E. E. Cey, D. L. Rudolph, R. Aravena, and G. Parkin, Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario, Journal of Contaminant Hydrology, vol.37, issue.1-2, pp.45-67, 1999.
DOI : 10.1016/S0169-7722(98)00162-4

H. Huan, J. Wang, Y. Zhai, B. Xi, J. Li et al., Quantitative evaluation of specific vulnerability to nitrate for groundwater resource protection based on process-based simulation modelI. Lateral and longitudinal patterns of water physico-chemistry and trace metal distribution and partitioning in a large river floodplain, Sci. Total Environ. Sci. Total Environ, vol.2016, issue.2017, pp.768-784

S. V. Gregory, F. J. Swanson, W. A. Mckee, and K. W. Cummins, An Ecosystem Perspective of Riparian Zones Nitrate Removal in Stream Riparian Zones, BioScience J. Environ. Qual, vol.41, issue.25, pp.540-551, 1991.

T. L. Martin, N. K. Kaushik, J. T. Trevors, and H. R. Whiteley, Review: Denitrification in temperate climate riparian zones, Water, Air, and Soil Pollution, vol.111, issue.1/4, pp.171-186, 1999.
DOI : 10.1023/A:1005015400607

V. Maítre, A. Cosandey, E. Desagher, and A. Parriaux, Effectiveness of groundwater nitrate removal in a river Riparian area: The importance of hydrogeological conditions Conceptualisation and application of models for groundwater?Surface water interactions and nitrate attenuation potential in Riparian zones, CrossRef] 9. Vidon, P.; Hill, A.R. Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology, pp.76-93, 2003.

A. Iribar, Composition des Communautés Bactériennes Dénitrifiantes au Sein d'un Aquifère Alluvial et Facteurs Contrôlant Leur Structuration: Relation Entre Structure des Communautés et Dénitrification, 2007.

J. M. Sánchez-pérez, P. Vervier, F. Garabétian, S. Sauvage, M. Loubet et al., Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements, Hydrology and Earth System Sciences, vol.7, issue.1, pp.97-107, 2003.
DOI : 10.5194/hess-7-97-2003

A. J. Gold, P. M. Groffman, K. Addy, D. Q. Kellogg, M. Stolt et al., LANDSCAPE ATTRIBUTES AS CONTROLS ON GROITHD WATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES, Journal of the American Water Resources Association, vol.36, issue.3, pp.1457-1464, 2001.
DOI : 10.1016/0022-1694(83)90224-X

M. Sophocleous, Interactions between groundwater and surface water: the state of the science, Hydrogeology Journal, vol.10, issue.1, pp.52-67, 2002.
DOI : 10.1007/s10040-001-0170-8

M. Heinen, Simplified denitrification models: Overview and properties, Geoderma, vol.133, issue.3-4, pp.444-463, 2006.
DOI : 10.1016/j.geoderma.2005.06.010

X. Sun, L. Bernard-jannin, C. Garneau, M. Volk, J. G. Arnold et al., Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model, Hydrological Processes, vol.208, issue.6, pp.187-202, 2016.
DOI : 10.1016/j.quaint.2008.10.015

URL : https://hal.archives-ouvertes.fr/hal-01323983

X. Sun, L. Bernard-jannin, S. Sauvage, C. Garneau, J. G. Arnold et al., Assessment of the denitrification process in alluvial wetlands at floodplain scale using the SWAT model, Ecological Engineering, vol.103, pp.2017-344
DOI : 10.1016/j.ecoleng.2016.06.098

J. G. Arnold, R. Srinivasan, R. S. Muttiah, and J. Williams, LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT, Journal of the American Water Resources Association, vol.27, issue.6, pp.73-89, 1998.
DOI : 10.13031/2013.32748

Q. D. Lam, B. Schmalz, and N. Fohrer, Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model, Agricultural Water Management, vol.97, issue.2, pp.317-325, 2010.
DOI : 10.1016/j.agwat.2009.10.004

D. D. Bosch, J. G. Arnold, M. Volk, P. M. Allen, K. R. Douglasmankin et al., Simulation of a Low-Gradient Coastal Plain Watershed Using the SWAT Landscape Model, Transactions of the ASABE, vol.53, issue.5, pp.1445-1456, 2010.
DOI : 10.13031/2013.34899

Y. Caballero, S. Voirin-morel, F. Habets, J. Noilhan, P. Lemoigne et al., Hydrological sensitivity of the Adour-Garonne river basin to climate change, Water Resources Research, vol.41, issue.4, pp.43-07448, 2007.
DOI : 10.1029/2004WR003447

R. R. Lancaster, Fluvial Evolution of the Garonne River, France: Integrating Field Data with Numerical Simulations, 2005.

