C. Kervévan, M. Beddelem, X. Galiègue, L. Gallo, Y. May et al., Main results of the CO2-DISSOLVED project: first step toward a future industrial pilot combining geological storage of dissolved CO2 and geothermal heat recovery, 2014.

J. Royer-adnot, L. Gallo, and Y. , Economic Analysis of Combined Geothermal and CO2 Storage for Small-Size Emitters, Energy Procedia, 2017.
DOI : 10.1016/j.egypro.2017.03.1853

URL : https://doi.org/10.1016/j.egypro.2017.03.1853

F. Geels, Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective, Technological Forecasting and Social Change, vol.72, issue.6, pp.681-696, 2005.
DOI : 10.1016/j.techfore.2004.08.014

O. Edenhofer, R. Pichs-madruga, Y. Sokona, . Farahani, . Kadner et al., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, IPCC, 2014.

A. Laude, O. Ricci, G. Bureau, J. Royer-adnot, and A. Fabbri, CO2 capture and storage from a bioethanol plant: Carbon and energy footprint and economic assessment, International Journal of Greenhouse Gas Control, vol.5, issue.5, pp.1220-1231, 2011.
DOI : 10.1016/j.ijggc.2011.06.004

URL : https://hal.archives-ouvertes.fr/hal-00679455

J. Kemper, Biomass and carbon dioxide capture and storage: A review, International Journal of Greenhouse Gas Control, vol.40, pp.401-430, 2015.
DOI : 10.1016/j.ijggc.2015.06.012

M. Renner, The Emergence of Capture Carbon Storage Techniques in the Power Sector, 2015.

C. Mc-glade and P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2????C, Nature, vol.3, issue.7533, pp.187-190, 2015.
DOI : 10.1039/b918960b

S. Shackley and M. Thompson, Lost in the mix: will the technologies of carbon dioxide capture and storage provide us with a breathing space as we strive to make the transition from fossil fuels to renewables?, Climatic Change, vol.1, issue.7, pp.101-121, 2012.
DOI : 10.1016/S1750-5836(07)00024-2

G. Unruh, Escaping carbon lock-in, Energy Policy, vol.30, issue.4, pp.317-325, 2002.
DOI : 10.1016/S0301-4215(01)00098-2

G. Blount, M. Gorensek, L. Hamm, O. Neil, K. Kervévan et al., Pi-CO2 Aqueous Post-combustion CO2 Capture: Proof of Concept Through Thermodynamic, Hydrodynamic, and Gas-Lift Pump Modeling, Energy Procedia, vol.63, pp.286-292, 2014.
DOI : 10.1016/j.egypro.2014.11.031

URL : https://doi.org/10.1016/j.egypro.2014.11.031

A. Rip and R. Kemp, Technological change. In Human Choice and Climate Change: resources and technology, pp.327-399, 1998.

R. Kemp and R. , The Management of the Co-Evolution of Technical, Environmental and Social Systems, Towards Environmental Systems, pp.33-55, 2001.
DOI : 10.1007/3-540-27298-4_3

F. Geels and J. Schot, Typology of sociotechnical transition pathways, Research Policy, vol.36, issue.3, pp.399-417, 2007.
DOI : 10.1016/j.respol.2007.01.003

F. Geels, Regime Resistance against Low-Carbon Transitions: Introducing Politics and Power into the Multi-Level Perspective, Theory, Culture & Society, vol.1, issue.4, pp.21-40, 2014.
DOI : 10.2307/j.ctt1d9nqbc

URL : http://journals.sagepub.com/doi/pdf/10.1177/0263276414531627

G. Verbong and F. Geels, Exploring sustainability transitions in the electricity sector with socio-technical pathways, Technological Forecasting and Social Change, vol.77, issue.8, pp.1214-1221, 2010.
DOI : 10.1016/j.techfore.2010.04.008

F. Geels, F. Kern, G. Fuchs, N. Hinderer, G. Kungl et al., The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990???2014), Research Policy, vol.45, issue.4, pp.896-913, 1990.
DOI : 10.1016/j.respol.2016.01.015