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[11 The purpose of this work was to relate the spatial fluctuations and scaling properties
of the transport properties of porous rocks to their underlying pore geometry. Our
approach was to numerically simulate flow through networks of pipes with randomly
prescribed radii. The permeability £ and inverse formation factor 1/F were calculated in a
large number of network realizations of varying size and degree of heterogeneity (i.c., the
width of the pipe radius distribution). We generally observed a large decrease of the
ensemble arithmetic averages of k£ and 1/F with increasing network size (i.e., negative
scale effect). Conversely, the ensemble geometric averages showed a moderate positive
scale effect in three-dimensional simple cubic networks. We also found that in networks
smaller than 32 x 32 or 10 x 10 x 10, the ensemble standard deviations of k and 1/F had
a power law dependence on network size (defined as the total number of pipes) with

an exponent o varying from —0.5 in homogeneous networks to large negative values
depending on lattice topology in highly heterogeneous ones (—a increased with increasing
lattice connectiveness, i.e., with coordination number). Thus at small scales the network
transport properties were characterized by a nonuniversal power law scaling. At larger
scales we observed a transition to a presumably “universal” power law scaling with an
exponent equal to —0.5 independently on the degree of heterogeneity, dimensionality and
lattice topology. Comparing our results to published experimental data, we found a
good agreement, except in cases where we suspect that the small-scale measurements
suffered a significant bias (indicated by non-nested distributions at increasing scales). We
speculate that the strong positive scale effect generally observed in nature is also caused
by sampling bias at small scales.  INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 5114
Physical Properties of Rocks: Permeability and porosity; 5139 Physical Properties of Rocks: Transport
properties; KEYWORDS: porosity and permeability fluctuations, effective rock properties, heterogeneous media
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1. Introduction

[2] Developments in hydrology over the last two decades
have amply demonstrated that geologic materials have
extremely variable transport properties at all observable
scales [e.g., Gelhar, 1993; Sahimi, 1995, and references
therein]. This high level of heterogeneity curtails effective
prediction of aquifer behavior because a sufficient amount
of detailed information cannot be possibly collected. Rock
permeability is often measured in sampling volumes much
smaller than the grid blocks used in numeric flow simu-
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lators, and, hence, must be upscaled [e.g., Durlofsky, 1991,
1992; Renard and de Marsily, 1997]. This is a difficult
problem because permeability does not scale according to a
simple averaging rule [e.g., Cushman, 1986; Dagan, 1986;
Newman, 1994]. Transport properties upscaling has been
investigated by simulating flow through numerically gener-
ated random porous media, assuming a specific (usually
lognormal) permeability distribution [e.g., Gelhar and
Axness, 1983; Ababou et al., 1989]. Concurrently, efforts
have been expended to estimate the scaling properties and
the distribution of permeability in geomaterials and geologic
formations [e.g., Brace, 1980; Goggin et al., 1992; Garbesi
et al., 1996; Painter, 1996; Schulze-Makuch et al., 1999].
Recent laboratory studies [Henriette et al., 1989; Tidwell
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and Wilson, 1997, 1999a, 1999b, 2000] attempted to quan-
tify the spatial fluctuations of permeability in meter-scale
blocks as a function of measurement volume (see also
Zhang et al. [2000] who examined centimeter-scale sam-
ples). Similarly, the spatial fluctuations of porosity and other
pore geometry parameters were evaluated at the laboratory
scale [Henriette et al., 1989; Brown et al., 2000; Zhang et
al., 2000]. Pore-scale microstructure observations generally
reveal very broad and skewed distributions of pore sizes or
fissure apertures [Wong et al., 1989; Netto, 1993; Fredrich
and Lindquist, 1997; Zhu and Wong, 1999; Lindquist et al.,
20001].

