E. Dorrepaal, Carbon respiration from subsurface peat accelerated by climate warming in the subarctic, Nature, vol.13, issue.7255, pp.616-619, 2009.
DOI : 10.1038/nature08216

T. Ise, A. L. Dunn, S. C. Wofsy, and P. Moorcroft, High sensitivity of peat decomposition to??climate change through water-table feedback, Nature Geoscience, vol.65, issue.11, pp.763-766, 2008.
DOI : 10.1007/s00382-003-0332-6

G. Mctainsh and C. Strong, The role of aeolian dust in ecosystems, Geomorphology, vol.89, issue.1-2, pp.39-54, 2007.
DOI : 10.1016/j.geomorph.2006.07.028

P. Kuhry and D. Vitt, Fossil Carbon/Nitrogen Ratios as a Measure of Peat Decomposition, Ecology, vol.77, issue.1, pp.271-275, 1996.
DOI : 10.2307/2265676

A. W. Damman, Hydrology, development, and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog, Canadian Journal of Botany, vol.64, issue.2, pp.384-394, 1986.
DOI : 10.1139/b86-055

N. Malmer and B. Wallen, Nitrogen and phosphorus in mire plants: variation during 50 years in relation to supply rate and vegetation type, Oikos, vol.45, issue.3, pp.539-554, 2005.
DOI : 10.1179/jbr.1992.17.1.71

B. L. Bedford, M. R. Walbridge, and A. Aldous, PATTERNS IN NUTRIENT AVAILABILITY AND PLANT DIVERSITY OF TEMPERATE NORTH AMERICAN WETLANDS, Ecology, vol.80, issue.7, pp.2151-2169, 1999.
DOI : 10.1139/b89-203

M. Wang and T. R. Moore, Carbon, Nitrogen, Phosphorus, and Potassium Stoichiometry in an Ombrotrophic Peatland Reflects Plant Functional Type, Ecosystems, vol.37, issue.4, pp.673-684, 2014.
DOI : 10.1007/s00442-013-2784-7

A. A. Hayati and M. C. Proctor, Limiting Nutrients in Acid-Mire Vegetation: Peat and Plant Analyses and Experiments on Plant Responses to Added Nutrients, The Journal of Ecology, vol.79, issue.1, pp.75-95, 1991.
DOI : 10.2307/2260785

K. E. Kohfeld and S. Harrison, DIRTMAP: the geological record of dust, Earth-Science Reviews, vol.54, issue.1-3, pp.81-114, 2001.
DOI : 10.1016/S0012-8252(01)00042-3

C. S. Bristow, H. Edwards, K. A. Chappell, and A. , Fertilizing the Amazon and equatorial Atlantic with West African dust, Geophysical Research Letters, vol.59, issue.D4, p.14807, 2010.
DOI : 10.1016/0016-7037(95)00038-2

J. Bullard, Contemporary glacigenic inputs to the dust cycle. Earth Surf, Proc. Land, pp.71-89, 2013.

M. C. Nielsdóttir, C. M. Moore, and R. Sanders, Iron limitation of the postbloom phytoplankton communities in the Iceland Basin, Global Biogeochemical Cycles, vol.54, issue.5-7, p.3001, 2009.
DOI : 10.1016/j.dsr2.2006.12.004

J. Crusius, A. W. Schroth, and S. Gasso, Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron, Geophysical Research Letters, vol.70, issue.5, p.6602, 2011.
DOI : 10.1016/j.gca.2006.05.005

N. Malmer and B. Wallen, Accumulation and release of organic matter in ombrotrophic bog hummocks - processes and regional variation, Ecography, vol.59, issue.3, pp.193-211, 1993.
DOI : 10.1139/b88-069

G. Svensson, Bog development and environmental conditions as shown by the stratigraphy of Store Mosse mire in southern Sweden, Boreas, vol.3, issue.12, pp.89-111, 1988.
DOI : 10.1080/11035893509445993

M. E. Kylander, A novel geochemical approach to paleorecords of dust deposition and effective humidity: 8500 years of peat accumulation at Store Mosse (the ???Great Bog???), Sweden, Quaternary Science Reviews, vol.69, pp.69-82, 2013.
DOI : 10.1016/j.quascirev.2013.02.010

URL : https://hal.archives-ouvertes.fr/insu-00912596

M. E. Kylander, Potentials and problems of building detailed dust records using peat archives: An example from Store Mosse (the ???Great Bog???), Sweden, Geochimica et Cosmochimica Acta, vol.190, pp.156-174, 2016.
DOI : 10.1016/j.gca.2016.06.028

