M. Andreani, C. Mevel, A. M. Boullier, and J. Escartín, Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites, Geochemistry, Geophysics, Geosystems, vol.24, issue.25, pp.10-1029, 2007.
DOI : 10.1016/0022-0248(74)90393-5

URL : https://hal.archives-ouvertes.fr/hal-00273230

N. Augustin, K. S. Lackschewitz, T. Kuhn, and C. W. Devey, Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15??N), Marine Geology, vol.256, issue.1-4, pp.18-29, 2008.
DOI : 10.1016/j.margeo.2008.09.004

B. N. Batuev, A. G. Krotov, V. F. Markov, G. A. Cherkashev, and S. G. Krasnov, Massive sulfide deposits discovered and sampled at 14 45?N, Mid-Atlantic Ridge, BRIDGE Newsl, vol.6, issue.6, 1994.

V. Bel-'tenev, V. Ivanov, A. Shagin, M. Sergeyev, I. Rozhdestvenskaya et al., New hydrothermal Geochemistry Geophysics PICAZO ET AL.: DENUDATION OF ULTRAMAFIC ROCKS 10.1029/2012GC004121 sites at 13 N, Mid-Atlantic Ridge, InterRidge Newsl, pp.14-16, 2005.

C. Boschi, G. L. Früh-green, A. Delacour, J. A. Karson, and D. S. Kelley, Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Geochem. Geophys. Geosyst, vol.7, p.10, 1029.

C. Boschi, G. L. Früh-green, and J. Escartín, Occurrence and significance of serpentinite-hosted, talc-and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: An overview, Ofioliti, pp.31-129, 2006.

F. Boudier, A. Baronnet, and D. Mainprice, Serpentine Mineral Replacements of Natural Olivine and their Seismic Implications: Oceanic Lizardite versus Subduction-Related Antigorite, Journal of Petrology, vol.116, issue.4???5, pp.495-512, 2010.
DOI : 10.1007/BF00876542

URL : https://hal.archives-ouvertes.fr/hal-00456061

H. Bougault, J. L. Charlou, Y. Fouquet, H. D. Needham, N. Vaslet et al., output, Journal of Geophysical Research, vol.159, issue.109, pp.98-9643, 1993.
DOI : 10.1016/0040-1951(89)90167-4

F. Boyd, Hydrothermal investigations of amphiboles, Researches in Geochemistry, pp.377-396, 1959.

W. R. Buck, L. L. Lavier, and A. N. Poliakov, Modes of faulting at mid-ocean ridges, Nature, vol.129, issue.7034, pp.434-719, 2005.
DOI : 10.1016/0012-821X(94)00233-O

J. Cann, D. Blackman, D. Smith, B. Mcallister, S. Janssen et al., Corrugated slip surfaces formed at ridge???transform intersections on the Mid-Atlantic Ridge, Nature, vol.385, issue.6614, pp.385-329, 1038.
DOI : 10.1038/385329a0

M. Cannat, How thick is the magmatic crust at slow spreading oceanic ridges?, Journal of Geophysical Research: Solid Earth, vol.74, issue.43, pp.2847-285710, 1996.
DOI : 10.1038/312146a0

M. Cannat and J. F. Casey, An ultramafic lift at the Mid-Atlantic Ridge: Successive stages of magmatism in serpentinized peridotites from the 15 N region, in Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites, pp.5-34, 1995.

M. Cannat, D. Bideau, and H. Bougault, Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15??37???N and 16??52???N, Earth and Planetary Science Letters, vol.109, issue.1-2, pp.87-10610, 1992.
DOI : 10.1016/0012-821X(92)90076-8

M. Cannat, C. Mevel, M. Maia, C. Deplus, C. Durand et al., Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22?24 N)TCUEAR>2.3.CO, pp.49-520091, 1995.

M. Cannat, Y. Lagabrielle, H. Bougault, J. Casey, N. De-coutures et al., Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15??N region, Tectonophysics, vol.279, issue.1-4, pp.193-21310, 1997.
DOI : 10.1016/S0040-1951(97)00113-3

M. Cannat, D. Sauter, V. Mendel, E. Ruellan, K. Okino et al., Modes of seafloor generation at a melt-poor ultraslow-spreading ridge, Geology, vol.413, issue.7, pp.34-605, 1130.
DOI : 10.1130/G22486.1

M. Cannat, D. Sauter, J. Escartin, L. Lavier, and S. Picazo, Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges, 2009.