[3] The purpose of this work is to relate the spatial
fluctuations and scaling properties of permeability to their
underlying pore geometry. Our approach is based on nu-
merically simulating flow in heterogeneous pipe networks
while systematically varying the degree of heterogeneity
(i.e., the width of the pipe radius distribution) and the
network size. Since permeability and other transport prop-
erties are controlled by the percolation properties of the pore
network [Sahimi, 1995], we also investigated the influence
of dimensionality (that is, we used two-dimensional and
three-dimensional networks) and lattice topology (that is,
we compared results obtained in two-dimensional square,
triangular and hexagonal networks). In order to gain deeper
insight, we performed a similar study of the electrical
formation factor (i.e., the ratio of fluid bulk conductivity
to rock conductivity in absence of surface conduction
effects). This last aspect is interesting in its own right
because estimating permeability from electrical conductivity
measurements is often attempted in the field [e.g., Purvance
and Andricevic, 2000a, 2000b]. Note that, in this problem,
the fluid ionic strength and, therefore, its electrical conduc-
tivity are usually assumed constant over the entire system
considered. This assumption may not hold in all field
situations (see Hunt [2001] for a theoretical treatment of
the variable ionic strength case).

2. Numerical Procedures

[4] The numerical procedure followed in this work con-
sists in three principal steps:

[s] (1) Construct a large number of random network
realizations (i.e., up to 100,000 for small network sizes
and no less than 1000, except for the largest networks that
we solved using a CPU-time demanding, iterative method.
In the most unfavorable cases we were limited to 350
realizations).

[6] (2) Calculate their permeability k£ and inverse forma-
tion factor 1/F by solving the appropriate system of linear
equations [e.g., Bernabé and Bruderer, 1998, and references
therein]. We used periodic boundary conditions and, there-
fore, were able to calculate the full permeability and electrical
conductivity tensors (however, in the rest of the paper, k£ and
1/F will solely denote the diagonal components).

[7] (3) Analyze the resulting k£ and 1/F ensemble distri-
butions. Although complete information is theoretically
available, we limited the analysis to the first two moments.

[s] We systematically and independently varied the de-
gree of heterogeneity and the size of the network realiza-
tions in order to observe how these two parameters affect
the resulting k& and 1/F distributions. We also investigated
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the influence of dimensionality and topology by using two-
dimensional (2D) square, triangular and hexagonal lattices
as well as 3D simple cubic lattices. Notice that we completed
the characterization of the network realizations by calculat-
ing other relevant, secondary parameters such as porosity ®
or critical radius 7. (i.e., the pipe radius corresponding to
disconnection of the network [e.g., Bernabé and Bruderer,
1998; Friedman and Seaton, 1998)).

[9] One important parameter to define is the “degree of
heterogeneity.” Many definitions have been used in the
literature (not always univocally related to each other).
Here, we followed our previous work [Bernabé and
Bruderer, 1998; Bruderer and Bernabé, 2001] and mea-
sured heterogeneity as the normalized standard deviation
o,/(r), where o, denotes the standard deviation and (r) the
mean of the pipe radius distribution. We also need to clarify
what we mean by network size. In order to unify the
statistical analysis of our results for different lattices, it is
best to use the number of pipes, n, in each network
realization. The number of nodes or the linear spatial
dimension S (i.e., scale) of the network realizations can be
easily derived from n ( is proportional to S* and $° in two-
dimensional and three-dimensional lattices, respectively).
Since we used periodic boundary conditions, all nodes are
connected to the same number of pipes. Hence 7 is equal to
the total number of nodes times the coordination number Z
divided by 2. The smallest networks used here were 3 x 3
(n = 18 for the square lattice) and 3 x 3 x 3 (n=81). When
we used the Cholesky decomposition method (ChD) for
computing k and 1/F, the largest networks were 32 x 32 (n
= 2048 for the square lattice) and 10 x 10 x 10 (r = 3000)
whereas they were 192 x 192 (n = 73728) and 30 x 30 x
30 (n = 81,000) when we utilized the preconditioned
biconjugate gradient method (PBCG). The ChD method
[Press et al., 1992] is very efficient and accurate even in the
most heterogeneous cases considered here, but requires an
overly large amount of memory space when the network
size exceeds the limit mentioned above. The PBCG method
[Press et al., 1992] is a fast and efficient iterative optimi-
zation method, much less demanding in memory space than
ChD. However, its accuracy and convergence rate decrease
with network size and heterogeneity level, which leads to a
serious problem. For moderately large o,./(r) and n, “path-
ological” realizations occur, for which the method fails to
converge within the maximum number of iterations allowed
(i.e., here one million). Simply discarding these ““pathologi-
cal” realizations is not a good option since it will produce a
bias in the resulting ensemble statistics. Alternatively, one
can relax the arrest condition but this diminishes the
accuracy and, in fact, does not always succeed. For this
reason the results obtained with these two methods are not
equivalent statistically and will be discussed separately in
sections 3 and 4. Notice that we verified that the two
methods gave essentially identical results in 30 x 30 and
10 x 10 x 10 networks.

