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Abstract 11 

Estimating intermediate water residence times (a few years to a century) in shallow aquifers is 12 

critical to quantifying groundwater vulnerability to nutrient loading and estimating realistic 13 

recovery timelines. While intermediate groundwater residence times are currently determined 14 

with atmospheric tracers such as chlorofluorocarbons (CFCs), these analyses are costly and 15 

would benefit from other tracer approaches to compensate for the decreasing resolution of 16 

CFC methods in the 5-20 years range. In this context, we developed a framework to assess the 17 

capacity of dissolved silica (DSi) to inform residence times in shallow aquifers. We calibrated 18 

silicate weathering rates with CFCs from multiple wells in five crystalline aquifers in Brittany 19 

and in the Vosges Mountains (France). DSi and CFCs were complementary in determining 20 

apparent weathering reactions and residence time distributions (RTDs) in shallow aquifers. 21 

                                                 
† Corresponding author: jean.marcais@univ-rennes1.fr 
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Silicate weathering rates were surprisingly similar among Brittany aquifers, varying from 22 

0.20 to 0.23 mg L-1 yr-1 with a coefficient of variation of 7%, except for the aquifer where 23 

significant groundwater abstraction occurred, where we observed a weathering rate of 0.31 24 

mg L-1 yr-1. The silicate weathering rate was lower for the aquifer in the Vosges Mountains 25 

(0.12 mg L-1 yr-1), potentially due to differences in climate and anthropogenic solute loading. 26 

Overall, these optimized silicate weathering rates are consistent with previously published 27 

studies with similar apparent ages range. The consistency in silicate weathering rates suggests 28 

that DSi could be a robust and cheap proxy of mean residence times for recent groundwater 29 

(5-100 years) at the regional scale. This methodology could allow quantification of seasonal 30 

groundwater contributions to streams, estimation of residence times in the unsaturated zone 31 

and improve assessment of aquifer vulnerability to anthropogenic pollution. 32 

Keywords: silicate weathering rates; Groundwater residence time; Groundwater age; 33 

Lumped Parameter Model; Atmospheric anthropogenic tracers (CFCs); Shallow aquifer. 34 

1 Introduction  35 

 Human activity has fundamentally altered global nutrient cycles (Galloway et al., 36 

2008), polluting aquatic ecosystems and threatening human health and water security 37 

(Spalding and Exner, 1993). It is widely held that anthropogenic loading of nitrogen has 38 

exceeded planetary capacities, representing one of the most pressing environmental issues 39 

(Rockstrom et al., 2009; Steffen et al., 2015). International, national, and regional initiatives 40 

have been undertaken in the past several decades to reduce nitrogen loading, though 41 

assessment of efficacy is difficult in complex natural systems with unknown and overlapping 42 

memory effects (Jarvie, 2013; Jenny et al., 2016; Meter and Basu, 2017; Wilcock et al., 43 

2013). Estimating the recovery time of surface and groundwater ecosystems following 44 

nitrogen pollution is key to quantifying effectiveness of changes in agricultural practices, 45 
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mitigation methods, and developing realistic timelines for meeting regulatory goals (Abbott et 46 

al., 2018; Bouraoui and Grizzetti, 2011; Jasechko et al., 2017). Recovery time depends largely 47 

on water and solute residence time in the surface and subsurface components of the 48 

catchment. The majority of catchment transit time occurs in the subsurface, where water can 49 

spend months to years in the soil or unsaturated zone (Meter et al., 2016; Sebilo et al., 2013), 50 

and decades to centuries in near-surface aquifers (Bohlke and Denver, 1995; Kolbe et al., 51 

2016; Singleton et al., 2007; Visser et al., 2013). Because no single tracer can determine the 52 

distribution of groundwater ages across these timescales, multi tracer approaches are 53 

necessary for reliable groundwater dating (Abbott et al., 2016).  54 

Several tracers are well suited to determine residence times for timescales relevant to 55 

nutrient pollution, including 3H/3He and chlorofluorocarbons (CFCs), because the 56 

atmospheric concentration of these gases were altered by human activity coincident with the 57 

great acceleration of nutrient loading in the mid-1900s (Aquilina et al., 2012b; Cook and 58 

Herczeg, 2000; Labasque et al., 2014; Steffen et al., 2015; Visser et al., 2014). However, CFC 59 

methods now lack resolution in the 5-20 years range because their atmospheric concentrations 60 

peaked around 1998 following their prohibition by the Kyoto Protocol (Figure 1). This 61 

reversal of atmospheric trends means any measured concentration between 1995 and 2018 62 

corresponds to two dates. Additionally, 3H/3He and CFC samples are relatively difficult to 63 

collect and costly to analyze, limiting their use to infer residence times of groundwater in 64 

remote environments and much of the developing world. Therefore, there is great interest in 65 

developing new tracers for inferring mean residence time of young groundwater (Morgenstern 66 

et al., 2010; Peters et al., 2014; Tesoriero et al., 2005). 67 
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 68 

Figure 1: Atmospheric time series of CFC concentrations [pptv] since 1940. The lack of variations since 69 

the 2000s limits their resolution in the last 20 years. Adapted from (Cook and Herczeg, 2000). 70 

 One promising family of potential groundwater tracers is natural weathering products 71 

such as Ca2+, Na+, and dissolved silica (DSi) (Abbott et al., 2016). DSi has been found to be 72 

correlated with apparent age in several site-specific studies (Bohlke and Denver, 1995; Burns 73 

et al., 2003; Clune and Denver, 2012; Denver et al., 2010; Edmunds and Smedley, 2000; 74 

Kenoyer and Bowser, 1992; Kim, 2002; Lindsey et al., 2003; Morgenstern et al., 2015; 75 

Morgenstern et al., 2010; Peters et al., 2014; Rademacher et al., 2001; Stewart et al., 2007; 76 

Tesoriero et al., 2005). However, variability of weathering rates has not been precisely 77 

investigated and DSi has rarely been considered a robust tracer of groundwater age, though it 78 

has been used as a relative indicator of residence time (Beyer et al., 2016; Edmunds and 79 

Smedley, 2000). Two specific challenges to using DSi as a widespread proxy of mean 80 

residence times are: 1. DSi lacks a time-based modeling framework and 2. it is unknown if 81 

silicate weathering rates are stable enough at geologic formation to regional scales to 82 

practically exploit DSi concentration. 83 

In this context, we developed a new approach using groundwater DSi to determine 84 

residence time distributions (RTDs) by calibrating apparent silicate weathering rates with 85 
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atmospheric groundwater age tracers (CFCs). We were motivated by the following questions: 86 

