A. Bieler, Abundant molecular oxygen in the coma of comet 67P/ Churyumov-Gerasimenko, Nature, vol.526, pp.678-681, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01346075

H. Balsiger, Rosina-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Sci. Rev, vol.128, pp.745-801, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00161628

V. Taquet, K. Furuya, C. Walsh, and E. F. Van-dishoeck, A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O 2 ice from clouds to discs, Mon. Not. R. Astron. Soc, vol.462, pp.99-115, 2016.

Y. Yao and K. P. Giapis, Dynamic molecular oxygen production in cometary comae, Nat. Commun, vol.8, p.15298, 2017.

M. Galand, Ionospheric plasma of comet 67P probed by Rosetta at 3 au from the Sun, Mon. Not. R. Astron. Soc, vol.462, pp.331-351, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01404142

K. L. Heritier, Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta, Mon. Not. R. Astron. Soc, vol.469, pp.118-129, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01670766

K. C. Hansen, Evolution of water production of 67P/ChuryumovGerasimenko: an empirical model and a multi-instrument study, Mon. Not. R. Astron. Soc, vol.462, pp.491-506, 2016.

K. L. Heritier, Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation, Mon. Not. R. Astron. Soc, vol.469, pp.427-442, 2017.
DOI : 10.1093/mnras/stx1912

URL : https://hal.archives-ouvertes.fr/insu-01575071

H. Nilsson, Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA, Mon. Not. R. Astron. Soc, vol.469, pp.252-261, 2017.

J. Deca, Electron and ion dynamics of the solar wind interaction with a weakly outgassing comet, Phys. Rev. Lett, vol.118, p.205101, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01541244

L. C. Lee and G. P. Smith, Photodissociation and photodetachment of molecular negative ions. VI. Ions in O 2 /CH 4 /H 2 O mixtures from 3500 to 8600, J. Chem. Phys, vol.70, pp.1727-1735, 1979.

A. Lethuillier, Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko. As constrained by the Permittivity Probe SESAME-PP/Philae/Rosetta, Astron. Astrophys, vol.591, p.32, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01303661

E. Quirico, Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer, Icarus, vol.272, pp.32-47, 2016.

H. Nilsson, RPC-ICA: the ion composition analyzer of the rosetta plasma consortium, Space Sci. Rev, vol.128, pp.671-695, 2007.

E. Odelstad, Measurements of the electrostatic potential of Rosetta at comet 67P, Mon. Not. R. Astron. Soc, vol.469, pp.568-581, 2017.

N. Fougere, Direct simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko, Mon. Not. R. Astron. Soc, vol.462, pp.156-169, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01370624

F. Dulieu, M. Minissale, and D. Bockele-morvan, Production of O 2 through dismutation of H 2 O 2 during water ice desorption: a key to understanding comet O 2 abundances, Astron. Astrophys, vol.597, p.56, 2017.

H. N. , A. I. , P. H. , and C. M. ,

K. A. and M. G. , as Rosetta Project Scientist

L. H. , J. B. , C. M. , J. D. , A. I. et al., computed an upper-bound for the ion-nucleus collisions. C.S.W. and H.N. analyzed the RPC-ICA dataset and derived the energetic ion fluxes used in Fig. 2. F.L.J. and A.I.E. analyzed the RPC-LAP dataset used to correct the ion fluxes for the spacecraft potential. K.A. and M. R. analyzed the ROSINA-DFMS dataset shown in Fig. 2. C.M.C., A.I.E., P.H. and H.N. contributed to the development and operation of the RPC sensors