D. E. Allen and W. E. Seyfried, Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems 1 1Associate editor: J. C. Alt, Geochimica et Cosmochimica Acta, vol.68, issue.6, pp.1347-1354, 2004.
DOI : 10.1016/j.gca.2003.09.003

A. G. Baines, M. J. Cheadle, B. E. John, and J. J. Schwartz, The rate of oceanic detachment faulting at Atlantis Bank, SW Indian Ridge, Earth and Planetary Science Letters, vol.273, issue.1-2, pp.105-114, 2008.
DOI : 10.1016/j.epsl.2008.06.013

F. J. Barriga, Discovery of the Saldanha hydrothermal field on the famous segment of the MAR (36 30?N), Fall Meet, pp.79-67, 1998.

B. N. Batuyev, A. G. Krotov, V. F. Markov, G. A. Cherkashev, S. G. Krasnov et al., Massive sulphides deposits discovered and sampled at 14 45N, Mid-Atlantic Ridge, pp.6-10, 1994.

V. Y. Beltenev, I. I. Rozhdestvenskaya, A. V. Nescheretov, G. A. Cherkashev, S. M. Sudarikov et al., New data on hydrothermal activity in the area of 12 57?N, MAR: Initial results of the R/V Professor Logatchev cruise 20, InterRidge News, pp.38-40, 2002.

V. Y. Beltenev, New discoveries at 12 58?N, 44 52?W, MAR: Professor Logatchev-22 cruise, initial results, pp.13-14, 2003.

V. Y. Beltenev, A. Shagin, V. F. Markov, I. I. Rozhdestvenskaya, T. Stepanova et al., A new hydrothermal field at 16 38.4?N, 46 28.5?W on the Mid-Atlantic Ridge, InterRidge News, pp.5-6, 2004.

V. Y. Beltenev, G. V. Ivanov, A. Shagin, M. Sergeyev, I. I. Rozhdestvenskaya et al., New hydrothermal sites at 13 N, Mid-Atlantic-Ridge, InterRidge News, pp.14-16, 2005.

D. K. Blackman, J. R. Cann, B. Janssen, and D. K. Smith, Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone, Journal of Geophysical Research: Solid Earth, vol.17, issue.441, pp.315-2110, 1998.
DOI : 10.1007/BF01203466

Y. A. Bogdanov, A. M. Sagalevitch, E. S. Chernyaev, A. M. Ashadze, E. G. Gurvich et al., A study of the hydrothermal field at 14 45?N on the Mid-Atlantic Ridge using the " MIR " submersibles, pp.9-13, 1995.

Y. A. Bogdanov, N. Bortnikov, and I. Vikentiev, New type of modern mineral-forming system: Black smokers of hydrothermal field at 14 45N, Mid-Atlantic Ridge, Ore Deposits Geol, vol.39, issue.1, pp.68-90, 1997.

H. Bougault, P. Appriou, P. Bienvenu, P. Cambon, J. L. Charlou et al., Campagne RIDELENTE: Structure de la dorsale atlantique, pp.276-292, 1990.

H. Bougault, J. L. Charlou, Y. Fouquet, H. D. Needham, N. Vaslet et al., output, Journal of Geophysical Research, vol.159, issue.109, pp.98-9643, 1993.
DOI : 10.1016/0040-1951(89)90167-4

P. R. Browne and J. V. Lawless, Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere, Earth-Science Reviews, vol.52, issue.4, pp.299-33110, 2001.
DOI : 10.1016/S0012-8252(00)00030-1

J. R. Cann, D. K. Blackman, D. K. Smith, B. Mcallister, S. Janssen et al., Corrugated slip surfaces formed at ridge???transform intersections on the Mid-Atlantic Ridge, Nature, vol.385, issue.6614, pp.329-33210385329, 1038.
DOI : 10.1038/385329a0

M. Cannat, Emplacement of mantle rocks in the seafloor at mid-ocean ridges, Journal of Geophysical Research: Solid Earth, vol.312, issue.109, pp.4163-417210, 1993.
DOI : 10.1038/312146a0

M. Cannat, Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22?????24??N), Geology, vol.23, issue.1, pp.49-52, 1995.
DOI : 10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2

M. Cannat, Y. Lagabrielle, H. Bougault, J. Casey, N. De-coutures et al., Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15??N region, Tectonophysics, vol.279, issue.1-4, pp.193-21310, 1997.
DOI : 10.1016/S0040-1951(97)00113-3

M. Cannat, H. Ondréas, Y. Fouquet, S. Silantiev, E. Hoise et al., Geological context of ultramafichosted hydrothermal vent fields in the 13?15 N region of the Mid-Atlantic Ridge: Preliminary results of the Serpentine cruise, Fall Meet, pp.88-51, 2007.