[10] Before describing the various pipe radius distribu-
tions (or r distributions) used here, we point out that this
study was restricted to statistically isotropic networks with
uncorrelated spatial distributions of pipe radii. We realize
that these simplifying assumptions may be rarely satisfied in
geological materials, but investigating simple cases is an
important preliminary step toward understanding much
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Table 1. Parameters of the » Distributions Used in This Work
o,/(r)
0.06 0.4 0.8 1.2 1.6 1.9

A, 2D square, [Fmins Fmax] [0.91, 1.1] [0.5, 2.] [0.25, 4.] [0.091, 11.] [0.032, 31.] [0.0099, 101.]
B, 3D simple cubic, [Fmins Fmax] [0.867, 1.05]  [0.354, 1.41] [0.125, 2.] [0.0274, 3.32]  [0.00574, 5.57]  [0.000985, 10.05]
C, 2D triangular, [Fmin, Fmax] [0.883, 1.07]  [0.406, 1.62]  [0.165,2.64]  [0.0443,536]  [0.0115, 11.1] [0.00248, 25.3]
D, 2D hexagonal lattices, [Fuin "max]  [0.935, 1.13]  [0.616,2.46]  [0.379, 6.06]  [0.187, 22.6] [0.0904, 86.9] [0.0395, 403.]

more complex problems. Furthermore, results obtained from
uncorrelated spatial distributions were found to remain
approximately valid in isotropic systems at scales larger
than the correlation length [e.g., Hunt, 1998].

2.1. Two-Dimensional Square Networks

[11] We first focus on the case of the 2D square lattice.
This type of lattice is by far the most commonly used in
network simulation studies but, as we will try to demon-
strate, it has an exceptional behavior owing to the symmetry
of'its bond percolation threshold (i.e., the median of the pipe
radius distribution [Stauffer and Aharony, 1992]). As we
will show later, lattices with asymmetrical percolation
thresholds display less regularities in their behavior.

[12] We used log-uniform r distributions, i.e., log(r)
uniformly distributed between log(ryin) and 10g(7max). This
type of distribution is less realistic than the lognormal
distribution but has similar basic properties (i.e., skewness)
and is much less costly computationally, a crucial feature
given the very large number of realizations constructed
here. We selected 7, and rpa, in such a way as to vary
o,/(r) while keeping the median m = 723 105 constant,
equal to unity. In the present work, we used 6 different
intervals [7min, "max] corresponding to increasing values of
0,/(r) (see Table 1). These 6 distributions are labeled A in
the rest of the paper. The range of ,./(r) investigated is very
broad, namely 0.06 for A1, 0.4 for A2, 0.8 for A3, 1.2 for
A4, 1.6 for A5 and 1.9 for A6. The distribution Al
corresponds to near homogeneity and A6 to an extremely
large heterogeneity with a normalized standard deviation of
log.(k) greater than 8.

2.2. Three-Dimensional Simple Cubic and Two-
Dimensional Triangular and Hexagonal Networks

[13] For comparison purpose, we started by simply
applying the same 6 distributions A as above. However,
the critical path analysis based on percolation theory
[Ambegaokar et al., 1971; Pollak, 1972] shows that the
transport properties of heterogeneous networks are con-
trolled by the critical radius r. through the following
equation, rc2 = 8kF' [e.g., Bernabé and Bruderer, 1998;
Friedman and Seaton, 1998]. In infinitely large networks,
r. is given by the quantile corresponding to the percolation
threshold of each particular lattice (i.e., the upper quartile
for the simple cubic lattice, and, the 0.65-quantiles and
0.35-quantiles for the triangular and hexagonal lattices,
respectively). Consequently, in the case of distributions
A, r. varies when o,/(r) is changed, resulting in systematic
variations of k£ and 1/F. To remove this extra degree of
freedom, we additionally tested » distributions specific to
each type of lattice, in which the appropriate quantiles, and
hence r., were kept equal to unity, while still producing the

same values of 5,/(r) as above. These additional distributions
are labeled B, C and D, corresponding to 3D simple cubic,
2D triangular and 2D hexagonal lattices, respectively. The
corresponding intervals [Fin, 7max] are reported in Table 1.

