R. Abma and N. Kabir, Comparisons of interpolation methods. The Leading Edge, pp.984-989, 2005.

P. Agrinier and M. Cannat, Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the Mid-Atlantic Ridge (23??N), Proceedings of the Ocean Drilling Program, pp.381-388, 1997.
DOI : 10.2973/odp.proc.sr.153.033.1997

M. Al-chalabi, Seismic velocities ? a critique. First Break, pp.569-5961365, 1994.

M. Andréani, C. Mevel, A. Boullier, and J. Escartín, Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites, Geochemistry, Geophysics, Geosystems, vol.24, issue.25, 2006.
DOI : 10.1016/0022-0248(74)90393-5

M. Andréani, B. Ildefonse, A. Delacour, J. Escartín, M. Godard et al., Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid-Atlantic Ridge 36??14???N), Geochemistry, Geophysics, Geosystems, vol.153, issue.B3, pp.3543-3571, 2014.
DOI : 10.1016/0016-7037(74)90120-3

R. Bansal and M. G. Imhof, Diffraction enhancement in prestack seismic data, GEOPHYSICS, vol.8, issue.3, pp.73-79, 2005.
DOI : 10.1016/S0031-9201(97)00041-1

D. K. Blackman, J. A. Collins, G. Boillot, E. Winterer, and A. W. Meyer, Lower crustal variability and the crust/mantle transition at the Atlantis Massif oceanic core complex Geophysical Research Letters, 37, L24303. https://doi.org/10 Introduction, objectives, and principal results: Ocean Drilling Program Leg 103, West Galicia Margin, Proceedings of the Ocean Drilling Program, pp.3-17, 1029.
DOI : 10.1029/2010gl045165

URL : http://onlinelibrary.wiley.com/doi/10.1029/2010GL045165/pdf

E. Bonatti, Serpentine protrusions in the oceanic crust. Earth and Planetary Science Letters, pp.107-113, 1976.

W. R. Buck, L. L. Lavier, and A. N. Poliakov, flexural rotation of normal faults, Tectonics, vol.2, issue.5, pp.959-973, 1988.
DOI : 10.1098/rsta.1976.0070

J. P. Canales, J. A. Collins, J. Escartín, and R. S. Detrick, Seismic structure across the rift valley of the Mid-Atlantic Ridge at 23??20??? (MARK area): Implications for crustal accretion processes at slow spreading ridges, Journal of Geophysical Research: Solid Earth, vol.103, issue.46, pp.411-28425, 2000.
DOI : 10.1029/98JB01981

J. P. Canales, B. E. Tucholke, M. Xu, J. A. Collins, and D. L. Dubois, Seismic evidence for large-scale compositional heterogeneity of oceanic core complexes, Geochemistry, Geophysics, Geosystems, vol.99, issue.8, 2008.
DOI : 10.1029/93JB02764

URL : http://onlinelibrary.wiley.com/doi/10.1029/2008GC002009/pdf

J. P. Canales, R. A. Dunn, R. Arai, and R. A. Sohn, Seismic imaging of magma sills beneath an ultramafic-hosted hydrothermal system, Geology, vol.16, issue.5, pp.447-450, 2017.
DOI : 10.1029/94JB00338

URL : http://darchive.mblwhoilibrary.org/bitstream/1912/9109/1/G38795-Canales-WHOASversion.pdf

J. R. Cann, D. K. Blackman, D. K. Smith, E. Mcallister, B. Janssen et al., Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge Emplacement of mantle rocks in the seafloor at mid-ocean ridges, Nature Journal of Geophysical Research, vol.385, issue.B3, pp.329-332, 1993.

M. Cannat, C. Mével, M. Maia, C. Deplus, C. Durand et al., Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22?????24??N), 023%3C0049:TCUEAR% 3E2.3.CO, pp.49-520091, 1995.
DOI : 10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2

M. Cannat, Y. Lagabrielle, H. Bougault, J. Casey, N. Decoutures et al., Ultramafic and gabbroic exposures at the Mid-Atantic Ridge: geological mapping in the 15°N region, Tectonophysics, vol.27997, pp.193-213, 1997.
DOI : 10.1016/s0040-1951(97)00113-3

M. Cannat, C. Rommevaux-jestin, D. Sauter, C. Deplus, V. Mendel et al., Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge, Journal of Geophysical Research Geology, vol.104843, issue.2271, pp.825-847, 1999.