1. Over what timescales can DSi be used as a tracer of groundwater age? 2. How variable is 87 

the rate of silicate weathering among shallow aquifers, i.e. a few tens of meters deep, with 88 

different lithology? We hypothesized that a simple zero-order kinetic reaction could simulate 89 

weathering rate in shallow aquifers, because hydrolysis would remain transport-limited to 90 

thermodynamically-limited on decadal timescales (detailed in section 2.1). Conversely, a 91 

time-variant weathering rate (i.e. a first order kinetic reaction) would be necessary to account 92 

for mineral equilibrium limitation in aquifers with longer residence times and a broader range 93 

of residence times (Appelo and Postma, 1994; Maher, 2010). We tested these hypotheses by 94 

modeling residence time distributions (RTDs) and weathering dynamics in 5 shallow 95 

crystalline aquifers with contrasting lithology in Brittany and the Vosges Mountains, France. 96 

We used conventional groundwater chemistry and dissolved CFCs from agricultural and 97 

domestic wells to calibrate chemodynamic models for each catchment, using an inverse 98 

Gaussian lumped parameter model to simulate RTDs. We compared our approach with 99 

previous methods and explored potential applications for regional issues of groundwater 100 

quality. 101 

2 Approach, catchment description, and geochemical data 102 

2.1 Silicate weathering and DSi concentration 103 

Natural weathering products like DSi are cheap to measure and potentially contain 104 

additional information on residence time distribution compared to atmospheric tracers. Indeed 105 

they are sensitive to the overall residence time in both the unsaturated and saturated zones 106 

(Figure 2), whereas atmospheric tracers are only sensitive to the residence time in the 107 

saturated zone (Cook and Herczeg, 2000). 108 
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 109 

Figure 2: Weathering dynamics justifying our hypothesis of a zero-order kinetic reaction for the 110 

weathering of silicate minerals in shallow crystalline aquifers. On the time scales considered (5-50 years), 111 

the weathering rate �. can be considered constant due to transport-limited and thermodynamically-limited 112 

conditions (Maher, 2010). (a) Conceptual scheme illustrating the evolution of a groundwater flow path 113 

from the unsaturated zone into the shallow aquifer. (b) Corresponding weathering rate evolution on two 114 

different timescales. (c) Resulting DSi groundwater concentration evolution along a groundwater flow path. 115 

Weathering is a rate-limited, non-equilibrium reaction consisting of physical, chemical, 116 

and biological processes that occur when mineral surfaces (e.g. bedrock) are exposed to water 117 

flow (Anderson et al., 2002). Weathering occurs in virtually all terrestrial environments 118 

including soils, sediments, and subsurface aquifers, and depends partly on the time that 119 

groundwater has spent in contact with the rock (Maher, 2011). Silicate weathering is the 120 

predominant weathering process because silicate minerals constitute more than 90% of the 121 

earth’s crust (White, 2008). 122 

 As water moves through porous or fractured silicate substrate, it dissolves some silica 123 

by hydrolysis (Maher, 2010). When surface water enters the subsurface, the initial rate of 124 
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silica hydrolysis is determined solely by the contact area between water and rock (surface-125 

limited weathering). As water percolates deeper, DSi concentration increases at the rock-126 

water interface, slowing hydrolysis unless diffusive and advective mixing remove weathering 127 

products from the interface (transport-limited weathering). Finally, as DSi concentration in 128 

the whole water mass approaches saturation, second-order equilibrium reactions control 129 

hydrolysis through precipitation of secondary phases (thermodynamically-limited weathering) 130 

(Ackerer et al., 2018; Lucas et al., 2017; Maher, 2010). Consequently, hydrologic processes 131 

directly mediate weathering rate, because the speed and routing of water flow control the 132 

transport of solute and the cumulative mineral surface encountered by a volume of water.  133 

Differences in weathering rates along and among flow lines can create spatial variations 134 

in DSi concentrations, depending on multiscale dispersive and mixing transport processes 135 

(Gelhar and Axness, 1983). While the signature of detailed water-rock interactions is 136 

progressively erased by mixing processes, the homogenized concentration is more 137 

representative of mean weathering rate. Bulk transport models, including lumped parameter 138 

models, have been developed to analyze the distribution of residence times making up a mean 139 

value on the basis of realistic transport conditions (Green et al., 2014; Haggerty and Gorelick, 140 

1995; Maloszewski and Zuber, 1996). Because these models simulate recharge conditions and 141 

transfer processes through time, they can integrate both atmospheric and lithologic tracers, 142 

providing a flexible framework for inferring transport and weathering information from 143 

multiple proxies of fundamental physical and chemical processes (Abbott et al., 2016; 144 

Marçais et al., 2015). Specifically, lumped parameter models overcome practical limitations 145 

in inferring weathering rates and determining residence times (e.g. determining the mixing 146 

that led to observed CFC concentrations), by explicitly accounting for vertical sample 147 

integration in wells and the diversity of flow paths contributing to that point (Maher and 148 

Druhan, 2014; Marçais et al., 2015) 149 
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2.2 Catchment description 150 

We assessed the suitability of DSi as a groundwater age tracer with data from five 151 

catchments. Four of the five study catchments (Figure 3) are located in Brittany, France, 152 

where the climate is oceanic and average precipitation ranges from 900 mm yr-1 in Plœmeur 153 

and Guidel catchments to 960 mm yr-1 in Pleine Fougères and Saint Brice catchments 154 

(Jiménez-Martínez et al., 2013; Thomas et al., 2016a; Touchard, 1999). Land use in all these 155 

catchments is dominated by agriculture (i.e. 70-90% of arable land used for row crops) and in 156 

one of them, the aquifer is intensively pumped for municipal water supply (Plœmeur, 157 

hereafter the pumped catchment; pumping rate = 110 m3 hr-1). The Pleine Fougères, Saint 158 

Brice and Guidel catchments are designated hereafter as agricultural catchments 1, 2, and 3, 159 

respectively. The fifth catchment is located in the Vosges Mountain (Strengbach, hereafter the 160 

mountainous catchment), in a forested region with elevation ranging from 880 to 1150 m, an 161 

oceanic mountainous climate, and average annual precipitation of 1400 mm yr-1 (Pierret et al., 162 

2014; Viville et al., 2012). Though all 5 catchments are underlain by crystalline bedrock 163 

(Figure 3), they differ in underlying lithology (granite or schist) and catchment size (from 0.8 164 

to 35 km2; Table 1). They all have slightly acidic groundwater with pH between 5 and 7 165 

(Table 1). Groundwater temperature is more variable among the catchments, ranging from 166 

8°C in the high-elevation mountainous catchment to ~13°C in the lowland Brittany 167 

catchments. The pumped catchment displays the strongest spatial variability of groundwater 168 

temperature, varying between 12 and 17°C due to the pumping activity (Table 1). Detailed 169 

site information is provided in the supplementary information and the references are listed in 170 