J. L. Charlou, L. Dmitriev, H. Bougault, and H. D. Needham, Hydrothermal CH 4 between 12 N and 15 N over the Mid-Atlantic Ridge, Deep Sea Res, vol.3588, issue.1, pp.121-13110, 1988.

J. L. Charlou, H. Bougault, P. Appriou, T. Nelsen, and P. Rona, Different TDM/CH4 hydrothermal plume signatures: TAG site at 26??N and serpentinized ultrabasic diapir at 15??05???N on the Mid-Atlantic Ridge, Geochimica et Cosmochimica Acta, vol.55, issue.11, pp.3209-322210, 1991.
DOI : 10.1016/0016-7037(91)90484-M

, Geochemistry Geophysics Geosystems G

J. L. Charlou, Y. Fouquet, H. Bougault, J. P. Donval, J. Etoubleau et al., Intense CH 4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15 20?N fracture zone and the Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, issue.1398, pp.62-2323, 1998.

J. L. Charlou, J. P. Donval, Y. Fouquet, P. Jean-baptiste, and N. Holm, Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36??14???N, MAR), Chemical Geology, vol.191, issue.4, pp.345-35910, 2002.
DOI : 10.1016/S0009-2541(02)00134-1

J. L. Charlou, J. P. Donval, C. Konn, H. Ondréas, Y. Fouquet et al., High production and fluxes of H 2 and CH 4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, pp.265-29610, 1029.

G. Cherkashov, V. Beltenev, V. Ivanov, L. Lazareva, M. Samovarov et al., Two New Hydrothermal Fields at the Mid-Atlantic Ridge, Two new hydrothermal fields at the Mid-Atlantic Ridge, pp.308-31610, 1080.
DOI : 10.1080/10641190802400708

G. Cherkashov, Seafloor Massive Sulfides from the Northern Equatorial Mid-Atlantic Ridge: New Discoveries and Perspectives, Kinematics and geometry of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge, pp.222-239, 1130.
DOI : doi:10.1029/2002JB001967

Á. S. Dias and F. J. Barriga, Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36??34???N; 33??26???W) at MAR, Marine Geology, vol.225, issue.1-4, pp.157-175, 2006.
DOI : 10.1016/j.margeo.2005.07.013

Á. S. Dias, G. L. Früh-green, S. M. Bernasconi, and F. J. , Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field, Marine Geology, vol.279, issue.1-4, pp.128-140, 2011.
DOI : 10.1016/j.margeo.2010.10.017

H. J. Dick, M. A. Tivey, and B. E. Tucholke, Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, Geochem. Geophys. Geosyst, pp.10-1029, 2008.

E. Douville, J. L. Charlou, E. H. Oelkers, P. Bienvenu, C. F. Jove-colon et al., The rainbow vent fluids (36??14???N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids, Chemical Geology, vol.184, issue.1-2, pp.37-4810, 2002.
DOI : 10.1016/S0009-2541(01)00351-5

J. Escartín, C. Mevel, C. J. Macleod, and A. M. Mccaig, Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15 45N, Geochem. Geophys. Geosyst, vol.4, issue.8, pp.106710-1029, 2003.