D. Peyrard, S. Sauvage, P. Vervier, J. M. Sanchez-perez, and M. Quintard, A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river, Hydrological Processes, vol.34, issue.3, pp.4257-4273, 2008.
DOI : 10.1002/hyp.7035

URL : https://hal.archives-ouvertes.fr/hal-00332074

G. Pinay, C. Ruffinoni, S. Wondzell, and F. Gazelle, Change in Groundwater Nitrate Concentration in a Large River Floodplain: Denitrification, Uptake, or Mixing?, Journal of the North American Benthological Society, vol.17, issue.2, pp.179-189, 1998.
DOI : 10.2307/1467961

G. Jego, Influence Des Activités Agricoles sur la Pollution Nitrique des Eaux Souterraines Analyse par Modélisation des Impacts des Systèmes de Grande Culture sur les Fuites de Nitrate dans les Plaines Alluviales, 2008.

J. M. Sánchez-pérez, M. Trémolières, and R. Carbiener, Une station d'épuration naturelle des phosphates et nitrates apportés par les eaux de débordement du Rhin: La forêt alluviale à frêne et orme, Comptes Rendus de L'Académie des Sciences, pp.312-395, 1991.

R. Seltz, Analyse et Modélisation D'une Zone Humide Riveraine de la Garonne, 2001.

P. Weng, J. M. Sánchez-pérez, S. Sauvage, P. Vervier, and F. Giraud, Assessment of the quantitative and qualitative buffer function of an alluvial wetland: hydrological modelling of a large floodplain (Garonne River, France), Hydrological Processes, vol.24, issue.1-2, pp.2375-2392, 2003.
DOI : 10.1016/S1464-1909(98)00027-6

L. Boithias, Modélisation des Transferts de Pesticides à L'échelle des Bassins Versants en Période de Crue, 2012.

L. Boithias, R. Srinivasan, S. Sauvage, F. Macary, and J. M. Sánchez-pérez, Daily Nitrate Losses: Implication on Long-Term River Quality in an Intensive Agricultural Catchment of Southwestern France, Journal of Environment Quality, vol.43, issue.1, pp.43-46, 2014.
DOI : 10.2134/jeq2011.0367

C. P. Arango, J. L. Tank, J. L. Schaller, T. V. Royer, M. J. Bernot et al., Benthic organic carbon influences denitrification in streams with high nitrate concentration, Freshwater Biology, vol.42, issue.7, pp.1210-1222, 2007.
DOI : 10.1007/s10533-005-2199-6

B. J. Dalzell, T. R. Filley, and J. M. Harbor, Flood pulse influences on terrestrial organic matter export from an agricultural watershed, Journal of Geophysical Research: Biogeosciences, vol.48, issue.C9, p.110, 2005.
DOI : 10.1029/2000GB001341

URL : http://onlinelibrary.wiley.com/doi/10.1029/2005JG000043/pdf

S. Duan, T. S. Bianchi, and T. P. Sampere, Temporal variability in the composition and abundance of terrestrially-derived dissolved organic matter in the lower Mississippi and Pearl Rivers, Marine Chemistry, vol.103, issue.1-2, pp.172-184, 2007.
DOI : 10.1016/j.marchem.2006.07.003

N. A. Griffiths, J. L. Tank, T. V. Royer, T. J. Warrner, T. C. Frauendorf et al., Temporal variation in organic carbon spiraling in Midwestern agricultural streams, Biogeochemistry, vol.27, issue.1-3, pp.149-169, 2012.
DOI : 10.1899/07-121.1

URL : http://www.indiana.edu/%7Eroyerlab/pdfs/Publication+PDFs/Griffiths+et+al+Biogeochemistry.pdf?origin%3Dpublication_detail

F. R. Hauer and G. A. Lamberti, Methods in Stream Ecology, 2011.

R. Wagner, J. Marxsen, P. Zwick, and E. J. Cox, Central European Stream Ecosystems: The Long Term Study of the Breitenbach, 2011.
DOI : 10.1002/9783527634651

J. G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White et al., SWAT: Model use, calibration, and validation, pp.1345-1352

J. Yang, P. Reichert, K. C. Abbaspour, J. Xia, and H. Yang, Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China, Journal of Hydrology, vol.358, issue.1-2, pp.1-23, 2008.
DOI : 10.1016/j.jhydrol.2008.05.012

