L. E. Back and C. S. Bretherton, The relationship between wind speed and precipitation in the Pacific ITCZ, J. Climate, vol.18, pp.4317-4328, 2005.

D. Barahona, A. Molod, J. Bacmeister, A. Nenes, A. Gettelman et al., Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5), Geosci. Model Dev, vol.7, pp.1733-1766, 2014.

B. A. Baum, P. Yang, S. L. Nasiri, A. K. Heidinger, A. J. Heymsfield et al., Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm ?1, J. Appl. Meteorol. Clim, vol.46, pp.423-434, 2007.

D. Baumgardner, S. J. Abel, D. Axisa, R. Cotton, J. Crosier et al., Cloud ice properties: In situ measurement challenges. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr, vol.58, 2017.
DOI : 10.1175/amsmonographs-d-16-0011.1

URL : http://uhra.herts.ac.uk/bitstream/2299/18009/2/amsmonographs_ch9_in_situ_measurements.pdf

F. A. Bender, V. Ramanathan, and G. Tselioudis, Changes in extratropical storm track cloudiness 1983-2008: Observational support for a poleward shift, Clim. Dynam, vol.38, pp.2037-2053, 2012.
DOI : 10.1007/s00382-011-1065-6

S. Bony, B. Stevens, D. Coppin, T. Becker, K. A. Reed et al., Thermodynamic control of anvil cloud amount, P. Natl. Acad. Sci. USA, vol.113, pp.8927-8932, 2016.
DOI : 10.1073/pnas.1601472113

URL : https://www.pnas.org/content/pnas/113/32/8927.full.pdf

M. Ceccaldi, J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat et al., From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations, J. Geophys. Res.-Atmos, vol.118, pp.7962-7981, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00835305

P. Ceppi, D. L. Hartmann, and M. J. Webb, Mechanisms of the negative shortwave cloud feedback in middle to high latitudes, J. Climate, vol.29, pp.139-157, 2016.

F. L. Chang and Z. Li, A near global climatology of single-layer and overlapped clouds and their optical properties retrieved from TERRA/MODIS data using a new algorithm, J. Climate, vol.18, pp.4752-4771, 2005.

K. Chang, T. S. L'ecuyer, B. H. Kahn, and V. Natraj, Information content of visible and midinfrared radiances for retrieving tropical ice cloud properties, J. Geophys. Res.-Atmos, vol.122, pp.4944-4966, 2017.
DOI : 10.1002/2016jd026357

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2016JD026357

Y. Chen, T. Seiki, C. Kodama, M. Satoh, A. T. Noda et al., High cloud responses to global warming simulated by two different cloud microphysics schemes implemented in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), J. Climate, vol.29, pp.5949-5964, 2016.

N. Cressie, Relaxing assumptions in the one sample t-test, Australian, J. Stat, vol.22, pp.143-153, 1980.
DOI : 10.1111/j.1467-842x.1980.tb01161.x

J. Delanoë and R. J. Hogan, A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer, J. Geophys. Res, vol.113, 2008.

J. Delanoë and R. J. Hogan, Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res, vol.115, 2010.

J. Delanoë, A. J. Heymsfield, A. Protat, A. Bansemer, and R. J. Hogan, Normalized particle size distribution for remote sensing application, J. Geophys. Res.-Atmos, vol.119, pp.4204-4227, 2014.

M. Deng, G. G. Mace, Z. Wang, and R. P. Lawson, Evaluation of several A-train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign, J. Appl. Meteorol. Clim, vol.52, pp.1014-1030, 2013.

J. R. Dim, H. Murakami, T. Y. Nakajima, B. Nordell, A. K. Heidinger et al., The recent state of the climate: Driving components of cloud-type variability, J. Geophys. Res, vol.116, 2011.

T. Eidhammer, H. Morrison, D. Mitchell, A. Gettelman, and E. Erfani, Improvements in global climate model microphysics using a consistent representation of ice particle properties, J. Climate, vol.30, pp.609-629, 2017.

J. Fan, L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li et al., Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds, P. Natl. Acad. Sci. USA, vol.110, pp.4581-4590, 2013.
DOI : 10.1073/pnas.1316830110

URL : http://www.pnas.org/content/110/48/E4581.full.pdf

T. Fauchez, P. Dubuisson, C. Cornet, F. Szczap, A. Garnier et al., Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry, Atmos. Meas. Tech, vol.8, pp.633-647, 2015.
DOI : 10.5194/amt-8-633-2015

URL : https://hal.archives-ouvertes.fr/hal-01059422

E. Fetzer, B. Wilson, and G. Manipon, AIRS-AMSU variablesCloudSat cloud mask, radar reflectivities, and cloud classification matchups V3, Goddard Earth Sciences Data and Information Services Center (GES DISC, vol.2, 2013.

