002x

E. W. Washburn, The Dynamics of Capillary Flow, Physical Review, vol.42, issue.3, pp.273-283, 1921.
DOI : 10.1021/ja01448a006

S. W. Webb, A simple extension of two-phase characteristic curves to include the dry region, Water Resources Research, vol.3710, issue.10, pp.1425-1430, 2000.
DOI : 10.1117/12.357048

M. Wu, Z. Cheng, J. Wu, and J. Wu, Estimation of representative elementary volume for DNAPL saturation and DNAPL-water interfacial areas in 2D heterogeneous porous media, Journal of Hydrology, vol.549, pp.12-26, 2017.
DOI : 10.1016/j.jhydrol.2017.03.062

Q. Xiong, T. G. Baychev, and A. P. Jivkov, Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport, Journal of Contaminant Hydrology, vol.192, pp.101-117, 2016.
DOI : 10.1016/j.jconhyd.2016.07.002

Z. F. Zhang and J. E. Smith, The velocity of DNAPL fingering in water-saturated porous 791 media: laboratory experiments and a mobile?immobile?zone model, J. Contam. Hydrol, vol.792, pp.49-335, 2001.

L. Zhang, Q. Kang, J. Yao, Y. Gao, Z. Sun et al., Pore scale 794 simulation of liquid and gas two phase flow based on digital core technology, Science, vol.795, 2015.
DOI : 10.1007/s11431-015-5842-z

, China Technological Sciences, vol.58, pp.1375-1384