M. Blaauw, Methods and code for ???classical??? age-modelling of radiocarbon sequences, Quaternary Geochronology, vol.5, issue.5, pp.512-518, 2010.
DOI : 10.1016/j.quageo.2010.01.002

K. Gallagher, Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models, Earth and Planetary Science Letters, vol.311, issue.1-2, pp.182-194, 2011.
DOI : 10.1016/j.epsl.2011.09.015

URL : https://hal.archives-ouvertes.fr/insu-00641253

J. Loisel, A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation, The Holocene, vol.4, issue.9, pp.1028-1042, 2014.
DOI : 10.7202/033029ar

M. Klarqvist, Peat Growth and Carbon Accumulation Rates during the Holocene in Boreal Mires, 2001.

J. Blackford and F. Chambers, Determining the degree of peat decomposition for peat-based paleoclimatic studies, Int. Peat J, vol.5, pp.7-724, 1993.

C. Cocozza, V. D. Orazio, T. M. Miano, and W. Shotyk, Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties, Organic Geochemistry, vol.34, issue.1, pp.49-60, 2003.
DOI : 10.1016/S0146-6380(02)00208-5

J. Kaal, Evaluating pyrolysis???GC/MS and 13C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain, Organic Geochemistry, vol.38, issue.7, pp.1097-1111, 2007.
DOI : 10.1016/j.orggeochem.2007.02.008

R. Benner, M. L. Fogel, E. K. Sprague, and R. E. Hodson, Depletion of 13C in lignin and its implications for stable carbon isotope studies, Nature, vol.329, issue.6141, pp.1708-1710, 1987.
DOI : 10.1038/329708a0

M. F. Dignac, Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France), Geoderma, vol.128, issue.1-2, pp.3-17, 2005.
DOI : 10.1016/j.geoderma.2004.12.022

URL : https://hal.archives-ouvertes.fr/bioemco-00148289

H. Biester, K. H. Knorr, J. Schellekens, A. Basler, and Y. M. Hermanns, Comparison of different methods to determine the degree of peat decomposition in peat bogs, Biogeosciences, vol.11, issue.10, pp.2691-2707, 2014.
DOI : 10.5194/bg-11-2691-2014-supplement

P. W. Inglett, K. R. Reddy, S. Newman, and B. Lorenzen, Increased soil stable nitrogen isotopic ratio following phosphorus enrichment: historical patterns and tests of two hypotheses in a phosphorus-limited wetland, Oecologia, vol.34, issue.1, pp.99-109, 2007.
DOI : 10.1007/BF00318276

A. Martinez-cortizas, H. Biester, T. M. Mighall, and R. Bindler, Climate-driven enrichment of pollutants in peatlands, Biogeosciences, vol.4, issue.5, pp.905-911, 2007.
DOI : 10.5194/bg-4-905-2007

URL : https://hal.archives-ouvertes.fr/hal-00297649

J. Schellekens, Preferential degradation of polyphenols from Sphagnum ??? 4-Isopropenylphenol as a proxy for past hydrological conditions in Sphagnum-dominated peat, Geochimica et Cosmochimica Acta, vol.150, pp.74-89, 2015.
DOI : 10.1016/j.gca.2014.12.003

H. Almquist-jacobson, Lake-level fluctuations at Ljustj??rnen, central Sweden and their implications for the Holocene climate of Scandinavia, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.118, issue.3-4, pp.269-290, 1995.
DOI : 10.1016/0031-0182(95)00002-2

G. R. Digerfeldt, Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysj??n, South Sweden, Boreas, vol.16, issue.2, pp.165-182, 1988.
DOI : 10.1080/11035893509445993

M. Magny, Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements, Quaternary International, vol.113, issue.1, pp.65-79, 2004.
DOI : 10.1016/S1040-6182(03)00080-6

G. Bond, Persistent Solar Influence on North Atlantic Climate During the Holocene, Science, vol.294, issue.5549, pp.2130-2136, 2001.
DOI : 10.1126/science.1065680

DOI : 10.2307/3242723

S. Gao and K. H. Wedepohl, The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources, Earth and Planetary Science Letters, vol.133, issue.1-2, pp.81-94, 1995.
DOI : 10.1016/0012-821X(95)00077-P

P. Hughes, The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities, Quaternary Science Reviews, vol.67, pp.160-175
DOI : 10.1016/j.quascirev.2013.01.015

J. Svedlund, Beskrivning till jordartsgeologiska kartan 6D Gislaved SO, Swedish Geological Survey, 2006.

P. Quensel and . Vaggerydssyeniten, Summary: the Vaggeryd Syenite in southern Sweden, Geological Survey of Sweden, pp.1-38, 1960.