M. Cannat, D. Sauter, A. Bezos, C. Meyzen, E. Humler et al., Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge, Geochemistry, Geophysics, Geosystems, vol.442, issue.7100, 2008.
DOI : 10.1038/nature04978

URL : https://hal.archives-ouvertes.fr/hal-00290733

M. Cannat, F. Fontaine, and J. Escartín, Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges, Diversity of hydrothermal systems on slow spreading ocean ridges, pp.241-264, 1002.
DOI : 10.1029/95JB02399

M. Et and A. ,

M. Cannat, D. Sauter, and S. Rouméjon, Formation of an ultramafic seafloor at the Southwest Indian Ridge 62°?65°E: internal structure of detachment faults and sparse volcanism documented by sidescan sonar and dredges, Abstract OS11E-03 Presented at the 2012 AGU Fall Meeting, pp.3-7, 2012.

M. Cannat, A. Mangeney, H. Ondréas, Y. Fouquet, and A. Normand, High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley, Geochemistry, Geophysics, Geosystems, vol.159, issue.1-2, pp.996-1011, 2013.
DOI : 10.1016/0040-1951(89)90167-4

URL : https://hal.archives-ouvertes.fr/insu-01819538

M. Cannat, P. Agrinier, M. Bickert, D. Brunelli, D. Hamelin et al., Mid ocean ridge processes at very low melt supply: submersible exploration of smooth ultramafic seafloor at the Southwest Indian Ridge, 64°E. Abstract T32C-01 Presented at the 2017 AGU Fall Meeting, pp.11-15, 2017.

N. I. Christensen, The Abundance of Serpentinites in the Oceanic Crust, The Journal of Geology, vol.80, issue.6, pp.709-719, 1972.
DOI : 10.1086/627796

N. I. Christensen, Serpentinites, Peridotites, and Seismology, International Geology Review, vol.79, issue.9, pp.795-816, 2004.
DOI : 10.1029/JB076i005p01328

T. M. Daley, K. T. Nihei, L. R. Myer, E. L. Majer, J. H. Queen et al., Numerical modeling of scattering from discrete fracture zones in a San Juan Basin gas reservoir, SEG Technical Program Expanded Abstracts 2002, pp.109-112, 2002.
DOI : 10.1190/1.1816838

E. R. Davies, The Relative Effects of Median and Mean Filters on Noisy Signals, Journal of Modern Optics, vol.1, issue.1, pp.103-113, 1992.
DOI : 10.1109/TPAMI.1987.4767873

R. G. Davy, T. A. Minshull, G. Bayrakci, J. M. Bull, D. Klaeschen et al., Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent-ocean transition, West Iberia: New insights from wide-angle seismic, Journal of Geophysical Research: Solid Earth, vol.63, issue.5, pp.3177-3188, 2007.
DOI : 10.1190/1.1444468

URL : http://onlinelibrary.wiley.com/doi/10.1002/2016JB012825/pdf

R. Detrick, J. Collins, and S. Swift, In situ evidence for the nature of the seismic layer 2/3 boundary in oceanic crust, Nature, vol.370, issue.6487, pp.288-290, 1994.
DOI : 10.1038/370288a0

H. J. Dick, W. B. Bryan, and G. Thompson, Low-angle faulting and steady-state emplacement of plutonic rocks at ridge-transform intersections, Eos, Transactions of the American Geophysical Union, vol.62, p.406, 1981.

H. J. Dick, J. Lin, and H. Schouten, An ultraslow-spreading class of ocean ridge, Nature, vol.426, issue.6965, pp.405-412, 2003.
DOI : 10.1038/nature02128

H. J. Dick, M. A. Tivey, B. E. Tucholke, J. Escartín, C. Mével et al., Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30 0 N, 45°20 0 W. Geochemistry, Geophysics, Geosystems, 9, Q05014. https://doi.org/10 Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45 0 N Central role of detachment faults in accretion of slow-spreading oceanic lithosphere, Nature, vol.1067, issue.489, pp.455-790, 1029.
DOI : 10.1029/2007gc001645

URL : http://onlinelibrary.wiley.com/doi/10.1029/2007GC001645/pdf

J. Escartín, C. Mével, S. Petersen, D. Bonnemains, M. Cannat et al., Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20 0 N and 13°30 0 N, Mid Atlantic Ridge) True depth conversion: more than a pretty picture, CSEG Recorder, vol.18, issue.269, pp.1451-1482, 2001.