Table 1. 171 
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 172 

Figure 3: Site locations on the geological map of Brittany (center-left) with detailed site maps of lithology 173 

and well location for (a) Pleine Fougères, (b) Saint Brice (c) Guidel, and (e) Plœmeur, which is a pumping 174 

site for drinking water supply. (d) Strengbach is a headwater located in the Vosges Mountains (east part of 175 

France). Adapted from the Bureau de Recherches Géologiques et Minières (BRGM) data. 176 

2.3 Geochemical data 177 

For each catchment, we analyzed CFC-12, CFC-11, CFC-113, and DSi concentrations 178 

determined during field campaigns between 2001 and 2015. We only used sampling dates 179 

where DSi and at least one CFC were simultaneously measured. Because the sampling of DSi 180 

and CFCs is relatively straightforward (a filtered and acidified water sample for DSi and 181 

water collected in a stainless-steel vial for CFCs), there were multiple, spatially-distributed 182 

replicates for each catchment corresponding to different sampling wells or sampling 183 

campaigns (i.e. 32 replicates on average for each catchment, see Table 1). DSi was quantified 184 
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as H4SiO4 (mg L-1), from 0.2µm filtered and acidified samples by inductively coupled plasma 185 

mass spectrometry (ICP-MS) at the Geoscience Rennes laboratory, with an uncertainty of 186 

±2% (Bouhnik-Le Coz et al., 2001; Roques et al., 2014b). CFC concentrations were measured 187 

by purge and trap gas chromatography at the CONDATE EAU laboratory, at the OSUR in the 188 

University of Rennes 1 (France), with a precision of ±4% for high concentrations and ±20% 189 

for samples near the quantification limit (0.1 pmol L-1; Labasque et al. (2014); Labasque et al. 190 

(2006)). Dissolved concentrations were converted to atmospheric partial pressures (pptv) with 191 

Henry’s law, considering gas solubility and excess air effects (Busenberg and Plummer, 192 

1992). Samples showing obvious contamination with CFCs were excluded from the analysis 193 

(7% of samples were above the maximum atmospheric concentration of CFC). 194 

Contamination, which occurred primarily at the pumped catchment, was likely due to 195 

manufacturing or maintenance activities in the nearby military airport.  196 
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Catchment ID Catchment 
Name 

Area 
(km2) Lithology Number 

of Wells 

Number of 
data 

(number of 
data used) 

Percen-
tage of 
polluted 

data 

pH 

Water 
Temper
ature 
(°C) 

Unsaturate
d Zone 

Thickness 
(m) 

Supplementary 
Information References 

Agricultural 
catchment 1 

Pleine 
Fougères 35 

Granite (50%) 
and Schist 

(50%) 
18 21(20) 0% 5.2-7.2 11-14 - Moderate 

agricultural inputs (Kolbe et al., 2016) 

Agricultural 
catchment 2 Saint Brice 1 Mainly Schist 11 48(45) 6% 5.3-7.1 12-14.6 2.2-5.1-9.4 Moderate 

agricultural inputs (Roques et al., 2014b) 

Agricultural 
catchment 3 Guidel 2.9 Schist 10 18(18) 0% - 14-14.7 0.5-5.3-18 

1 km from the sea - 
Moderate 

agricultural inputs 

(Bochet, 2017; Bochet 
et al., under revision) 

Pumped 
catchment Plœmeur 2.5 Granite and 

Schist 16 65(58) 11% 5.4-6.5 12-17.3 7-12-30 Pumping site (Le Borgne et al., 2006; 
Leray et al., 2012) 

Mountainous 
catchment Strengbach 0.8 Granite 11 17(17) 0% 5.6-7 7.6-9.3 0-2.5-6 

Mountainous 
headwater (Vosges) 

(Chabaux et al., 2017; 
Viville et al., 2012) 

Table 1: Characteristics of the study sites. The sites display contrast in size, lithology, and geochemical conditions especially regarding water temperature. For the 197 

unsaturated zone thickness, the minimum, average and maximum thickness of the unsaturated zone (m) are reported.  198 
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3 Modelling residence times and silicate weathering rates 199 

To test our regional uniformity hypothesis, we simultaneously inferred residence times 200 

and silicate weathering rates for all five catchments, using data from the spatially distributed 201 

replicates within each catchment to derive representative weathering rates. We developed a 202 

standardized methodology requiring minimal a priori information to calibrate the lumped 203 

parameter models for the determination of RTDs. CFCs and DSi concentrations were jointly 204 

used to calibrate the lumped parameter models for each replicate (i.e. well), while weathering 205 

rates were optimized for each catchment to minimize the overall mismatch between modeled 206 

and measured concentrations. Following this procedure, silicate weathering rates were derived 207 

from DSi concentrations calibrated with CFC concentrations, which showed broad variability 208 

in mean residence time among sites. 209 

Because CFC concentrations depend primarily on the date of groundwater recharge, 210 

while DSi concentration depends on water-rock interactions, these two tracers potentially 211 

contain complementary information about RTDs. In the following sections, we present the 212 

assumptions about weathering and types of RTDs, and then detail the calibration strategy 213 

aiming at determining weathering at the scale of the catchment and RTD properties for each 214 

well. 215 

3.1 Weathering assumptions 216 

Chemical weathering of silicate minerals is the net result of the dissolution of primary 217 

silicate minerals minus the precipitation of secondary mineral formation (Anderson and 218 

Anderson, 2010). To model the effect of residence times on overall observed DSi 219 

concentrations, we considered that precipitation and dissolution rate constants lead to a net 220 

weathering rate �D [mg L-1 yr-1], which corresponds to the enrichment rate of groundwater in 221 

DSi. 222 
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At the intermediate scale (10s to 100s of meters), this net weathering rate encounters a 223 

rapid transition from surface-limited to transport-limited weathering. During this transition, 224 

weathering rates may differ in the unsaturated zone as minerals differ from the deeper 225 

unaltered zone and water contains lower DSi concentrations, which together favor surface 226 

reaction-limited processes. While we did not estimate unsaturated zones weathering rates, we 227 

did account for differences in DSi concentration at the water table (see next paragraph). Time-228 

based observations in crystalline formations show that weathering rates do not depend on 229 

residence times for groundwater older than few months to decades, due to transport and 230 

thermodynamic controls, which sustain the weathering (Ackerer et al., 2018; Maher, 2010; 231 

White and Brantley, 2003). Given that the shallow crystalline aquifers investigated in this 232 

study have CFC apparent ages greater than 25 years (Ayraud, 2005; Ayraud et al., 2008; 233 

Kolbe et al., 2016; Leray et al., 2012; Roques et al., 2014a), we assumed that �D stays 234 

constant i.e. that the net weathering follows a zero-order kinetic reaction.  235 