J. Escartín, D. K. Smith, H. Cann, C. H. Schouten, S. Langmuir et al., Central role of detachment faults in accretion of slow-spreading oceanic lithosphere, Nature, vol.6, issue.7214, pp.790-79410, 2008.
DOI : 10.1038/nature07333

M. Fabian and H. Villinger, Long-term tilt and acceleration data from the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter, Geochemistry, Geophysics, Geosystems, vol.35, issue.15, pp.10-1029, 2008.
DOI : 10.1029/2007GL032262

URL : http://onlinelibrary.wiley.com/doi/10.1029/2007GC001917/pdf

Y. Fouquet, Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36 14N) Fall Meet, pp.78-832, 1997.

Y. Fouquet, Serpentine cruise?ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields, pp.15-19, 2008.

Y. Fouquet, Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, pp.321-36710, 1029.
DOI : 10.1029/92JB01898

D. I. Foustoukos and W. E. Seyfried, Fluid Phase Separation Processes in Submarine Hydrothermal Systems, Reviews in Mineralogy and Geochemistry, vol.65, issue.1, pp.213-239, 2007.
DOI : 10.2138/rmg.2007.65.7

T. Fujiwara, J. Lin, T. Matsumoto, P. B. Kelemen, B. E. Tucholke et al., Crustal Evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma, Geochemistry, Geophysics, Geosystems, vol.73, issue.47, p.102410, 1029.
DOI : 10.1029/92JB00605

A. V. Gebruk, L. I. Moskalev, P. Chevaldonné, S. M. Sudarikov, and E. S. Chernyaev, Hydrothermal vent fauna of the Logatchev area (14 45?N, MAR): Preliminary results from the first MIR and Nautile dives, pp.10-14, 1995.

C. R. German and J. Lin, The thermal structure of the oceanic crust, ridge-spreading and hydrothermal circulation: How well do we understand their inter-connections?, in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, Geophys. Monogr. Ser, vol.148, pp.1-1810, 2004.

C. R. German, G. P. Klinkhammer, and M. D. Rudnicki, The Rainbow Hydrothermal Plume, 36??15???N, MAR, Geophysical Research Letters, vol.269, issue.21, pp.2979-298210, 1996.
DOI : 10.1126/science.269.5227.1092

C. B. Grimes, B. E. John, M. J. Cheadle, and J. L. Wooden, Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206 Pb/ 238 U zircon ages from Atlantis Massif and IODP Hole U1309D, Geochem. Geophys. Geosyst, vol.9, issue.30, p.801210, 1029.

D. R. Janecky and W. E. Seyfried, Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry, Geochimica et Cosmochimica Acta, vol.50, issue.7, pp.1357-1378, 1986.
DOI : 10.1016/0016-7037(86)90311-X

S. Y. Johnson, W. J. Stephenson, L. A. Morgan, W. C. Shanks, I. et al., Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming, Hydrothermal and tectonic activity in northern Yellowstone Lake, pp.954-971, 2003.
DOI : 10.1130/B25111.1

J. A. Karson and H. J. Dick, Tectonics of ridge-transform intersections at the Kane fracture zone, Marine Geophysical Researches, vol.54, issue.1, pp.51-98, 1983.
DOI : 10.1007/BF00338257

J. A. Karson, G. L. Früh-green, D. S. Kelley, E. A. Williams, D. R. Yoerger et al., , 2006.

N. Ridge and . Geochem, Geophys. Geosyst, pp.10-1029, 2005001109.

D. S. Kelley, An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30?? N, Nature, vol.101, issue.6843, pp.145-14910, 2001.
DOI : 10.1016/0012-821X(90)90168-W

S. G. Krasnov, Detailed geological studies of hydrothermal fields in the North Atlantic, Hydrothermal Vents and Processes, pp.43-64, 1995.
DOI : 10.1144/GSL.SP.1995.087.01.05

R. P. Lowell and P. A. Rona, Seafloor hydrothermal systems driven by the serpentinization of peridotite, Geophysical Research Letters, vol.105, issue.11, pp.153110-1029, 2002.
DOI : 10.1029/1999JB900382

C. J. Macleod, Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15??45???N, 030<0879:DGEFOD>2.0.CO, pp.15-45, 1130.
DOI : 10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2

C. J. Macleod, R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows et al., Life cycle of oceanic core complexes, 2009.