3. Results
3.1. Two-Dimensional Square Networks

[14] Again, we find it most convenient to begin by a full
description of our results in the square lattice case. First of
all, we report some assessment details about the computing
methods. We observed that ChD performed equally well
with all 6 A distributions. On the other hand, PBCG only
worked optimally in the A1, A2 and A3 cases. In the
hydraulic case and for the distributions A4 and A5, we
were able to limit the percentage of unsolved realizations to
a few percents by reducing the mean-square residual crite-
rion to 107 '* and 1078, respectively. For A6 we obtained
about 50% of failures in 30 x 30 networks after further
reducing the criterion to 107 and close to 100% in larger
networks. We encountered much less difficulties with the
1/F calculations. The reason is that the individual electric
conductances cover a much narrower range than the hy-
draulic conductances (indeed, they depend on r* while the
hydraulic conductances vary as ).

[15] Let us denote k, and 1/F, the permeability and
inverse formation factor of a perfectly homogeneous net-
work with unit pipe radius. Since k, and 1/F, are obviously
independent on #, it is appropriate, in the rest of the paper,
to normalize k and 1/F with respect to k, and 1/F,. Using
this normalization convention, we first observe that, inde-
pendently on o,/(r), k and 1/F both approach unity as n
increases (see Figure la). In other words, for all degrees of
heterogeneity, we can write k,, = 1/F,, = 1, where the
subscript oo refers to an infinite network. As we will see
later this property is unique to the 2D square lattice.

[16] A second observation is that (k),, the ensemble
arithmetic mean of £, strongly increases with decreasing n
and increasing o,/(r) (see Figure la), whereas (k),, the
ensemble geometric mean, remains equal to unity (within
numerical precision) for all network sizes and degrees of
heterogeneity (not shown in Figure 1). Again, this last
property is unique to the square lattice. The inverse forma-
tion factor exhibited the same properties, except that (1/F),
varied much less sharply than (k),. In order to establish a
quantitative scaling relation [Hunt, 1998, 2001], we have to
consider the normalized difference 8({(k),) = ((k), — koo)koo
(in the square lattice case the normalization is not necessary
since ko, = 1/F, = (k)y = (1/F)g = 1, but, as will be shown
later, it is mandatory in the other lattices). We plotted 6({(k),,)
against n for various values of 0, /(r) in log-log scale in
Figure 1b. For each value of ¢,/(r) and within the range of
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Figure 1. Illustration of the permeability scaling in the

case of the 2D square lattice. (a) Dependence of (k), on
network size n. As indicated in the diagram, the ChD
solving method was used in networks smaller than 32 x 32
while PBCG was utilized above this size. (b) The power law
dependence of 8((k),) = (k). — koo)/ks On network size n.
Note that only the ChD results are included in this analysis.
The symbols correspond to the values of o,./(r) as indicated
in the upper right corner.

n investigated, d((k),) shows a distinct power law depen-
dence on n, i.e., log;o[6((k),)] = a logjo[n] + B, where a
denotes the exponent and 3 the decimal logarithm of the
prefactor. Likewise, 6((1/F),) had a similar behavior. For
both 8((k),) and 8((1/F),), —a and 3 increase with increasing
o0,./(ry although the variations are much smaller for 6((1/F) )
(see Figures 2 and 3). In particular, the exponent «
approaches —1 for homogeneous networks. Note that the
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power law analysis described above was limited to networks
smaller than 32 x 32. The reason for this was that 6((k),)
and §((1/F),) in larger networks became smaller than the
finite ensemble statistical noise (negative values of 8({(k),)
and §((1/F),) can even occur). However, we do not believe
that the power laws reported above can be extrapolated to

0
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3 L,
-3
a
), |
0 1 2
o /<r>
10 /
8 - Hex
6 - /
[col Sq
_ s
4 Tri
*
2 —]
>
b)
0 |
0 1 2
o /<r>