The DSi concentration from the dissolution of silicates in the unsaturated zone is 236 

assumed to lead to an initial DSi concentration 0
SiC , which does not depend on the 237 

groundwater residence time t (i.e. the amount of time water spends in the unsaturated zone 238 

may be unrelated to the subsequent residence time in the aquifer). t only represents the 239 

residence time in the aquifer because it is inferred from CFC concentrations, which 240 

equilibrate at the water table (Figure 2a). Therefore, assuming a constant weathering rate �D 241 

and an initial DSi concentration 0
SiC  reached at the water table results in a linear expression of 242 

the DSi concentration as a function of the residence timet  [yr]:  243 
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where maxt  is the time at which groundwater becomes saturated in DSi (i.e. precipitation or 244 

removal equals dissolution). Indeed, at larger scale, mineral equilibrium can be reached. 245 

However, recent hydrogeochemical modeling of weathering in the mountainous catchment 246 

showed that silica equilibrium is not reached until kilometers of transport, much farther than 247 

typical flow distance between recharge areas  and sampling wells or surface water features 248 

(Ackerer et al., 2018; Kolbe et al., 2016; Lucas et al., 2017). Additionally, for many 249 

catchments there is a negligible contribution of groundwater with residence times longer than 250 

100 years (age at which the groundwater is likely to encounter DSi saturation) as shown by 251 

the presence of CFCs in the groundwater of these catchments. Therefore,prod
SiC  only depends 252 

on residence time t , weathering rate �D and initial DSi concentration 0SiC  at the water table. 253 

3.2 Modeling groundwater mixing 254 

Multiple geological, topographical, and hydraulic factors influence RTDs. Distributed 255 

groundwater flow and transport models were previously developed for the agricultural 256 

catchment 1 and the pumped catchment, showing that the general shape of the RTDs can be 257 

well approximated by an inverse Gaussian function in most cases (Kolbe et al., 2016; Marçais 258 

et al., 2015). Inverse Gaussian distributions have proved especially efficient for providing 259 

accurate predictions of distribution quantiles and integrated renewal times within the time 260 

range where information can theoretically be extracted from CFC tracers (i.e. 0-70 years, 261 

Figure 1). Previous studied sites have also shown that the choice of the lumped parameter 262 

model is not critical as long as it has two parameters and is unimodal (Eberts et al., 2012; 263 

Kolbe et al., 2016; Marçais et al., 2015). Inverse Gaussian distributions have the additional 264 
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advantage of being physically grounded as they are the solution of the 1D advection 265 

dispersion equation:  266 
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where t  is the residence time, �P is mean time and �V is the standard deviation. The two 267 

degrees of freedom of an inverse Gaussian distribution are sufficient to adapt to most 268 

observed hydraulic conditions found in upland sites, which show narrow distributions similar 269 

to Dirac distributions, and in lowland sites near the surface flow outlet, which express more 270 

exponential shapes (Haitjema, 1995). We therefore used inverse Gaussian distributions for all 271 

catchments, though a different lumped parameter model’s choice could be easily implemented 272 

if  hydraulic conditions required it (Leray et al., 2016). 273 

Inferring RTDs with an inverse Gaussian LPM requires determining two parameters: 274 

the mean residence time �P and the standard deviation �V of the distribution. For a given 275 

Inverse Gaussian RTD ),( �V�Pf , the concentrations in CFCs can be modeled as: 276 
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where u  is the residence time, st  is the sampling date, uts ��  is the recharge date (when the 277 

water reaches the water table) andCFCC  is the corresponding CFC atmospheric time series 278 

(Figure 1). Integrating over all the potential residence times, the product of the RTD ),( �V�Pf279 
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with the CFC concentration present at the water table at uts �� gives the modeled CFC 280 

concentration. Similarly, the modeled concentration in DSi can be expressed as: 281 

duufuCCCC Si
prod
SiSiSi )(),,(),,,( ),(

0

0

0mod
�V�P�D�V�P�D �˜� �³

���f

, (4) 

where prod
SiC is the DSi concentration produced during the residence time u  via weathering 282 

(equation (1)). Equations (3) and (4) give the modeled concentrations of CFCs and DSi, 283 

which depend on the LPM parameters ),( �V�P , and on the catchment-based weathering 284 

parameters ),( 0
SiC�D , related to site characteristics. 285 

3.3 Calibration strategy: inferring conjointly R TDs and silicate weathering rates 286 

With N  wells on a given catchment and N  concentrations of CFCs and DSi287 

Nk
mes
Si

mes
113CFC

mes
11CFC

mes
12CFC kkkk

CCCC �d�d������ 1),,,( , the calibration strategy consisted in optimizing 288 

together (i.e. for the N datasets) the weathering rate �D, the initial concentration of DSi 0
SiC , 289 

and the best inverse Gaussian LPMs Nkkk �d�d1),( �V�P  for each of the N  wells. We defined the 290 

following objective function to optimize the calibration: 291 
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where C
~

 are the standardized and centered values of C . In equation (5), the minimum 292 

conveys that we only retain the two most coherent CFC concentrations with their respective 293 

modeled counterparts out of the three CFC concentrations available (Jurgens et al., 2012).  294 

Because of some non-convexity of the objective function �) , we use a two-step 295 

optimization method with an initial calibration of ),( 0
SiC�D with the simulated annealing 296 

Monte-Carlo method in MATLAB (Ingber, 2000), and a second gradient-based Levenberg-297 

Marquardt optimization to complete the reduction of the set of parameters. Using this 298 

methodology, weathering rates were compared among the catchments to test for regional 299 

differences in weathering rate. 300 

4 Results 301 

We first report observed CFC and DSi concentrations for the different catchments and 302 

then use the methodology presented in section 3 to derive the catchment-level weathering 303 

rates and individual well RTDs. 304 
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4.1 Observed CFC and DSi concentrations 305 

The relationship between CFCs and DSi was generally negative, though the strength of 306 

the relationship and range of values varied by catchment (see Figure 4). Given the theoretical 307 

relationship between CFCs and DSi, Figure 5 shows the concentrations of CFC-12 and DSi 308 

that can be reached with Inverse Gaussian RTDs, whatever their mean and standard 309 

deviations in the range of 0-100 years for the two silicate weathering rates, i.e. 310 

)L mg 4,yrLmg 0.25( 10-1-1 -
SiC � � �D  and )L mg 8,yrLmg 0.5( 10-1-1 -

SiC � � �D . Each point 311 

represents an Inverse Gaussian RTD with specific parameters. Sampling well data of the 312 

agricultural catchment 1 are shown as green triangles on the same plot for illustrative 313 

purposes and the best RTD associated for each well sampled is represented among the 314 

different Inverse Gaussian RTD by orange circles. The lower weathering scenario 315 

