R. Ababou, D. Mclaughlin, L. W. Gelhar, and A. F. Tompson, Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media, Transport in Porous Media, vol.4, issue.6, pp.549-565, 1989.
DOI : 10.1007/BF00223627

V. N. Ambegaokar, B. I. Halperin, and J. S. Langer, Hopping Conductivity in Disordered Systems, Physical Review B, vol.35, issue.8, pp.2612-2620, 1971.
DOI : 10.1063/1.1674565

Y. Bernabé, The Frequency Dependence of Harmonic Fluid Flow Through Networks of Cracks and Pores, Pure and Applied Geophysics, vol.149, issue.3, pp.489-506, 1997.
DOI : 10.1007/s000240050037

Y. Bernabé and C. Bruderer, Effect of the variance of pore size distribution on the transport properties of heterogeneous networks, Journal of Geophysical Research: Solid Earth, vol.89, issue.B1, pp.513-525, 1998.
DOI : 10.1029/JB089iB11p09425

W. F. Brace, Permeability of crystalline and argillaceous rocks, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.17, issue.5, pp.241-251, 1980.
DOI : 10.1016/0148-9062(80)90807-4

G. O. Brown, H. T. Hsieh, and D. A. Lucero, Evaluation of laboratory dolomite core sample size using representative elementary volume concepts, Water Resources Research, vol.53, issue.3, pp.1199-1207, 2000.
DOI : 10.2136/sssaj1989.03615995005300030001x

C. Bruderer and Y. Bernabé, Network modeling of dispersion: Transition from Taylor Dispersion in homogeneous networks to mechanical dispersion in very heterogeneous ones, Water Resources Research, vol.223, issue.4, pp.897-908, 2001.
DOI : 10.1098/rspa.1954.0130

J. H. Cushman, On Measurement, Scale, and Scaling, Water Resources Research, vol.13, issue.11, pp.129-134, 1986.
DOI : 10.1029/WR013i002p00355

G. Dagan, Statistical theory of groundwater flow and transport: Pore to laboratory, laboratory to formation, and formation to regional scale, Water Resources Research, vol.37, issue.3, pp.120-134, 1986.
DOI : 10.2516/ogst:1982017

J. De-dreuzy, P. Davy, and O. Bour, Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity, Water Resources Research, vol.29, issue.8, pp.2065-2078, 2001.
DOI : 10.1103/PhysRevB.29.387

J. De-dreuzy, P. Davy, and O. Bour, Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures, Water Resources Research, vol.94, issue.8, pp.2079-2095, 2001.
DOI : 10.1029/JB094iB08p10267

D. Federico, V. , and S. P. Neuman, Scaling of random fields by means of truncated power variograms and associated spectra, Water Resources Research, vol.49, issue.4, pp.1075-1085, 1997.
DOI : 10.1103/PhysRevE.49.R2517

L. J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resources Research, vol.31, issue.5, pp.699-708, 1991.
DOI : 10.2118/1579-G

L. J. Durlofsky, Representation of grid block permeability in coarse scale models of randomly heterogeneous porous media, Water Resources Research, vol.7, issue.7, pp.1791-1800, 1992.
DOI : 10.1137/0907058

I. S. Evans, Salt crystallization and rock weathering: A review, Rev. Geomorph . Dyn, vol.4, pp.153-177, 1969.

J. T. Fredrich and W. B. Lindquist, Statistical characterization of the threedimensional microgeometry of porous media and correlation with macroscopic transport properties, Int. J. Rock Mech. Min. Sci. Geomech. Abstr, vol.34, p.85, 1997.

J. T. Fredrich, B. Menendez, and T. Wong, Imaging the Pore Structure of Geomaterials, Science, vol.268, issue.5208, pp.276-279, 1995.
DOI : 10.1126/science.268.5208.276

S. P. Friedman and N. A. Seaton, Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks, Water Resources Research, vol.38, issue.7, pp.1703-1710, 1998.
DOI : 10.1002/aic.690381112

K. Garbesi, R. G. Sextro, A. L. Robinson, J. D. Wooley, J. A. Owens et al., Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation, Water Resources Research, vol.37, issue.4, pp.547-560, 1996.
DOI : 10.1111/j.1745-6584.1991.tb00543.x

L. W. Gelhar and C. L. Axness, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resources Research, vol.104, issue.4, pp.161-180, 1983.
DOI : 10.1029/WR005i001p00196

D. J. Goggin, M. A. Chandler, G. Kocurek, and L. W. Lake, Permeability Transects of Eolian Sands and Their Use in Generating Random Permeability Fields, SPE Formation Evaluation, vol.7, issue.01, pp.7-16, 1992.
DOI : 10.2118/19586-PA

A. Henriette, C. G. Jacquin, and P. M. Adler, The effective permeability of heterogeneous porous media, PCH PhysicoChem. Hydrodyn, vol.11, pp.63-80, 1989.

A. G. Hunt, Upscaling in subsurface transport using cluster statistics of percolation, Transp. Porous Media, pp.177-198, 1998.