A. Garnier, J. Pelon, P. Dubuisson, P. Yang, M. Faivre et al., Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer, Part II: effective diameter and ice water path, J. Appl. Meteorol. Clim, vol.52, pp.2582-2599, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00846790

C. L. Gentemann, T. Meissner, and F. J. Wentz, Accuracy of Satellite Sea Surface Temperatures at 7 and 11 GHz, IEEE T. Geosci. Remote, vol.48, pp.1009-1018, 2010.

A. Gettelman, X. Liu, S. J. Ghan, H. Morrison, S. Park et al., Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model, J. Geophys. Res, vol.115, p.18216, 2010.

W. W. Grabowski, Untangling Microphysical Impacts on Deep Convection Applying a Novel Modeling Methodology, J. Atmos. Sci, vol.72, pp.2446-2464, 2015.

A. Heymsfield, D. Winker, M. Avery, M. Vaughan, G. Diskin et al., Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0 ? to ?86 ? C: Implications for Spaceborne Lidar Retrievals, J. Appl. Meteorol. Clim, vol.53, pp.479-505, 2014.

A. J. Heymsfield, C. Schmitt, and A. Bansemer, Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0 ? to ?86 ? C, J. Atmos. Sci, vol.70, pp.4123-4154, 2013.

K. A. Hilburn and F. J. Wentz, Intercalibrated Passive Microwave Rain Products from the Unified Microwave Ocean Retrieval Algorithm (UMORA), J. Appl. Meteorol. Clim, vol.47, pp.778-794, 2008.

Y. Hong and G. Liu, The characteristics of ice cloud properties derived from CloudSat and CALIPSO measurements, J. Climate, vol.28, pp.3880-3901, 2015.

H. Huang, P. Yang, H. Wei, B. A. Baum, Y. Hu et al., Inference of ice cloud properties from high spectral resolution infrared observations, IEEE T. Geosci. Remote, vol.42, pp.842-853, 2004.

F. W. Irion, B. H. Kahn, M. M. Schreier, E. J. Fetzer, E. Fishbein et al., Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS, Atmos. Meas. Tech, vol.11, pp.971-995, 2018.

J. H. Jiang, H. Su, C. Zhai, S. T. Massie, M. R. Schoeberl et al., Influence of convection and aerosol pollution on ice cloud particle effective radius, Atmos. Chem. Phys, vol.11, pp.457-463, 2011.

H. Jin and S. L. Nasiri, Evaluation of AIRS cloud-thermodynamic phase determination with CALIPSO, J. Appl. Meteorol. Clim, vol.53, pp.1012-1027, 2014.

B. H. Kahn, C. K. Liang, A. Eldering, A. Gettelman, Q. Yue et al., Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder, Atmos. Chem. Phys, vol.8, pp.1501-1518, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303179

B. H. Kahn, F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri et al., The Atmospheric Infrared Sounder version 6 cloud products, Atmos. Chem. Phys, vol.14, pp.399-426, 2014.

B. H. Kahn, M. M. Schreier, Q. Yue, E. J. Fetzer, F. W. Irion et al., Pixelscale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius, J. Geophys. Res.-Atmos, vol.120, pp.11669-11689, 2015.

B. H. Kahn, G. Matheou, Q. Yue, T. Fauchez, E. J. Fetzer et al., An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer, Atmos. Chem. Phys, vol.17, pp.9451-9468, 2017.

B. Kärcher, Cirrus clouds and their response to anthropogenic activities, Curr. Clim. Change Rep, vol.3, pp.45-57, 2017.

M. D. King, S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks, Spatial and temporal distributions of clouds observed by MODIS onboard the Terra and Aqua satellites, IEEE T. Geosci. Remote, vol.51, pp.3826-3852, 2013.

M. Krämer, C. Rolf, A. Luebke, A. Afchine, N. Spelten et al., A microphysics guide to cirrus clouds -Part 1: Cirrus types, Atmos. Chem. Phys, vol.16, pp.3463-3483, 2016.

P. Keckhut, F. Borchi, S. Bekki, A. Hauchecorne, and M. Silaouina, Cirrus classification at midlatitude from systematic lidar observations, J. Appl. Meteorol. Clim, vol.45, pp.249-258, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00083566

R. P. Lawson, E. Jensen, D. L. Mitchell, B. Baker, Q. Mo et al., Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA, J. Geophys. Res, vol.115, 2010.