R. Ferber, P. Caproili, and L. West, L1 pseudo-Vz estimation and deghosting of single-component marine towed-streamer data, GEOPHYSICS, vol.78, issue.2, pp.21-26, 2013.
DOI : 10.1190/1.1440921

G. L. Früh-green, J. A. Connolly, A. Plas, D. S. Kelley, and B. Grobéty, Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity, Geophysical Monograph Series, vol.105, issue.11, pp.119-136144, 2004.
DOI : 10.1029/1999JB900369

M. Garcés and J. S. Gee, Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge, Geology, vol.413, issue.3, pp.279-282, 2007.
DOI : 10.1111/j.1365-246X.1982.tb04950.x

A. Gudmundsson, T. H. Simmenes, B. Larsen, and S. L. Philip, Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones, Journal of Structural Geology, vol.32, issue.11, pp.1643-1655, 2010.
DOI : 10.1016/j.jsg.2009.08.013

A. Gudmundsson, G. De-guidi, and S. Scudero, Length???displacement scaling and fault growth, Tectonophysics, vol.608, pp.1298-1309, 2013.
DOI : 10.1016/j.tecto.2013.06.012

J. A. Karson, Seafloor spreading on the Mid-Atlantic Ridge: Implications for the structure of ophiolites and oceanic lithosphere produced in slow-spreading environments, Proceedings of the Symposium TROODOS 1987, pp.547-555, 1990.

J. A. Karson, G. Thompson, S. E. Humphris, J. M. Edmond, W. B. Bryan et al., Along-axis variations in seafloor spreading in the MARK area, Nature, vol.328, issue.6132, pp.681-685, 1987.
DOI : 10.1038/328681a0

J. Korenaga, W. S. Holbrook, G. M. Kent, P. B. Kelemen, R. S. Detrick et al., Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography, Journal of Geophysical Research: Solid Earth, vol.103, issue.B9, pp.591-21614, 2000.
DOI : 10.1029/98JB01981

URL : http://onlinelibrary.wiley.com/doi/10.1029/2000JB900188/pdf

L. L. Lavier, W. R. Buck, and A. N. Poliakov, Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults, SCRHMF%3E2.3.CO, pp.1127-11300091, 1999.
DOI : 10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2

S. Leroy, M. Cannat, E. Momoh, S. Singh, L. Watremez et al., Anatomy of ultra-slow spreading Southwest Indian Ridge: The 2014 SISMOSMOOTH cruise, pp.14-18, 2015.

C. L. Liner, General theory and comparative anatomy of dip moveout, GEOPHYSICS, vol.55, issue.5, pp.595-607, 1990.
DOI : 10.1190/1.1442871

C. L. Liner, Elements of 3D seismology Tulsa, OK: PennWell. https, 2004.
DOI : 10.1190/1.9781560803386

C. R. Lister, On the Penetration of Water into Hot Rock, Geophysical Journal International, vol.133, issue.3461, pp.465-509, 1974.
DOI : 10.1126/science.133.3461.1359

URL : https://academic.oup.com/gji/article-pdf/39/3/465/1698183/39-3-465.pdf

L. Lu, Application of local slant stack to trace interpolation. Paper presented at the Society of, Exploration Geophysicists Annual International Meeting, vol.4, pp.560-562, 1985.
DOI : 10.1190/1.1892818

C. J. Macleod, J. Escartín, D. Banerji, G. J. Banks, M. Gleeson et al., Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15??45???N, DGEFOD% 3E2.0.CO, pp.879-8820091, 2002.
DOI : 10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2

C. J. Macleod, R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows et al., Life cycle of oceanic core complexes, Earth and Planetary Science Letters, vol.287, issue.3-4, pp.333-344, 2009.
DOI : 10.1016/j.epsl.2009.08.016

, Journal of Geophysical Research: Solid Earth, vol.10, 1002.

C. Mével, M. Cannat, P. Gente, E. Marion, J. Auzende et al., Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR, 23??N), Tectonophysics, vol.190, issue.1, pp.31-530040, 1991.
DOI : 10.1016/0040-1951(91)90353-T

D. J. Miller and N. I. Christensen, Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane Transform Zone (MARK), Proceeding of the Ocean Drilling Program, Scientific Results, pp.437-454, 1997.
DOI : 10.2973/odp.proc.sr.153.043.1997

T. A. Minshull, Geophysical characterisation of the ocean???continent transition at magma-poor rifted margins, Comptes Rendus Geoscience, vol.341, issue.5, pp.382-393, 2009.
DOI : 10.1016/j.crte.2008.09.003