. Sci and . Lett, , pp.333-344

C. J. Macleod, J. Carlut, J. Escartín, H. Horen, and A. Morris, Quantitative constraint on footwall rotations at the 15??45???N oceanic core complex, Mid-Atlantic Ridge: Implications for oceanic detachment fault processes, Geochemistry, Geophysics, Geosystems, vol.156, issue.B4, pp.0-0310, 2011.
DOI : 10.1016/j.pepi.2005.08.005

URL : https://hal.archives-ouvertes.fr/insu-01875614

A. M. Mccaig, R. A. Cliff, J. Escartín, A. Fallick, and C. J. Macleod, Oceanic detachment faults focus very large volumes of black smoker fluids, Geology, vol.103, issue.10, pp.935-938, 2007.
DOI : 10.1130/G23657A.1

URL : https://hal.archives-ouvertes.fr/hal-00311895

A. M. Mccaig, A. Delacour, A. E. Fallick, T. Castelain, and G. L. Früh-green, Detachment fault control on hydrothermal circulation systems: Interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic, Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, pp.207-23910, 1029.
DOI : 10.1016/0016-7037(93)90306-H

R. Mckibbin and A. Absar, A model for oxygen isotope transport in hydrothermal systems, Journal of Geophysical Research, vol.133, issue.B6, pp.7065-7070, 1989.
DOI : 10.1144/gsjgs.133.6.0509

B. Melchert, First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge, Earth and Planetary Science Letters, vol.275, issue.1-2, pp.61-69, 2008.
DOI : 10.1016/j.epsl.2008.08.010

V. Mendel, M. Munschy, and D. Sauter, MODMAG, a MATLAB program to model marine magnetic anomalies, Computers & Geosciences, vol.31, issue.5, pp.31-589, 2005.
DOI : 10.1016/j.cageo.2004.11.007

URL : https://hal.archives-ouvertes.fr/hal-00104261

L. A. Morgan, W. P. Shanks, and K. L. Pierce, Possible earthquake-generated wave deposits near Yellowstone Lake: Clues into triggering mechanisms of a large hydrothermal explosion crater, Fall Meet, p.83, 1372.

L. A. Morgan, Exploration and discovery in Yellowstone Lake: results from high-resolution sonar imaging, seismic reflection profiling, and submersible studies, Journal of Volcanology and Geothermal Research, vol.122, issue.3-4, pp.221-24210, 2003.
DOI : 10.1016/S0377-0273(02)00503-6

L. A. Morgan, W. P. Shanks, and K. L. Pierce, Super eruption environments make for " super " hydrothermal explosions: Extreme hydrothermal explosions in Yellowstone National Park, Fall Meet, pp.33-0689, 2006.

L. A. Morgan, W. C. Shanks, I. , and K. L. Pierce, Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions, Pap. Geol. Soc. Am, vol.459, pp.1-95, 2009.
DOI : 10.1130/2009.2459(01)

L. J. Muffler, D. E. White, and A. H. , Hydrothermal Explosion Craters in Yellowstone National Park, Geological Society of America Bulletin, vol.82, issue.3, pp.723-7400016, 1130.
DOI : 10.1130/0016-7606(1971)82[723:HECIYN]2.0.CO;2

T. Nishimura, M. Ichihara, and S. Ueki, Investigation of the Onikobe geyser, NE Japan, by observing the ground tilt and flow parameters, Earth, Planets and Space, vol.168, issue.6, pp.58-79, 2006.
DOI : 10.1016/0377-0273(84)90035-0

H. Ondréas, M. Cannat, Y. Fouquet, A. Normand, P. M. Sarradin et al., Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge, Geochemistry, Geophysics, Geosystems, vol.158, issue.3-4, pp.200610-1029, 2009.
DOI : 10.1016/j.jvolgeores.2006.07.004

S. Petersen, K. Kuhn, T. Kuhn, N. Augustin, R. Hekinian et al., The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14??45???N, Mid-Atlantic Ridge) and its influence on massive sulfide formation, Lithos, vol.112, issue.1-2, pp.40-56, 2009.
DOI : 10.1016/j.lithos.2009.02.008

S. Picazo, M. Cannat, A. Delacour, J. Escartín, S. Rouméjon et al., Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13??-15??N: The role of magmatic injections and hydrothermal alteration, Geochemistry, Geophysics, Geosystems, vol.22, issue.6, pp.4-0910, 1029.
DOI : 10.1130/G24639A.1

URL : https://hal.archives-ouvertes.fr/insu-01827705

P. A. Rona, L. Widenfalk, and K. Boström, Serpentinized ultramafics and hydrothermal activity at the Mid-Atlantic Ridge crest near 15??N, Journal of Geophysical Research, vol.68, issue.10, pp.1417-142710, 1987.
DOI : 10.1130/0016-7606(1957)68[1659:MCAMW]2.0.CO;2