R. De-jong, S. Bjorck, L. Björckman, and L. Clemmensen, Storminess variation during the last 6500 years as reconstructed from an ombrotrophic peat bog in Halland, southwest Sweden, Journal of Quaternary Science, vol.14, issue.8, pp.905-919, 2006.
DOI : 10.1017/S0033822200032999

C. Caseldine, G. Thompson, C. Langdon, and D. Hendon, Evidence for an extreme climatic event on Achill Island, Co. Mayo, Ireland around 5200-5100 cal. yr BP, Journal of Quaternary Science, vol.4, issue.2, pp.169-178, 2005.
DOI : 10.1007/978-94-017-3659-6_2

S. Björck and L. B. Clemmensen, Aeolian sediment in raised bog deposits, Halland, SW Sweden: a new proxy record of Holocene winter storminess variation in southern Scandinavia, pp.677-688, 2004.

L. Belyea and N. Malmer, Carbon sequestration in peatland: patterns and mechanisms of response to climate change, Global Change Biology, vol.81, issue.7, pp.1043-1052, 2004.
DOI : 10.1017/S0033822200013904

F. M. Chambers, D. W. Beilman, and Z. Yu, Methods for determining peat humification and for quantifying peat bulk density, OM and carbon content for palaeostudies of climate and peatland carbon dynamics, Mires Peat, vol.7, pp.1-10, 2011.

P. J. Reimer, IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0???50,000 Years cal BP, Radiocarbon, vol.486, issue.04, pp.1869-1887, 2013.
DOI : 10.1016/j.quascirev.2007.01.017

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/FB97C1341F452BD6A410C6FE4E28E090/S0033822200048864a.pdf/div-class-title-intcal13-and-marine13-radiocarbon-age-calibration-curves-0-50-000-years-cal-bp-div.pdf

M. Krachler, C. Mohl, H. Emons, and W. Shotyk, Influence of digestion procedures on the determination of rare earth elements in peat and plant samples by USN-ICP-MS, Journal of Analytical Atomic Spectrometry, vol.17, issue.8, pp.844-851, 2002.
DOI : 10.1039/b200780k

L. L. Petrov, Y. N. Kornakov, L. A. Persikova, and E. A. Anchutina, Reference Samples of Lake Baikal Bottom Sediments - An Essential Part of Regional Collection of Reference Samples, International Journal of Environmental Analytical Chemistry, vol.18, issue.1-4, pp.275-288, 1999.
DOI : 10.1039/a705134d

J. Lynch, Additional Provisional Elemental Values for LKSD-1, LKSD-2, LKSD-3, LKSD-4, STSD-1, STSD-2, STSD-3 and STSD-4, Geostandards and Geoanalytical Research, vol.23, issue.2, pp.251-260, 2007.
DOI : 10.1111/j.1751-908X.1999.tb00577.x

J. Lynch, Provisional Elemental Values for Eight New Geochemical Lake Sediment and Stream Sediment Reference Materials LKSD-1, LKSD-2, LKSD-3, LKSD-4, STSD-1, STSD-2, STSD-3 and STSD-4*, Geostandards and Geoanalytical Research, vol.6, issue.1, pp.153-167, 1990.
DOI : 10.1111/j.1751-908X.1990.tb00070.x

R. R. Artz, FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands, Soil Biology and Biochemistry, vol.40, issue.2, pp.515-527, 2008.
DOI : 10.1016/j.soilbio.2007.09.019

J. Kaal, A. Martinez-cortizas, J. Rydberg, and C. Bigler, Seasonal changes in molecular composition of OM in lake sediment trap material from Nylandssjön, Sweden, Org. Geochem, pp.83-84, 2015.

L. Eriksson, E. Johansson, N. Kettaneh-wodl, and S. Wold, Introduction to Multi-and Mega-Variate Data Analysis using Projection Methods, PCA & PLS). (Umetrics AB, 1999.

W. R. Peltier, D. F. Argus, and R. Drummond, Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, Journal of Geophysical Research: Solid Earth, vol.102, issue.316, pp.450-487, 2015.
DOI : 10.1029/96JB03860

URL : http://onlinelibrary.wiley.com/doi/10.1002/2014JB011176/pdf