. Sci and . Lett, , pp.174-183

M. Cannat, H. Ondréas, A. Mangeney, and Y. Fouquet, Microbathymetry reveals landslides activity shaping the walls of the Mid-Atlantic axial valley, Abstract OS14A-08 presented at 2010 Fall Meeting, pp.13-17, 2010.

G. Ceuleneer and M. Cannat, High-temperature ductile deformation of Site 920 peridotites, Proc. Ocean Drill. Program Sci. Results, pp.23-34, 1997.
DOI : 10.2973/odp.proc.sr.153.002.1997

J. L. Charlou, J. P. Donval, C. Konn, H. Ondréas, Y. Fouquet et al., High production and fluxes of H 2 and CH 4 and evidence of abiotic hydrocarbon synthesis by serpentinization un ultramafic-hosted hydrothermal systems on Mid-Atlantic Ridge, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, pp.265-296, 2010.

G. Cherkashov, V. Bel-'tenev, V. Ivanov, L. Lazareva, M. Samovarov et al., Two New Hydrothermal Fields at the Mid-Atlantic Ridge, Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge, pp.308-316, 2007.
DOI : 10.1080/10641190802400708

H. Dick, Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism, Magmatism in the Ocean Basins, pp.71-105, 1989.
DOI : 10.1144/GSL.SP.1989.042.01.06

H. J. Dick, J. Lin, and H. Schouten, An ultraslowspreading class of ocean ridge, Nature, issue.6965, pp.426-405, 1038.

H. J. Dick, M. A. Tivey, and B. E. Tucholke, Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, Geochem. Geophys. Geosyst, pp.10-1029, 2008.

Y. Dilek, A. J. Coulton, and S. D. Hurst, Serpentinization and hydrothermal veining in peridotites at Site 920 in the MARK area, Proc. Ocean Drill. Program Sci. Results, pp.35-59, 1997.
DOI : 10.2973/odp.proc.sr.153.004.1997

J. Escartín and M. Cannat, Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen-Twenty Fracture Zone (Mid-Atlantic Ridge, 14?????16.5??N), Earth and Planetary Science Letters, vol.171, issue.3, pp.14-16, 1999.
DOI : 10.1016/S0012-821X(99)00169-7

J. Escartín, C. Mevel, C. Macleod, and A. Mccaig, Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15??45???N, Geochemistry, Geophysics, Geosystems, vol.72, issue.46, pp.106710-1029, 2003.
DOI : 10.1029/90EO00319

J. Escartín, D. K. Smith, H. Cann, C. H. Schouten, S. Langmuir et al., Central role of detachment faults in accretion of slow-spreading oceanic lithosphere, Nature, vol.6, issue.7214, pp.455-790, 2008.
DOI : 10.1038/nature07333

J. Escartín, M. Andreani, G. Hirth, and B. Evans, Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures, Earth and Planetary Science Letters, vol.268, issue.3-4, pp.3-4, 2008.
DOI : 10.1016/j.epsl.2008.02.004

G. H. Francis, The serpentinite mass in Glen Urquhart, Inverness-shire, Scotland, American Journal of Science, vol.254, issue.4, 1956.
DOI : 10.2475/ajs.254.4.201

T. Fujiwara, J. Lin, T. Matsumoto, P. B. Kelemen, B. E. Tucholke et al., Crustal Evolution of the, 2003.

, Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma, Geochem. Geophys. Geosyst, vol.4, issue.1024, pp.10-1029, 2002000364.

M. Garcés and J. S. Gee, Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge, Geology, vol.35, issue.279, 2007.

I. Ghose, M. Cannat, and M. Seyler, Transform fault effect on mantle melting in the MARK area (Mid-Atlantic Ridge south of the Kane transform), Geology, vol.24, issue.12, pp.2410-1130, 1996.
DOI : 10.1130/0091-7613(1996)024<1139:TFEOMM>2.3.CO;2

E. Gràcia, J. L. Charlou, J. Radford-knoery, and L. M. Parson, Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38??N???34??N): ultramafic exposures and hosting of hydrothermal vents, Earth and Planetary Science Letters, vol.177, issue.1-2, pp.89-10310, 2000.
DOI : 10.1016/S0012-821X(00)00034-0

C. B. Grimes, B. E. John, M. J. Cheadle, F. K. Mazdab, J. L. Wooden et al., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere, Contributions to Mineralogy and Petrology, vol.2, issue.Suppl 1, pp.757-78310, 2009.
DOI : 10.2138/am-2004-11-1226