P. A. Rona, H. Bougault, J. L. Charlou, P. Appriou, T. A. Nelsen et al., Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic Ridge near 15??N, 45??W, 020<0783:HCSADA>2.3.CO, pp.783-78610, 1992.
DOI : 10.1130/0091-7613(1992)020<0783:HCSADA>2.3.CO;2

R. C. Searle, M. Cannat, K. Fujioka, C. Mevel, H. Fujimoto et al., FUJI Dome: A large detachment fault near 64??E on the very slow-spreading southwest Indian Ridge, Geochemistry, Geophysics, Geosystems, vol.96, issue.46, p.910510, 1029.
DOI : 10.1029/91JB01113

URL : https://hal.archives-ouvertes.fr/insu-01829973

W. E. Seyfried and W. E. Dibble, Seawater-peridotite interaction at 300??C and 500 bars: implications for the origin of oceanic serpentinites, Geochimica et Cosmochimica Acta, vol.44, issue.2, pp.309-321, 1980.
DOI : 10.1016/0016-7037(80)90139-8

W. E. Seyfried, D. I. Jr, Q. Foustoukos, and . Fu, Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200??C, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges, Geochimica et Cosmochimica Acta, vol.71, issue.15, pp.71-3872, 2007.
DOI : 10.1016/j.gca.2007.05.015

P. Siméoni, J. Sarrazin, H. Nouzé, P. M. Sarradin, H. Ondréas et al., Victor 6000: New high resolution tools for deep sea research, Module de Mesures en Route OCEANS07 IEEE Aberdeen Conf. Proc, pp.1-3, 2007.

D. K. Smith, J. R. Cann, and J. Escartín, Widespread active detachment faulting and core complex formation near 13?????N on the Mid-Atlantic Ridge, Nature, vol.101, issue.7101, pp.440-443, 2006.
DOI : 10.1016/S0377-0273(00)00174-8

URL : http://darchive.mblwhoilibrary.org/bitstream/1912/1416/1/SmithNatureWithFigures.pdf

D. K. Smith, J. Escartín, H. Schouten, and J. R. Cann, Fault rotation and core complex formation: Significant Geochemistry Geophysics Geosystems G 3 G processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, Geochem. Geophys. Geosyst, vol.9, pp.13-15, 1029.
DOI : 10.1029/2007gc001699

URL : http://onlinelibrary.wiley.com/doi/10.1029/2007GC001699/pdf

R. A. Sohn, R. E. Thomson, A. B. Rabinovich, and S. F. Mihaly, Bottom pressure signals at the TAG deepsea hydrothermal field: Evidence for short-period, flowinduced ground deformation, Geophys. Res. Lett, pp.10-1029, 2009.
DOI : 10.1029/2009gl040006

URL : http://onlinelibrary.wiley.com/doi/10.1029/2009GL040006/pdf

M. K. Tivey, S. E. Humphris, G. Thompson, M. D. Hannington, and P. A. Rona, Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data, Journal of Geophysical Research: Solid Earth, vol.159, issue.14, pp.527-1210, 1029.
DOI : 10.1016/0040-1951(89)90167-4

B. E. Tucholke, J. Lin, and M. C. Kleinrock, Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge, Journal of Geophysical Research: Solid Earth, vol.104, issue.46, pp.9857-986610, 1998.
DOI : 10.1130/0016-7606(1992)104<0659:SASDOT>2.3.CO;2

URL : http://onlinelibrary.wiley.com/doi/10.1029/98JB00167/pdf

L. R. Wetzel and E. L. Shock, Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions, Journal of Geophysical Research: Solid Earth, vol.99, issue.109, pp.8319-834010, 2000.
DOI : 10.2172/138820

URL : http://onlinelibrary.wiley.com/doi/10.1029/1999JB900382/pdf

R. J. Wold, M. A. Mayhew, and R. B. Smith, Bathymetric and geophysical evidence for a hydrothermal explosion crater in Mary Bay, Yellowstone Lake, Wyoming, Journal of Geophysical Research, vol.82, issue.26, pp.3733-373810, 1977.
DOI : 10.1130/0016-7606(1955)66[1109:VMEOLC]2.0.CO;2