T. A. Minshull and R. S. White, Thin Crust On the Flanks of the Slow-Spreading Southwest Indian Ridge, Geophysical Journal International, vol.97, issue.1, pp.139-148, 1996.
DOI : 10.1111/j.1365-246X.1984.tb02868.x

T. A. Minshull, M. R. Muller, R. S. White, D. Halliday, R. Ferber et al., Crustal structure of the Southwest Indian Ridge at 66??E: seismic constraints, Paper presented at the Society of Exploration Geophysicists Annual International Meeting, pp.135-147, 2006.
DOI : 10.1111/j.1365-246X.2006.03001.x

E. Momoh, D. Halliday, R. Ferber, and S. Singh, Low-frequency signal enhancement by pseudo-V z deghosting. First Break, pp.35-431365, 2016.

A. Morris, J. S. Gee, N. Pressling, B. E. John, C. J. Macleod et al., Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples, Earth and Planetary Science Letters, vol.287, issue.1-2, pp.217-228, 2009.
DOI : 10.1016/j.epsl.2009.08.007

M. R. Muller, C. J. Robinson, T. A. Minshull, R. S. White, and M. J. Bickle, Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge? Earth and Planetary Science Letters, pp.93-107, 1997.

M. R. Muller, T. A. Minshull, and R. S. White, Segmentation and melt supply at the Southwest Indian Ridge, 027%3C0867:SAMSAT%3E2.3.CO, pp.867-8700091, 1999.
DOI : 10.1130/0091-7613(1999)027<0867:SAMSAT>2.3.CO;2

M. R. Nedimovi?, S. M. Carbotte, A. J. Harding, R. S. Detrick, J. P. Canales et al., Frozen magma lenses below the oceanic crust, Nature, vol.139, issue.7054, pp.1149-1152, 2005.
DOI : 10.1016/0012-821X(95)00233-3

R. Parnell-turner, R. A. Sohn, C. Pierce, T. J. Reston, C. J. Macleod et al., Oceanic detachment faults generate compression in extension, Geology, vol.103, issue.10, pp.923-926, 2017.
DOI : 10.1029/98JB00167

P. Patriat and J. Segoufin, Reconstruction of the Central Indian Ocean, Tectonophysics, vol.155, issue.1-4, pp.211-234, 1988.
DOI : 10.1016/0040-1951(88)90267-3

S. Picazo, M. Cannat, A. Delacour, J. Escartín, S. Rouméjon et al., Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13??-15??N: The role of magmatic injections and hydrothermal alteration, Geochemistry, Geophysics, Geosystems, vol.22, issue.6, 2012.
DOI : 10.1130/G24639A.1

URL : https://hal.archives-ouvertes.fr/insu-01827705

L. Planert, E. R. Flueh, and T. J. Reston, Along- and across-axis variations in crustal thickness and structure at the Mid-Atlantic Ridge at 5??S obtained from wide-angle seismic tomography: Implications for ridge segmentation, Journal of Geophysical Research, vol.63, issue.B1, p.9102, 2009.
DOI : 10.1111/j.1365-246X.1986.tb05174.x

L. Planert, E. R. Flueh, F. Tilmann, I. Grevemeyer, and T. J. Reston, Crustal structure of a rifted oceanic core complex and its conjugate side at the MAR at 5??S: implications for melt extraction during detachment faulting and core complex formation, Geophysical Journal International, vol.63, issue.B13, pp.113-126, 2010.
DOI : 10.1111/j.1365-246X.2010.04504.x

O. Plümper, A. Røyne, A. Margrasó, and B. Jamveit, The interface-scale mechanism of reaction-induced fracturing during serpentinization, Geology, vol.15, issue.1???2, pp.1103-1106, 2012.
DOI : 10.1016/j.epsl.2006.11.015

T. J. Reston and C. R. Ranero, The 3D geometry of detachment faulting at mid-ocean ridges, 2011.
DOI : 10.1029/2011gc003666

URL : http://onlinelibrary.wiley.com/doi/10.1029/2011GC003666/pdf

DOI : 10.1190/1.1439873

E. A. Robinson, Predictive deconvolution Developments in geophysical exploration methods, pp.77-106, 1981.

S. Rouméjon, M. Cannat, S. Rouméjon, M. Cannat, P. Agrinier et al., Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation, Paper presented at the 72 nd Society of Exploration Geophysicists Annual International Meeting, pp.2354-2379, 1002.
DOI : 10.1029/95JB02399

T. Sato, K. Okino, H. Kumahai, D. Sauter, M. Cannat et al., Magnetic structure of an oceanic core complex at the southernmost Central Indian Ridge: Analysis of shipboard and deep sea three-component magnetometer data. Geochemistry, Geophysics, Geosystems, 10, Q06003. https://doi.org/ 10 Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere, Nature Geoscience Nature, vol.6, issue.535, pp.314-320, 1029.