)L mg 4,yrLmg 0.25( 10-1-1 -
SiC � � �D explained much of the variability observed in the CFC-12 316 

and DSi concentrations, suggesting that it is closer to the in situ rate. The difference between 317 

the two envelopes underlines the high sensitivity of the weathering model and gives some 318 

preliminary illustration of the capacity of extracting meaningful weathering properties. 319 
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 320 

Figure 4: CFC-12 vs DSi concentrations obtained for each of the field sites.  321 

4.2 Catchment-based optimal weathering rates 322 

We applied the same optimization method for each of the 5 catchments. �U (the average 323 

model error) varied significantly among catchments, with relatively small values (below 0.25) 324 

for most of the catchments, but higher values for the pumped catchment 64.1( � �U ; Table 2). 325 

Optimal weathering rates were relatively similar among catchments, especially for the 326 

agricultural catchments, which ranged from 0.20 to 0.23 mg L-1yr-1 (CV = 7%), demonstrating 327 

regional consistency among different rock types. The weathering rate was significantly slower 328 

(0.12 mg L yr-1) in the mountainous catchment and significantly faster in the pumped 329 

catchment (0.31 mg L yr-1). 330 
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 331 

Figure 5: Calibration methodology. For each dataset representative of one site (Field data), the equation of 332 

weathering (1) is optimized by minimizing the sum of the square errors between the well data and their best 333 

matching Inverse Gaussian RTD in the RTD model ensemble. Two models ensemble are represented: the 334 

blue one with ),( 0
SiC�D = (0.25 mg L-1 yr-1, 4 mg L-1) and the yellow one with ),( 0

SiC�D = (0.5 mg L-1 yr-1, 335 

8 mg L-1). Notice how 0
SiC  controls the horizontal position of the RTDs models in the (CFC, DSi) plot, 336 

especially for the young fraction of the RTDs (high CFC-12, low DSi) while �Dcontrols the overall DSi 337 

spreading of the models ensemble, especially for the old fraction of the RTDs (low CFC-12, high DSi). 338 

Optimal initial DSi concentrations )( 0
SiC displayed some variability with a coefficient of 339 

variation of 19% among catchments. On the extremes, the mountainous catchment showed an 340 

initial DSi of 2.9 mg L-1 while the pumped catchment had an initial concentration of 341 

5.0 mg L- 1, likely due to differences in weathering in the unsaturated zone.  342 

Catchment �U[-] �D [mg L-1 yr-1] 0
SiC  [mg L-1] mean ( �P) [yr] mean (�V) [yr] 

Agricultural catchment 1 0.12 0.20 4.0 52 39 
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Agricultural catchment 2 0.26 0.22 3.8 60 32 

Agricultural catchment 3 0.23 0.23 4.3 52 49 

Pumped catchment 1.64 0.31 5.0 40 53 

Mountainous catchment 0.19 0.12 2.9 30 59 

Table 2: Results obtained from the calibration. �Uis the residual (see equation (1)). �Dis the weathering 343 

rate in mg L-1 yr-1, 0
SiC , the initial DSi concentration in mg L-1. The two last columns present some 344 

statistics about the parameters of the inverse Gaussian distributions optimized for each well: the average of 345 

the mean residence time �P in years and the average of the standard deviation �V in years of the residence 346 

time distributions for each catchment. 347 

4.3 Models of RTDs 348 

The largest differences between well- level RTDs occurred in the agricultural catchment 349 

2 (Figure 6). The wells intersecting deep productive fractures had high DSi concentration and 350 

low CFC concentrations (Figure 4) and displayed broad RTDs between 40 and 100 years 351 

(Table 2 and yellow and purple curves in Figure 6). The low CFC concentrations 352 

corresponded with the modeled RTDs, which indicated limited modern water (less than 15 to 353 

20 years’ old). High DSi concentration requires much longer timescales and can be modeled 354 

as well by the contribution of residence times above 40 years. The water residence time 355 

distributions of the shallow wells (blue and red curves of Figure 6) showed significantly 356 

younger water due to the lack of the old water contributions coming from deeper fractures 357 

(Figure 6).  358 
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 359 

Figure 6: Illustration of the calibrated Inverse Gaussian RTD obtained on the agricultural catchment 2 360 

(Saint Brice). The wells lying in the shallowest part of the aquifers have small residence times and 361 

exponential shapes. The wells lying in the deepest part of the aquifer display some skewed distributions. 362 

To get an idea of the type of RTDs obtained for the other catchments, we also compared 363 

some statistics of the RTDs between sites, obtained with the optimization reported in Table 2. 364 

All catchments have RTDs with mean residence times, which range on average between 30 365 

years for the mountainous catchment and 60 years for the agricultural catchment 2. 366 

4.4 Relations between DSi and mean residence times 367 

A byproduct of the calibration of the inverse Gaussian lumped parameter model for the 368 

DSi and CFC concentrations was the relation between the modeled mean residence times and 369 

the observed DSi concentrations here shown for the three agricultural catchments located in 370 

Brittany (Figure 7). For each catchment, the relation appeared to be linear, reinforcing the 371 

consistency between the observed and modeled concentrations, and providing support for the 372 

assumptions of the modeling approach. More specifically, the direct proportionality of the 373 

DSi concentration to the mean residence time validated weathering assumptions modeled by a 374 
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zero-order kinetic reaction (equation (1)). The linear relations were also similar among 375 

catchments with coefficients of variation of respectively 7% and 6%, for the different 376 

weathering rates and the initial DSi concentration of the agricultural catchments.  377 

 378 

Figure 7: Measured DSi concentration versus the optimized mean residence time of the inverse Gaussian 379 

lumped distribution for three of the Brittany sites. Straight lines represent the optimized weathering law for 380 

each of the sites. Note that it fits the measurements. Considering a constant weathering rate allows direct 381 

interpretation of DSi apparent ages into mean residence times. 382 

We compared these modeled mean residence times obtained with the CFC and DSi 383 

concentrations with the mean residence times calibrated only with the CFC concentrations 384 

(Figure 8). These CFC-only mean residence times were obtained using equation (1) without 385 

considering DSi concentrations. For each of the wells in the different catchments, the mean 386 

residence times obtained were quite consistent, especially for mean residence times ranging 387 

between 0 and 50 years. For such a time range, a linear regression gives �ä�½�Ì�Ü�?�¼�¿�¼�æ=388 

1.03 �ä�¼�¿�¼�æ with a R2 of 0.36. 389 
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 390 

Figure 8: Comparison between the mean residence time obtained with CFCs and DSi concentrations with 391 

those obtained only with the CFC concentrations. 392 

5 Discussion 393 

While DSi has been used as a site-specific indicator of groundwater residence time 394 