C. B. Grimes, T. Ushikubo, B. E. John, and J. W. Valley, Uniformly mantle-like ??18O in zircons from oceanic plagiogranites and gabbros, Contributions to Mineralogy and Petrology, vol.308, issue.1, pp.13-33, 2011.
DOI : 10.1007/978-94-011-3358-6_16

B. Ildefonse, D. K. Blackman, B. E. John, Y. Ohara, D. J. Miller et al., Oceanic core complexes and crustal accretion at slow-spreading ridges, MacLeod, and the Integrated Ocean Drilling Program Expeditions 304/305 Science Party, pp.35-623, 2007.
DOI : 10.1130/G23531A.1

N. Jöns, W. Bach, and T. Schroeder, Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209), Contributions to Mineralogy and Petrology, vol.28, issue.8, pp.625-63910, 2009.
DOI : 10.1127/ejm/9/3/0623

J. Karson, G. Thompson, S. Humphris, J. Edmond, W. Bryan et al., Along-axis variations in seafloor spreading in the MARK area, Nature, vol.328, issue.6132, pp.681-685, 1987.
DOI : 10.1038/328681a0

P. Kelemen, T. Matsumoto, and S. S. Party, Geological results of MODE 98, 1998.

, Cruise to 15 N, Mid-Atlantic Ridge Fall Meet, p.79

P. B. Kelemen, E. Kikawa, D. J. Miller, and S. Party, Proceedings of the Ocean Drilling Program: Scientific Results, 2007.

J. Koepke, Late stage magmatic evolution of oceanic gabbros as a result of hydrous partial melting: Evidence from the Ocean Drilling Program (ODP) Leg 153 drilling at the Mid-Atlantic Ridge, Geochemistry, Geophysics, Geosystems, vol.162, issue.B8, pp.10-1029, 2005.
DOI : 10.1016/S0012-821X(98)00155-1

J. Koepke, J. Berndt, S. T. Feig, and F. Holtz, The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros, Contributions to Mineralogy and Petrology, vol.312, issue.B8, pp.67-8410, 2007.
DOI : 10.1093/petrology/36.5.1137

L. L. Lavier, W. R. Buck, and A. N. Poliakov, Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults, 027<1127:SCRHMF>2.3.CO, pp.2710-1130, 1999.
DOI : 10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2

L. L. Lavier, W. R. Buck, and A. N. Poliakov, Factors controlling normal fault offset in an ideal brittle layer, Journal of Geophysical Research: Solid Earth, vol.8, issue.B10, pp.431-2310, 2000.
DOI : 10.1029/TC008i003p00469

C. J. Macleod, J. Escartín, D. Banerji, G. Banks, M. Gleeson et al., Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15??45???N, DGEFOD>2.0.CO, pp.30-879, 2002.
DOI : 10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2

C. J. Macleod, R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows et al., Life cycle of oceanic core complexes, Life cycle of oceanic core complexes, pp.333-344, 2009.
DOI : 10.1016/j.epsl.2009.08.016

C. J. Macleod, J. Carlut, J. Escartín, H. Horen, and A. Morris, Quantitative constraint on footwall rotations at the 15??45???N oceanic core complex, Mid-Atlantic Ridge: Implications for oceanic detachment fault processes, Geochemistry, Geophysics, Geosystems, vol.156, issue.B4, pp.0-0310, 2011.
DOI : 10.1016/j.pepi.2005.08.005

URL : https://hal.archives-ouvertes.fr/insu-01875614

A. M. Mccaig, R. A. Cliff, J. Escartin, A. E. Fallick, and C. J. Macleod, Oceanic detachment faults focus very large volumes of black smoker fluids, Geology, vol.103, issue.10, pp.35-935, 2007.
DOI : 10.1130/G23657A.1

URL : https://hal.archives-ouvertes.fr/hal-00311895

C. Mével, M. Cannat, P. Gente, E. Marion, J. Auzende et al., Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR, 23??N), Tectonophysics, vol.190, issue.1, pp.31-5310, 1991.
DOI : 10.1016/0040-1951(91)90353-T

N. C. Mitchell, M. A. Tivey, and P. Gente, Seafloor slopes at mid-ocean ridges from submersible observations and implications for interpreting geology from seafloor topography, Earth and Planetary Science Letters, vol.183, issue.3-4, pp.543-55510, 2000.
DOI : 10.1016/S0012-821X(00)00270-3