DOI : 10.1190/1.1440828

H. Schouten, D. K. Smith, J. R. Cann, and J. Escartín, Tectonic versus magmatic extension in the presence of core complexes at slow-spreading ridges from a visualization of faulted seafloor topography, Geology, vol.94, issue.7, pp.615-618, 2010.
DOI : 10.1029/JB094iB10p13919

M. Seyler, L. Cannat, C. Mével, D. K. Smith, J. R. Cann et al., Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E) Geochemistry, Geophysics, Geosystems 9101. https://doi.org/10 Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge, Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5N. Geochemistry, Geophysics, Geosystems, pp.440-443, 1029.

P. Spudich and J. Orcutt, A new look at the seismic velocity structure of the oceanic crust, Reviews of Geophysics, vol.11, issue.2, pp.627-645, 1002.
DOI : 10.1111/j.1365-246X.1974.tb02444.x

J. Sun, On the limited aperture migration in two dimensions, GEOPHYSICS, vol.63, issue.3, pp.984-994, 1998.
DOI : 10.1016/S0031-8914(58)95919-6

S. Sun and J. C. Bancroft, How much does the migration aperture actually contribute to the migration result? Paper presented at the Society of Exploration Geophysicists Annual International Meeting, pp.973-976, 2001.

C. H. Thurber, S. C. Solomon, G. M. Purdy, and M. H. Murray, Earthquake locations and three-dimensional crustal structure in the Coyote Lake Area, central California, Journal of Geophysical Research, vol.86, issue.B10, pp.8226-8236, 1983.
DOI : 10.1029/JB086iB06p05039

B. E. Tucholke, K. Fujioka, T. Ishihara, G. Hirth, and M. Kinoshita, Submersible study of an oceanic megamullion in the central North Atlantic, Journal of Geophysical Research: Solid Earth, vol.100, issue.46, pp.145-161, 2001.
DOI : 10.1029/95JB02399

B. E. Tucholke, M. D. Behn, W. R. Buck, and J. Lin, Role of melt supply in oceanic detachment faulting and formation of megamullions, Geology, vol.106, issue.6, pp.455-458, 2008.
DOI : 0148-0227(2001)v.106[16,145:SSOAOM]2.0.CO;2

R. S. White, D. Mckenzie, and R. K. Nions, Oceanic crustal thickness from seismic measurements and rare earth element inversions, Journal of Geophysical Research, vol.13, issue.10, pp.683-702, 1992.
DOI : 10.1029/RG013i001p00087

C. J. Wolfe, G. Purdy, D. Toomey, and S. Solomon, Microearthquake characteristics and crustal velocity structure at 29??N on the Mid-Atlantic Ridge: The architecture of a slow spreading segment, Journal of Geophysical Research: Solid Earth, vol.98, issue.506, pp.449-24472, 1995.
DOI : 10.1029/93JB00887

Ö. Yilmaz, Seismic data analyses, processing, inversion and interpretation of seismic data (Vols Tulsa, OK: Society of Exploration Geophysicists, pp.1-2065, 2001.

J. Zhang and M. N. Toksöz, Nonlinear refraction traveltime tomography, GEOPHYSICS, vol.78, issue.5, pp.1726-1737, 1998.
DOI : 10.1002/ima.1850010103

URL : http://dspace.mit.edu/bitstream/1721.1/75336/1/1996.16%20Zhang_Toksoz.pdf

M. Zhao, X. Qui, J. Li, D. Sauter, A. Ruan et al., Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49??39???E), Geochemistry, Geophysics, Geosystems, vol.159, issue.3, pp.4544-4563, 2013.
DOI : 10.1016/0040-1951(89)90167-4

URL : https://hal.archives-ouvertes.fr/hal-00914264

, Table 1 contained an error: The first entry under OBS profiles titled Air gun volume " should have appeared as 111.27 L. Table 2 was incorrectly typeset resulting in a lack of organization of the data. The data appearing below " Prestack processing " should have appeared as: " Resample to 4 ms after antialias filter, 125 Hz cutoff, Erratum In the originally published version of this article The errors have been corrected, and this version may be considered the authoritative version of record

, Journal of Geophysical Research: Solid Earth, vol.10, 1002.