Appalachian-style multi-terrane Wilson cycle model for the assembly of South China: COMMENT
Michel Faure, Jacques Charvet, Yan Chen

To cite this version:
Michel Faure, Jacques Charvet, Yan Chen. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China: COMMENT. Geology, Geological Society of America, 2018, 46 (6), pp.e446. 10.1130/G40222C.1. insu-01818014

HAL Id: insu-01818014
https://hal-insu.archives-ouvertes.fr/insu-01818014
Submitted on 16 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Appalachian-style multi-terrane Wilson cycle model for the assembly of South China

Michel Faure*, Jacques Charvet, and Yan Chen

Institut des Sciences de la Terre d’Orléans, UMR CNRS 7327, 1A Rue de la Férolletière 45071 Orléans cedex 2, France
*E-mail: michel.faure@univ-orleans.fr

Lin et al. (2018) propose a model of Proterozoic-Mesozoic evolution of the South China block (SCB) involving West and East Cathaysia separated by the Northwest Fujian fault. They assume a northeastward translation of East Cathaysia after an Early Paleozoic orogeny due to the collision of West Cathaysia with a “proposed terrane”. This model ignores most of the available, robust field data.

Early Paleozoic Sedimentation

Several works document the sedimentological transition from Yangtze to Cathaysia (e.g., Wang et al., 2010; Shu et al., 2014, 2015; Xu et al., 2016). Overlying the several-kilometer-thick siliciclastic series of the Neoproterozoic Nanhua rift, the Cambrian-Ordovician deposits show, from northwest to southeast, a progressive facies evolution within a single southeastward deepening basin developed throughout Cathaysia. Though deposited in a sea, the Early Paleozoic formations were not floored by oceanic crust but by a thinned continental crust, as shown also by the bimodal alkaline magmatism.

The Early Paleozoic Orogeny (EPO)

The EPO received a great deal of attention in the past decade (e.g., Faure et al., 2009; Charvet et al., 2010; Li et al., 2010; Wang et al., 2013; Shu et al., 2014, 2015; Xu et al., 2016). Northwest-verging folds occur to the north of the Jiangshan-Shaoting fault. South of it, structural studies document the unicity of Cathaysia with a progressive decrease of deformation and metamorphism from northwest to southeast. The syntectonic north-south stretching lineation and related kinematics, and fold vergence observed in the pre-D Devonian rocks, show everywhere a consistent top-to-the-southeast sense of shear. As usual in orogens, the lower plate is the most buried one, with ductile shearing, and metamorphism. The pre-D Devonian features of the SCB can easily be explained by this scheme. Thus the geodynamic sketch proposed in Lin et al.’s figure 6D for the 460-420 Ma period is totally at odds with field data. The Chen formation, enclosed in the Cambro-Ordovician deposits, show everywhere synmetamorphic north-south stretching lineation and related kinematics, deformation and metamorphism from northwest to southeast. The SCB is the southern upper plate of their collisional scenario, and “moved away after the orogeny” before amalgamation of East and West Cathaysia. The PT is a speculation required by the model but not documented. Such reasoning does not satisfy the scientific method in which a model must explain facts, and not the opposite. The PT assumption appears as an ad hoc explanation to set up a model based on missing facts.

In conclusion, the geology of South China is still incompletely understood, but any new model should fully take into account the existing background knowledge. It is therefore unfortunate that Lin et al. did not make use of all of the available data from this interesting area since, by not doing so, their proposed model does not improve the understanding of its complicated tectonic history.

REFERENCES CITED