A. Morris, J. S. Gee, N. Pressling, B. E. John, C. J. Macleod et al., Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples, Earth and Planetary Science Letters, vol.287, issue.1-2, pp.217-228, 2009.
DOI : 10.1016/j.epsl.2009.08.007

A. Nicolas and J. Poirier, Crystalline Plasticity and Solid-State Flow in Metamorphic Rocks, 1976.

O. Hanley and D. S. , Serpentinites: Records of Tectonic and Petrological History, 1996.

S. Petersen, K. Kuhn, T. Kuhn, N. Augustin, R. Hékinian et al., The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14??45???N, Mid-Atlantic Ridge) and its influence on massive sulfide formation, Lithos, vol.112, issue.1-2, pp.40-56, 2009.
DOI : 10.1016/j.lithos.2009.02.008

J. P. Poirier, Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics, and Minerals, 1985.
DOI : 10.1017/CBO9780511564451

P. Rona, L. Widenfalk, and K. Boström, Serpentinized ultramafics and hydrothermal activity at the Mid-Atlantic Ridge crest near 15??N, Journal of Geophysical Research, vol.68, issue.10, pp.92-1417, 1987.
DOI : 10.1130/0016-7606(1957)68[1659:MCAMW]2.0.CO;2

T. Schroeder and B. E. John, Strain localization on an oceanic detachment fault system, Geochem. Geophys. Geosyst, pp.10-1029, 2004.

T. Schroeder, M. J. Cheadle, H. J. Dick, U. Faul, J. F. Casey et al., Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15??N on the Mid-Atlantic Ridge: A structural synthesis of ODP Leg 209, Geochemistry, Geophysics, Geosystems, vol.86, issue.52, p.601510, 1029.
DOI : 10.1029/98JB00167

R. Searle, P. Cowie, N. Mitchell, S. Allerton, C. Macleod et al., , 1998.

G. Geochemistry-geophysics, Fault structure and detailed evolution of a slow spreading ridge segment: The Mid-Atlantic Ridge at 29 N, Earth Planet. Sci. Lett, vol.15497, pp.1-4

S. Silantyev, Origin conditions of the Mid-Atlantic Ridge plutonic complex at 13?17 N, Petrology, pp.351-387, 1998.

S. A. Silantyev, E. A. Krasnova, M. Cannat, N. S. Bortnikov, N. N. Kononkova et al., Peridotite-gabbro-trondhjemite association of the Mid-Atlantic Ridge between 12??58??? and 14??45???N: Ashadze and Logachev hydrothermal vent fields, Geochemistry International, vol.231, issue.1???2, pp.323-35410, 1134.
DOI : 10.1016/j.epsl.2004.12.005

D. K. Smith, Spatial and temporal distribution of seismicity along the northern Mid-Atlantic Ridge (15??-35??N), Journal of Geophysical Research: Solid Earth, vol.100, issue.11, pp.216710-1029, 2003.
DOI : 10.1029/95JB02399

URL : https://hal.archives-ouvertes.fr/insu-01830101

D. K. Smith, J. R. Cann, and J. Escartin, Widespread active detachment faulting and core complex formation near 13?????N on the Mid-Atlantic Ridge, Nature, vol.101, issue.7101, pp.442-440, 2006.
DOI : 10.1016/S0377-0273(00)00174-8

D. K. Smith, J. Escartin, H. Schouten, and J. R. Cann, Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13??-15??N), Geochemistry, Geophysics, Geosystems, vol.7, issue.52, pp.13-15, 1029.
DOI : 10.1029/2005GC001127

URL : https://hal.archives-ouvertes.fr/insu-01875666

B. E. Tucholke, J. Lin, and M. C. Kleinrock, Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge, Journal of Geophysical Research: Solid Earth, vol.104, issue.46, pp.9857-986610, 1998.
DOI : 10.1130/0016-7606(1992)104<0659:SASDOT>2.3.CO;2

B. E. Tucholke, M. D. Behn, W. R. Buck, and J. Lin, Role of melt supply in oceanic detachment faulting and formation of megamullions, Geology, vol.106, issue.6, 2008.
DOI : 0148-0227(2001)v.106[16,145:SSOAOM]2.0.CO;2

F. J. Wicks, Deformation histories as recorded by serpentinites . III. Fracture patterns developed prior to serpentinization, Can. Mineral, vol.22, pp.205-209, 1984.