D. Leroy, E. Fontaine, A. Schwarzenboeck, J. W. Strapp, A. Korolev et al., Ice crystal sizes in High Ice Water Content clouds. Part II: Statistics of mass diameter percentiles in tropical convection observed in the HAIC/HIWC project, J. Atmos. Ocean. Tech, vol.34, pp.117-136, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01980993

R. S. Lindzen, M. Chou, and A. U. Hou, Does the Earth have an adaptive infrared iris, B. Am. Meteorol. Soc, vol.82, pp.417-432, 2001.

B. H. Kahn, Ice cloud microphysical trends observed
URL : https://hal.archives-ouvertes.fr/insu-01756055

X. Liu, J. E. Penner, S. J. Ghan, W. , and M. , Inclusion of ice microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3), J. Climate, vol.20, pp.4526-4547, 2007.

Z. Luo, G. Y. Liu, and G. Stephens, L: CloudSat adding new insight into tropical penetrating convection, Geophys. Res. Lett, vol.35, p.19819, 2008.

G. G. Mace, Q. Zhang, M. Vaughan, R. Marchand, G. Stephens et al., A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data, J. Geophys. Res, vol.114, 2009.

A. Manaster, C. O'dell, and G. Elsaesser, Evaluation of Cloud Liquid Water Path Trends Using a Multidecadal Record of Passive Microwave Observations, J. Climate, vol.30, pp.5871-5884, 2017.

E. M. Manning and H. H. Aumann, Hyperspectral sounder performance for cold scenes, Proc. SPIE 10402, Earth Observing Systems XXII, 1040225, 2017.

K. Marvel, M. Zelinka, S. A. Klein, C. Bonfils, P. Caldwell et al., External influences on modeled and observed cloud trends, J. Climate, vol.28, pp.4820-4840, 2015.

T. Mauritsen and B. Stevens, Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models, Nat. Geosci, vol.8, pp.346-351, 2015.

G. M. Mcfarquhar and A. J. Heymsfield, The definition and significance of an effective radius for ice clouds

, J. Atmos. Sci, vol.55, pp.2039-2052, 1998.

P. Minnis, S. Sun-mack, D. F. Young, P. W. Heck, D. P. Garber et al., CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, vol.49, pp.4374-4400, 2011.

D. L. Mitchell, P. Rasch, D. Ivanova, G. Mcfarquhar, and T. Nousiainen, Impact of small ice crystal assumptions on ice sedimentation rates in cirrus clouds and GCM simulations, Geophys. Res. Lett, vol.35, 2008.

H. Morrison and W. W. Grabowski, Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment, Atmos. Chem. Phys, vol.11, pp.10503-10523, 2011.

S. L. Nasiri, V. T. Dang, B. H. Kahn, E. J. Fetzer, E. M. Manning et al., Comparing MODIS and AIRS infrared-based cloud retrievals, J. Appl. Meteorol. Clim, vol.50, pp.1057-1072, 2011.

J. R. Norris, R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O'dell et al., Evidence for climate change in the satellite cloud record, Nature, vol.536, pp.72-75, 2016.

T. S. Pagano, S. Broberg, H. H. Aumann, D. Elliott, E. Manning et al., Performance status of the Atmospheric Infrared Sounder ten years after launch, Proc. SPIE 8527, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications IV, 852703, 2012.

V. T. Phillips, L. J. Donner, and S. T. Garner, Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics, J. Atmos. Sci, vol.64, pp.738-761, 2007.

S. Platnick, K. G. Meyer, M. D. King, G. Wind, N. Amarasinghe et al., The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua, IEEE T. Geosci. Remote, vol.55, pp.502-525, 2017.

D. Posselt, T. S. L'ecuyer, and G. L. Stephens, Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm, J. Geophys. Res, vol.113, p.24206, 2008.

A. Protat, J. Delanoë, P. T. May, J. Haynes, C. Jakob et al., The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Atmos. Chem. Phys, vol.11, pp.8363-8384, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00511454

S. E. Protopapadaki, C. J. Stubenrauch, and A. G. Feofilov, Upper tropospheric cloud systems derived from IR sounders: properties of cirrus anvils in the tropics, Atmos. Chem. Phys, vol.17, pp.3845-3859, 2017.

D. Rosenfeld, U. Lohmann, G. B. Raga, and C. , Flood or drought: How do aerosols affect precipitation?, Science, vol.321, pp.1309-1313, 2008.

J. Rysman, C. Claud, and D. , J: Monitoring deep convection and convective overshooting from 60 ? S to 60 ? N using MHS: A CloudSat/CALIPSO-based assessment, IEEE Geosci. Remote Sens, vol.14, pp.159-163, 2017.