(Burns et al., 2003; Kenoyer and Bowser, 1992; Morgenstern et al., 2010; Peters et al., 2014), 395 

it was unknown how consistent silica weathering rates were, and consequently if DSi could be 396 

a useful tracer at regional scales. In this study, we evaluated the use of DSi for groundwater 397 

dating at four catchments in Brittany and one catchment in the Vosges Mountains. The data 398 

and our simulations supported the hypothesis that silica weathering can be described by a 399 

zero-order kinetic reaction at the catchment scale, and we calibrated silicate weathering laws 400 

using CFC atmospheric tracers. We found that DSi provided complementary information to 401 

CFC atmospheric tracers on RTDs. The relative stability of weathering rates among the 402 

Brittany agricultural catchments validates the use of DSi as a regional groundwater age proxy. 403 

We discuss below how these weathering rates may be modified by climatic context (from the 404 

oceanic conditions of Brittany to the mountainous climate of the Vosges) and by external 405 
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factors, e.g. groundwater abstraction. Finally, we discuss the use of DSi for evaluating 406 

residence times in unsaturated zones and compare these optimized silicate weathering rates to 407 

weathering rates estimated in previous studies. 408 

5.1 Practical use of DSi as a proxy of groundwater residence time 409 

DSi concentration appears to be a highly complementary tracer to atmospheric tracers 410 

such as CFCs. For example, at the agricultural catchment 2 (Figure 6), the comparison of 411 

wells of different depths (shallow wells for P3 and T7, and deeper wells for MFT 20 and 412 

MFT80) revealed that DSi concentration can infer the RTD even when CFCs are not 413 

discriminating because they are below their detection limit for older ages (> 70 years) or 414 

during the flat portion of their atmospheric trend (i.e. the last 0-20 years). These time ranges 415 

where CFCs are less informative are further exacerbated by the widening of the concentration 416 

area reachable by the inverse Gaussian function towards lower and higher CFC-12 417 

concentration (Figure 5). For such CFC range (for example, for CFC-12 between 450 and 418 

550 pptv and between 0 and 50 pptv), DSi is particularly useful to better characterize RTD. 419 

The comparison between the modeled mean residence times and those calibrated only with 420 

CFCs (Figure 8) also displayed an increased consistency for the time range between 0 and 50 421 

years. For mean residence times above 50 years, DSi appears to give complementary 422 

information to mean residence times from CFCs as depicted by the increased variability of 423 

mean residence times around the identity line  �U= �T.   424 

The bulk linear relation for weathering rate (equation (1)) is also of interest for dating 425 

purposes as DSi concentrations can be seen as a direct proxy of the mean residence time 426 

(Figure 7), which is not the case for other tracers such as CFCs (Figure 1) (Leray et al., 2012; 427 

Marçais et al., 2015; Suckow, 2014). While this result has been obtained with a specific 428 

Lumped Parameter Model (inverse Gaussian), it is generally applicable for a broad range of 429 
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distributions as it relies on the zero-order weathering assumption that leads to a linear 430 

dependence of the DSi concentration on residence times (equation (1)).  431 

Even if the small residuals obtained in Table 2 indicate that the inverse Gaussian model 432 

may be appropriate for RTDs, other types of distributions, like the Gamma distribution, can 433 

be tested to assess the sensitivity of the LPM choice to the RTD-related prediction. For the 434 

agricultural catchment 1 and the pumped catchment, shapes of the Inverse Gaussian LPM as 435 

well as the statistics obtained regarding the optimized RTDs (Table 2) are consistent with 436 

results obtained synthetically from calibrated 3D flow and transport models developed for 437 

these aquifers (Kolbe et al., 2016; Leray et al., 2012). 438 

The 5 to 100 years’ time range of the RTDs observed here is the most favorable case for 439 

using DSi for groundwater dating since it leads to thermodynamic-limitation conditions which 440 

sustains chemical weathering (Maher, 2010). Even though weathering rates �D might be quite 441 

variable between different crystalline rock types, the fluid-rock contact time controls the 442 

evolution of DSi concentrations for residence times ranging from years to decades (5-100 443 

years) where dissolution is the dominant process. On the contrary, attainment of the mineral 444 

equilibrium restricts the use of DSi for estimating longer residence times (>300 years) when 445 

dissolution is balanced by re-precipitation (Edmunds and Smedley, 2000). 446 

5.2 Stability of silica weathering rates at the regional scale 447 

5.2.1 DSi as a robust regional groundwater age proxy 448 

Our results indicate that DSi can be used as groundwater age tracing tool in relatively 449 

diverse geologic contexts, as indicated by the consistency of the weathering rates for the 450 

different Brittany catchments (Figure 7). This homogeneity suggests that only a few mineral 451 

phases are responsible for silica production in the studied residence-time range; typically 452 

phyllosilicates, plagioclase, and accessory minerals such as apatite are the major sources of 453 
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silica (Aubert et al., 2001). Applying a uniform weathering rate (0.22 mg L-1 yr-1) and initial 454 

DSi concentration (4.0 mg L-1) can provide a first order estimate of mean residence time, as 455 

displayed by the blue curve presented in Figure 9 compared to the weathering rates of each of 456 

the Brittany catchments displayed in Figure 7. The relatively small error associated with 457 

catchment specific differences justifies the possible use of DSi as a regional groundwater 458 

dating tracer, as long as a weathering law can be applied based on similar catchments or land 459 

lithologies. If more complete modeling is available, the choice between weathering laws can 460 

be bypassed by directly solving the mass balance of the geochemical water content (Burns et 461 

al., 2003). 462 

 463 

Figure 9: DSi concentrations versus the optimized mean residence time of the inverse Gaussian displayed 464 

for each wells for the mountainous and the pumped catchment. Straight lines represent the optimized 465 

weathering law for each of the sites. Note that it fits the measurements. Considering a constant weathering 466 

rate enables to indistinctly consider Si apparent ages and mean residence times. 467 

Silicates are ubiquitous in most geological matrices, including crystalline and 468 

sedimentary rocks (Iler, 1979). There is some evidence for using DSi as a groundwater age 469 
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proxy in other rock types (e.g. sedimentary rocks coming from glacial deposits, see section 470 

5.4) (Becker, 2013; Kenoyer and Bowser, 1992). DSi concentration is widely measured and 471 

accessible through public observatories and databases (Abbott et al., 2018; De Dreuzy et al., 472 

2006; Thomas et al., 2016b). While previous studies have shown dependency of weathering 473 

rates on lithology and climate (White and Blum, 1995; White et al., 1999; White et al., 2001), 474 

DSi might be considered a “contextual tracer” , allowing at least local and potentially regional 475 

groundwater dating (Beyer et al., 2016). 476 

A major advantage of DSi is that it persists in open surface waters (e.g. lakes and 477 

streams), whereas other tracers of intermediate transit times such as 3H/He and CFCs quickly 478 

equilibrate with the atmosphere. Additionally, because artificial sources are few and 479 

background concentration is usually high, DSi is robust to contamination, unlike CFCs, which 480 

cannot be in contact with the atmosphere during sampling nor with any plastic surfaces 481 