K. C. Abbaspour, SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs?A User Manual, Sci. Technol, 2014.

Y. Grusson, F. Anctil, S. Sauvage, and J. M. Pérez, Assessing the Climatic and Temporal Transposability of the SWAT Model across a Large Contrasted Watershed, Journal of Hydrologic Engineering, vol.22, issue.6, pp.22-04017004, 2017.
DOI : 10.1061/(ASCE)HE.1943-5584.0001491

J. Derx, A. P. Blaschke, and G. Blöschl, Three-dimensional flow patterns at the river???aquifer interface ??? a case study at the Danube, Advances in Water Resources, vol.33, issue.11, pp.1375-1387, 2010.
DOI : 10.1016/j.advwatres.2010.04.013

G. Nützmann, C. Levers, and J. Lewandowski, Coupled groundwater flow and heat transport simulation for estimating transient aquifer-stream exchange at the lowland River Spree (Germany), Hydrological Processes, vol.34, issue.3, pp.4078-4090, 2014.
DOI : 10.1029/97WR03285

J. Harvey and M. Gooseff, River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins, Water Resources Research, vol.28, issue.3, pp.6893-6922, 2015.
DOI : 10.1002/hyp.9778

B. A. Kiel and M. Bayani-cardenas, Lateral hyporheic exchange throughout the Mississippi River network, Nature Geoscience, vol.116, issue.6, pp.413-417
DOI : 10.1002/rra.1164

T. Nadeau and M. C. Rains, Hydrological Connectivity Between Headwater Streams and Downstream Waters: How Science Can Inform Policy1, JAWRA Journal of the American Water Resources Association, vol.23, issue.Suppl. 1, pp.118-133, 2007.
DOI : 10.1111/j.1752-1688.2007.00007.x

S. Krause and A. Bronstert, The impact of groundwater???surface water interactions on the water balance of a mesoscale lowland river catchment in northeastern Germany, Hydrological Processes, vol.38, issue.2, pp.169-184, 2007.
DOI : 10.1007/978-94-010-0532-6_23

L. Bernard-jannin, D. Brito, X. Sun, E. Jauch, R. Neves et al., Spatially distributed modelling of surface water-groundwater exchanges during overbank flood events ??? a case study at the Garonne River, Advances in Water Resources, vol.94, pp.146-159, 2016.
DOI : 10.1016/j.advwatres.2016.05.008

URL : https://hal.archives-ouvertes.fr/hal-01348632

L. Bernard-jannin, X. Sun, S. Teissier, S. Sauvage, and J. Sánchez-pérez, Spatio-temporal analysis of factors controlling nitrate dynamics and potential denitrification hot spots and hot moments in groundwater of an alluvial floodplain, Ecological Engineering, vol.103, pp.372-384, 2017.
DOI : 10.1016/j.ecoleng.2015.12.031

J. Chen, C. Tang, Y. Sakura, J. Yu, and Y. Fukushima, Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain, Hydrogeology Journal, vol.China, issue.3, pp.481-492, 2005.
DOI : 10.1016/0167-8809(96)01052-3

M. Shamrukh, M. Y. Corapcioglu, and F. A. Hassona, Modeling the Effect of Chemical Fertilizers on Ground Water Quality in the Nile Valley Aquifer, Egypt, Ground Water, vol.29, issue.1, pp.59-67, 2001.
DOI : 10.1016/S0045-6535(98)00079-4

J. J. Opperman, G. E. Galloway, J. Fargione, J. F. Mount, B. D. Richter et al., Sustainable Floodplains Through Large-Scale Reconnection to Rivers, Science, vol.26, issue.5805, pp.1487-1488, 2009.
DOI : 10.1126/science.1133306

A. Bryantmason, Y. Junxu, and M. A. Altabet, Limited capacity of river corridor wetlands to remove nitrate: A case study on the Atchafalaya River Basin during the 2011 Mississippi River Flooding, Water Resources Research, vol.65, issue.11, pp.283-290, 2013.
DOI : 10.1016/j.chemosphere.2006.04.046

C. J. Woltemade, Ability of Restored Wetlands to Reduce Nitrogen and Phosphorus Concentrations in Agricultural Drainage Water, J. Soil Water Conserv, vol.55, pp.303-309, 2000.

E. T. Hester, B. Hammond, and D. T. Scott, Effects of inset floodplains and hyporheic exchange induced by in-stream structures on nitrate removal in a headwater stream, Ecological Engineering, vol.97, pp.452-464, 2016.
DOI : 10.1016/j.ecoleng.2016.10.036

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http, Licensee MDPI