B. M. Sanderson, C. Piani, W. J. Ingram, D. A. Stone, A. et al., Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations, Clim. Dynam, vol.30, pp.175-190, 2008.

B. D. Santer, T. M. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo et al., Statistical significance of trends and trend differences in layer-average atmospheric temperature time series, J. Geophys. Res, vol.105, pp.7337-7356, 2000.

M. Satoh and Y. Matsuda, Statistics on high-cloud areas and their sensitivities to cloud microphysics using single-cloud experiments, J. Atmos. Sci, vol.66, pp.2659-2677, 2009.

S. C. Sherwood, Aerosols and ice particle size in tropical cumulonimbus, J. Climate, vol.15, pp.1051-1063, 2002.

M. W. Stanford, A. Varble, E. Zipser, J. W. Strapp, D. Leroy et al., A ubiquitous ice size bias in simulations of tropical deep convection, Atmos, Chem. Phys, vol.17, pp.9599-9621, 2017.

G. L. Stephens, The influence of radiative transfer on the mass and heat budgets of ice crystals falling in the atmosphere, J. Atmos. Sci, vol.40, pp.1729-1739, 1983.

G. L. Stephens, M. Z. Hakuba, M. Webb, M. Lebsock, Q. Yue et al., Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel, B. Am. Meteorol. Soc, vol.45, pp.1031-1049, 2013.

H. Su, J. H. Jiang, J. D. Neelin, and C. , Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate, Nat. Commun, vol.8, p.15771, 2017.

H. Takahashi and Z. Luo, Where is the level of neutral buoyancy for deep convection?, Geophys. Res. Lett, vol.39, p.15809, 2012.

H. Takahashi and Z. J. Luo, Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations, J. Geophys. Res.-Atmos, vol.119, pp.112-121, 2014.

H. Takahashi, Z. J. Luo, and G. L. Stephens, Level of neutral buoyancy, deep convective outflow, and convective core: New perspectives based on 5 years of CloudSat data, J. Geophys. Res.-Atmos, vol.122, pp.2958-2969, 2017.

J. Teixeira, . V006, . Greenbelt, . Md, G. ;. Usa et al., The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific, Earth Sciences Data and Information Services Center (GES DISC, vol.119, pp.1104-1128, 2013.

C. Wang, S. Platnick, Z. Zhang, K. Meyer, and Y. , P: Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content, J. Geophys. Res.-Atmos, vol.121, pp.5809-5826, 2016.

F. J. Wentz, T. Meissner, C. Gentemann, and M. Brewer, Remote Sensing Systems AQUA AMSR-E Daily Environmental Suite on 0.25 deg grid, Version V7, Remote Sensing Systems, p.16, 2014.

F. J. Wentz, T. Meissner, C. Gentemann, K. A. Hilburn, and J. Scott, Remote Sensing Systems GCOM-W1 AMSR2 Daily Environmental Suite on 0.25 deg grid, Version V7.2, Remote Sensing Systems, 2014.

D. M. Winker, J. Pelon, J. A. Coakley, S. A. Ackerman, R. J. Charlson et al., The CALIPSO mission. A global 3D view of aerosols and clouds, B. Am. Meteorol. Soc, vol.91, pp.1211-1229, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525010

D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, Trends in global cloud cover in two decades of HIRS observations, J. Climate, vol.18, pp.3021-3031, 2005.

T. Yuan and Z. Li, General macro-and microphysical properties of deep convective clouds as observed by MODIS, J. Climate, vol.23, pp.3457-3473, 2010.

Q. Yue, B. H. Kahn, E. J. Fetzer, S. Wong, R. Frey et al., On the response of MODIS cloud coverage to global mean surface air temperature, J. Geophys. Res.-Atmos, vol.122, pp.966-979, 2017.

Q. Yue, B. Lambrigtsen, A. Behrangi, and C. , AIRS V6 Test Report Supplement: Performance of AIRS+AMSU vs. AIRS-only retrievals: Analysis of the impact of the loss of AMSU-A2, 2017.

M. D. Zelinka, S. A. Klein, K. E. Taylor, T. Andrews, M. J. Webb et al., Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5, J. Climate, vol.26, pp.5007-5027, 2013.

Z. Zhang, S. Platnick, P. Yang, A. K. Heidinger, and J. M. Comstock, Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds, J. Geophys. Res, vol.115, p.17203, 2010.

G. Zhao, L. Di-girolamo, D. J. Diner, C. J. Bruegge, K. J. Mueller et al., Regional changes in Earth's color and texture as observed from space over a 15-year period, IEEE T. Geosci. Remote, vol.54, pp.4240-4249, 2016.