(Labasque et al., 2014). However, uptake of DSi by some vegetation and diatoms could 482 

potentially limit the use of DSi in some environments especially during the growing season 483 

(beginning of summer) (Delvaux et al., 2013; Pfister et al., 2017). This uptake is more likely 484 

in large rivers systems where DSi spend enough time to be effectively captured by diatoms 485 

whereas it is less prone to occur in headwaters systems with much smaller stream residence 486 

times (Hughes et al., 2013). To track this potential additional process into account, diatom 487 

uptake could be modeled (Thamatrakoln and Hildebrand, 2008) and/or isotopic DSi ratios 488 

could be investigated to link in stream DSi concentration to mean transit time (Delvaux et al., 489 

2013). 490 

5.2.2 Comparison between the agricultural catchments and the mountainous catchment 491 

Weathering rates were relatively constant within a given regional geological and climatic 492 

context (e.g. for the three catchments in Brittany), but they were significantly different from 493 
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the mountainous catchment (Vosges Mountains). Differences in lithology could control 494 

overall weathering rates, but this was not supported by the observed homogeneity of the 495 

weathering rate across different lithologies (section 5.2.1). Acidity could not either explain 496 

this variability, as pH was comparable for all the catchments (Table 1). The lower rates in the 497 

mountainous catchment may be due to a difference in climatic conditions (i.e. temperature 498 

and rainfall) between Brittany and the Vosges Mountain (Table 1). The ~3 factor difference 499 

between DSi in the Vosges and Brittany could be explained by the combined effect of the 500 

groundwater temperature difference (~6°C) and precipitation difference (~1.5-fold). Indeed, 501 

temperature affects weathering rates by one order of magnitude from 0 to 25°C (White and 502 

Blum, 1995; White et al., 1999). This increase is further emphasized by increasing recharge 503 

fluxes, which is related to rainfall conditions. Another effect which could explain the 504 

difference for the mountainous catchment is lack of anthropogenic pressure related to 505 

agriculture. Brittany is a region of intensive agriculture characterized by high nitrogen loads, 506 

which induce soil acidification. High weathering rates have been observed related to fertilized 507 

additions (Aquilina et al., 2012a) which may also partially explain the Vosges-Brittany 508 

difference. Anyway, climatic and anthropogenic influences are not exclusive and may be 509 

combined to explain the high weathering rate difference. 510 

5.2.3 Effect of groundwater abstraction on the weathering rate 511 

The weathering law for heavily-pumped catchment in Plœmeur (orange line, Figure 9) 512 

displayed a substantially higher weathering rate (0.31 mg L-1 yr-1) compared to the average 513 

Brittany weathering rate (0.22 mg L-1 yr-1). This might be due to the presence of CFC 514 

contamination leading to artificially enriched CFC concentrations compared to their actual 515 

residence times. The pumped catchment is indeed especially vulnerable to CFC 516 

contaminations (Table 1). However, long-term monitoring of CFC and SF6 and 3H/3He 517 

measurements in this site makes the contamination hypothesis unlikely (Tarits et al., 2006). 518 
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The difference is more likely explained by the facts that: i) high and long-term pumping has 519 

mobilized older waters (>100 years), which increase DSi concentrations without substantially 520 

altering CFC concentrations (only dilution effect) (Figure 4); ii)  pumping leads to a renewal 521 

of groundwater flow paths with more reactive surfaces, leading to an increase of the reactive 522 

surface/groundwater ratio. 523 

5.3 Use of DSi for inferring residence times in the unsaturated zone 524 

We hypothesized that the differences in initial DSi concentration are due to residence 525 

time in the unsaturated zone, suggesting that DSi concentration at the groundwater table 526 

surface (or modeled intercepts) could be used to infer residence times in the unsaturated zone. 527 

Indeed the variability in 0
SiC  observed in Table 2 is correlated with the average unsaturated 528 

zone thickness (Table 1), a major, though not exclusive, control on the time spent in the 529 

unsaturated zone (Figure 10). The high 0
SiC  for the pumped catchment (5.0 mg L-1) could be 530 

due to pumping-induced drawdown of the water table, which significantly increases the 531 

unsaturated zone thickness. Likewise, the mountainous catchment has a much shallower water 532 

table depth, which might be related to the low initial DSi concentration (2.9 mg L-1). DSi 533 

could therefore be a tracer of the full residence time in both unsaturated and saturated zones. 534 

Yet, unless weathering rates in the unsaturated zone can be constrained, DSi estimates would 535 

remain qualitative. Through tracing experiments, Legout et al. (2007) estimated the residence 536 

time in the mobile-compartment of the unsaturated zone of the Kerrien catchment (South 537 

Brittany) as 2-3 m y-1, which induces weathering rates about 4 times higher than in the 538 

saturated zone. However, the ratio mobile/immobile water is unknown but may represent a 539 

large fraction of groundwater with long residence-time that may contribute to high DSi. 540 

Because the unsaturated zone, including the base of the soil profile, is often the site of 541 

elevated rates of biogeochemical activity (e.g. nitrogen retention and removal) (Legout et al., 542 



DSi as a groundwater dating proxy   13 April 2018 

31 

 

2005) or storage, constraining the residence time of water and solutes in this zone would 543 

allow better estimation of catchment and regional-scale resilience to nutrient loading and 544 

overall ecological functioning (Abbott et al., 2016; Meter et al., 2016; Pinay et al., 2015). 545 

 546 

Figure 10: Initial DSi concentrations versus the average unsaturated zone thickness. The average 547 

unsaturated zone thickness of the agricultural catchment 1 was not available.  548 

5.4 Comparison of weathering rates to previously estimated weathering rates 549 

We compared the weathering rates obtained in this study with previously published 550 

studies (Table 3). The catchments considered in these studies have crystalline or sedimentary 551 

bedrocks derived from the erosion of crystalline formations. Apparent weathering rates have 552 

been estimated by different methods, either by implementing the geochemical evolution of 553 

groundwater through advanced reactive transport modeling  (Burns et al., 2003; Rademacher 554 

et al., 2001) or by directly comparing DSi concentrations with apparent ages derived from 555 

atmospheric tracer data (Bohlke and Denver, 1995; Clune and Denver, 2012; Denver et al., 556 