A. G. Hunt, Applications of percolation theory to porous media with distributed local conductances, Advances in Water Resources, vol.24, issue.3-4, pp.279-307, 2001.
DOI : 10.1016/S0309-1708(00)00058-0

A. G. Hunt, Some comments on the scale dependence of the hydraulic conductivity in the presence of nested heterogeneity, Advances in Water Resources, vol.26, issue.1, pp.71-77, 2003.
DOI : 10.1016/S0309-1708(02)00096-9

D. Jeannette, Originalit?? des m??canismes d???alt??ration sur les vestiges arch??ologiques de D??los (Cyclades, Gr??ce), Comptes Rendus de l'Acad??mie des Sciences - Series IIA - Earth and Planetary Science, vol.330, issue.10, pp.683-688, 2000.
DOI : 10.1016/S1251-8050(00)00192-0

W. B. Lindquist, S. Lee, D. A. Coker, K. W. Jones, and P. Spanne, Medial axis analysis of void structure in three-dimensional tomographic images of porous media, Journal of Geophysical Research: Solid Earth, vol.112, issue.25, pp.8297-8310, 1996.
DOI : 10.1016/0021-9797(86)90066-4

W. B. Lindquist, A. Venkatarangan, J. Dunsmuir, and T. Wong, Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, Journal of Geophysical Research: Solid Earth, vol.100, issue.B9, pp.509-530, 2000.
DOI : 10.1029/95JB00958

A. S. Netto, Pore-size distribution in sandstones, AAPG Bull, vol.77, pp.1101-1104, 1993.

S. P. Newman, Generalized scaling of permeabilities: Validation and effect of support scale, Geophysical Research Letters, vol.29, issue.2, pp.349-352, 1994.
DOI : 10.1029/92WR02062

S. Painter, Evidence for Non-Gaussian Scaling Behavior in Heterogeneous Sedimentary Formations, Water Resources Research, vol.17, issue.5, pp.1183-1195, 1996.
DOI : 10.1007/978-3-642-84574-1_34

M. A. Pollak, A percolation treatment of dc hopping conduction, Journal of Non-Crystalline Solids, vol.11, issue.1, pp.1-24, 1972.
DOI : 10.1016/0022-3093(72)90304-3

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd, 1992.

D. T. Purvance and R. Andricevic, On the electrical-hydraulic conductivity correlation in aquifers, Water Resources Research, vol.13, issue.1, pp.2905-2913, 2000.
DOI : 10.1029/WR013i001p00087

D. T. Purvance and R. Andricevic, Geoelectric characterization of the hydraulic conductivity field and its spatial structure at variable scales, Water Resources Research, vol.44, issue.1, pp.2915-2924, 2000.
DOI : 10.1139/p66-090

P. Renard and G. De-marsily, Calculating equivalent permeability: a review, Advances in Water Resources, vol.20, issue.5-6, pp.253-278, 1997.
DOI : 10.1016/S0309-1708(96)00050-4

URL : http://doc.rero.ch/record/9768/files/Renard_Ph.-_Calculating_equivalent_permeability_20080903.pdf

M. Sahimi, Flow and Transport in Porous Media and Fractured Rock, 1995.
DOI : 10.1002/9783527636693

D. Schulze-makuch, D. A. Carlson, D. S. Cherkauer, and P. Malik, Scale Dependency of Hydraulic Conductivity in Heterogeneous Media, Ground Water, vol.24, issue.4, pp.904-919, 1999.
DOI : 10.1029/97WR00804

P. Spanne, J. Thovert, C. Jacquin, W. B. Lindquist, K. Jones et al., Synchrotron Computed Microtomography of Porous Media: Topology and Transports, Physical Review Letters, vol.48, issue.14, 1994.
DOI : 10.1016/0009-2509(93)80031-K

D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd, 1992.
DOI : 10.1063/1.2808877

V. C. Tidwell and J. L. Wilson, Laboratory method for investigating permeability upscaling, Water Resources Research, vol.19, issue.3, pp.1607-1616, 1997.
DOI : 10.1111/j.1745-6584.1994.tb00609.x

URL : http://onlinelibrary.wiley.com/doi/10.1029/97WR00804/pdf

V. C. Tidwell and J. L. Wilson, Permeability upscaling measured on a block of Berea sandstone: Results and interpretation, Mathematical Geology, vol.31, issue.7, pp.749-769, 1999.
DOI : 10.1023/A:1007568632217

V. C. Tidwell and J. L. Wilson, Upscaling experiments conducted on a block of volcanic tuff: Results for a bimodal permeability distribution, Water Resources Research, vol.35, issue.1, pp.3375-3387, 1999.
DOI : 10.1029/1998WR900011

V. C. Tidwell and J. L. Wilson, Heterogeneity, Permeability Patterns, and Permeability Upscaling: Physical Characterization of a Block of Massillon Sandstone Exhibiting Nested Scales of Heterogeneity, SPE Reservoir Evaluation & Engineering, vol.3, issue.04, pp.283-291, 2000.
DOI : 10.2118/65282-PA

T. Wong, J. Fredrich, and G. D. Gwanmesia, Crack aperture statistics and pore space fractal geometry of westerly granite and rutland quartzite: Implications for an elastic contact model of rock compressibility, Journal of Geophysical Research: Solid Earth, vol.4, issue.B8, pp.267-10278, 1989.
DOI : 10.1016/0167-6636(85)90023-7

D. Zhang, R. Zhang, S. Chen, and W. E. Soll, Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV, Geophysical Research Letters, vol.10, issue.8, pp.1195-1198, 2000.
DOI : 10.1209/0295-5075/10/5/008

W. Zhu and T. Wong, Network modeling of the evolution of permeability and dilatancy in compact rock, Journal of Geophysical Research: Solid Earth, vol.60, issue.B2, pp.2963-2971, 1999.
DOI : 10.1029/JB080i005p00752

A. Maineult@eost, u-strasbg.fr) C. Bruderer-Weng, Hydrosciences, Institut des Sciences de la Terre, de l'Environnement et de l