2010). Our methodology is intermediary as it combines lumped residence time distributions 557 

with apparent weathering rates and inlet concentrations (atmospheric chronicles for CFCs and 558 

initial concentration 0
SiC  for DSi). 559 
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Except for the data reported in Kenoyer and Bowser (1992), which consists of young 560 

groundwater (0-4 yrs), all DSi weathering rates referred in Table 3 are within one order of 561 

magnitude (0.1 to 1 mg L-1 yr-1). For catchments with apparent ages between 10 and 50 years, 562 

weathering rates are clustered between 0.2 and 0.4 mg L-1 yr-1 (Figure 11), which is consistent 563 

with weathering rates estimated in this study. 564 

The initial decrease of weathering rates with the typical apparent ages might suggest a 565 

power law dependence of weathering rates on groundwater age (Figure 11). However, for 566 

older apparent ages, the weathering rates might also stabilize around 20 years (Figure 11, 567 

insert) suggesting a transition from transport-limited to thermodynamically-limited conditions 568 

consistent with what has been observed for feldspar minerals (Maher, 2010) with a slightly 569 

older transition time (20 years here instead of 10 years). It will require more studies on this 570 

residence time range (0-100 yrs) to decide between these two competing hypotheses (power 571 

law dependence versus stabilization) and precisely locate the transition time (Ackerer et al., 572 

2018). This could be investigated by systematically combining weathering studies with 573 

groundwater age tracer analysis in a diversity of environmental observatories. If predictable 574 

rates are not found, the use of a constant weathering rate (equation (1)) could be refined by 575 

considering a first order kinetic reaction, although it would require the inference of an 576 

additional parameter to describe weathering.  577 

 578 
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 579 

Figure 11: Silicate weathering rates �D��against the typical apparent age range Â from which they have been 580 

obtained, in this study and in previous studies (insert: log-log representation, p-value of 2 10-5 obtained for 581 

the fit). 582 
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 583 

Catchment �D [mg L-1 yr-1] Geological Context Apparent 
Age range Complementary information References 

Chesterville Branch 0.34 Permeable sand and gravel units of the fluvial Pensauken Formation and 
the marine glauconitic Aquia Formation. 5 – 40 yrs Part of Locust Grove Catchment (Bohlke and Denver, 1995) 

Morgan Creek Drainage 0.37 Permeable sand and gravel units of the fluvial Pensauken Formation and 
the marine glauconitic Aquia Formation. 4 – 50 yrs Part of Locust Grove Catchment (Bohlke and Denver, 1995) 

Panola Mountain 
Research Watershed 0.62 Panola Granite (granodiorite composition), a biotite–oligioclase– quartz–

microcline granite of Mississippian to Pennsylvanian age. 0 – 25 yrs Mainly Riparian Saprolite Aquifer (Burns et al., 2003) 

Bucks Branch 
Watershed 0.91 Sediments of the Beaverdam Formation. 15 – 30 yrs mainly fluvial and estuarine deposits of 

sand, gravel, silt, and clays (Clune and Denver, 2012) 

Fairmount catchment 0.26 Permeable quartz sand and gravel of the Beaverdam Formation and 
underlying sandy strata of the Bethany Formation. 5 – 35 yrs well-drained settings with relatively deep 

water tables and thick sandy aquifers (Denver et al., 2010) 

Locust Grove 
catchment 0.16 Permeable quartz sand and gravel of the Pennsauken Formation underlain 

by highly weathered glauconitic sands of the Aquia Formation. 5 – 50 yrs well-drained settings with relatively deep 
water tables and thick sandy aquifers (Denver et al., 2010) 

Lizzie Catchment 0.36 Several Pleistocene-age terrace deposits that are underlain by a confining 
unit on the top of the Yorktown Formation. 5 – 50 yrs predominantly poorly drained settings with 

shallow water tables (Denver et al., 2010) 

Willards Catchment 0.83 
The lowermost unit of the system is the Beaverdam Sand, which is 
overlain by a 3 to 8 m thick layer of clay, silt, peat, and sand of the Omar 
Formation. 

0 – 18 yrs predominantly poorly drained settings with 
shallow water tables (Denver et al., 2010) 

Polecat Creek 
Watershed 

1.0 Piedmont crystalline coastal plain sediments and alluvium. Presence of 
Saprolite. 

0 – 30 yrs Bedrock garnet-biotite gneiss (Lindsey et al., 2003) 

Crystal Lake, Vilas 
County (Wisconsin) 3.94 50 m of glacial sediment which overlies Precambrian bedrock. 0 – 4 yrs Glacial sediments were eroded from 

Precambrian bedrock lithologies (Kenoyer and Bowser, 1992) 

Sagehen Springs (CA). 0.17 – 1.11 Extensive glacial till deposits derived from a combination of andesite and 
granodiorite basement rocks. The granodiorite consists primarily of 
plagioclase (40%), quartz (30%), hornblende (20%), and biotite (10%), 
and the andesite consists primarily of plagioclase (45%) with varying 
amounts of hornblende (5–25%) and augite (1–25%) and a small amount 
of glassy groundmass. 

0 – 40 yrs Range of weathering rate determined for 
each spring, only for plagioclase mineral. (Rademacher et al., 2001) 

Sagehen Springs (CA). 0.06 - 0.35 0 – 40 yrs 
Range of weathering rate determined for 
each spring, only for hornblende mineral. (Rademacher et al., 2001) 

Lizzie Catchment 0.34 Several Pleistocene-age terrace deposits that are underlain by a confining 
unit on the top of the Yorktown Formation. 

5 – 50 yrs Unconfined aquifer. (Tesoriero et al., 2005) 

Table 3: Published weathering rates in different catchments obtained either directly or by fitting DSi concentrations against apparent ages. The typical age range 584 

gives the spread of the water age data obtained from the different sampled wells.585 
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6 Conclusion 586 

We investigated the relationship between DSi and groundwater age tracers (CFCs) in five 587 

different crystalline catchments, including lowland, mountainous, and actively pumped 588 

catchments. For each catchment, we quantified the weathering rate and the RTDs at multiple 589 

wells using inverse Gaussian lumped parameter models calibrated with geochemical data. 590 

Overall, the DSi was strongly related to the exposure time between rocks and recently 591 

recharged groundwater (i.e. between 5 to 100 years). We found that DSi was highly 592 

complementary to CFCs, allowing better quantification of RTDs, including in the unsaturated 593 

zone and for water masses younger and older than the now rapidly closing CFC use’s 594 

window. The consistency of DSi weathering rates in three Brittany catchments suggests that 595 

DSi may be a robust and cheap groundwater age proxy at regional scales for catchments with 596 

comparable geology and climate. We interpreted DSi accumulation differences in the Brittany 597 

pumped site and the mountainous region, as a consequence of temperature differences and 598 

alterations of flow from groundwater abstraction respectively. If the temperature sensitivity of 599 

weathering can be constrained, this tracer could allow widespread determination of water 600 

transit time at the catchment scale for the unsaturated zone, aquifer, and surface waters. 601 
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