Figure 2. The power law parameters calculated for 6((k),,)
using the ChD results only (i.e., for networks smaller than
32 x 32 or 10 x 10 x 10): (a) the exponent o and (b) (3, the
decimal log of the pre-factor. The solid lines correspond to
the 2D lattices, the letters Tri, Sq and Hex indicating the
triangular, square and hexagonal lattices, respectively. The
diamonds represent the results for the 3D simple cubic
lattice.
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Figure 3. The power law parameters calculated for 6((1/
F),) using the ChD results only (i.e., for networks smaller
than 32 x 32 or 10 x 10 x 10): (a) the exponent o and
(b) B, the decimal log of the pre-factor. The symbols are the
same as in Figure 2.

infinite size n (see discussion in section 4). We attempted to
perform the same analysis on &((k),) and 8((1/F),), but,
because (k), and (1/F), ~ 1 (i.e., 8({k),) and 8((1/F)4) ~ 0)
for all values of n, the data appeared to be essentially noise.
As we will see later, 8((k),) and &((1/F),) do show power
law dependence on 7 in the other lattices.

[17] A third observation concerns the ensemble standard
deviations of k and 1/F, o, and o/~ As expected, o, and
oy,r strongly decrease with increasing n. Consistently with
the other observations, the variations of 0, are less dramatic
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than those of o;. The values of o, obtained using ChD (i.e.,
for networks up to 32 x 32) are plotted in Figure 4a against n
in log-log scale, revealing a clear power law behavior. The fit
quality is better for oy than it was in Figure 1b for 6((k),),
indicating that the statistical noise in the determination of oy,
is low. Similar observations can be made with oy = Again, the
values of —«a and (3 calculated for both o4 and o4/ increase
with increasing o,./(r) (see Figures 5 and 6). This time, the
exponent « is approximately equal to —0.5 for homogeneous
networks. The values of o, obtained using PBCG (i.e., for
networks 30 x 30 and larger) are plotted in Figure 4b. We can
see that these large network data suggest a transition from the
previously described power law behavior to another one
independent on o,/(r) (i.e., universal), characterized by
a=-0.5.

[18] The results described above only concern the diag-
onal components of the k& and 1/F tensors. However, the
individual realizations, despite having been isotropically
generated, all displayed some degree of anisotropy. Inspec-
tion of the nondiagonal components of the £ and 1/F tensors
showed that their ensemble distributions had near-zero
means. Their ensemble standard deviations were much
smaller than those of the diagonal components, and de-
creased in a power law fashion with increasing network size
(the exponent was closer to —0.5 in this case than for o, and
o1,r). This demonstrates that the network realizations gen-
erated were indeed statistically isotropic (note that the
statistical deviations from isotropy were much lower for
1/F than k). Statistical isotropy was also verified in the other
lattices and will not be discussed further in this article.

[19] Each individual network realization corresponds to a
set of values of r (called an r-set). Statistical parameters
such as the median m or the second moment () (notice that
(r2> is proportional to the porosity ®) can be calculated on
these r-sets. We know that the ensemble standard deviation
of such parameters must be proportional to the inverse
square root of the r-set size (i.e., n). We indeed verified
that practically exact power laws with a = —0.5 were
obtained for o,, and og. Obviously, this property is inde-
pendent on lattice dimensionality and topology.

[20] Finally, we determined the critical radius 7. for each
network realization. Although it must be equal to m in
infinite networks, 7. is not a simple statistical parameter of
the r-sets. For example, consider an arbitrary network
realization and imagine that we create another one by
redistributing identical pipes in different locations. The
new realization has an identical r-set but a possibly very
different ... The behavior of 7, appeared to be similar to that
of k and 1/F. We will not describe it in detail here, but,
instead, emphasize the striking observation that the rela-
tionship 7.2 = k F (the factor 8 is removed here because of
the normalization) was satisfied within better than 20% in
all individual network realizations, independently on size or
degree of heterogeneity. This extremely important (nonsta-
tistical) property was observed to be also true in the other
2D lattices, suggesting that the discussion in Bernabé
[1997] linking r. to the critical frequency at the viscous-
inertial transition [see also Bernabé and Bruderer, 1998] is
generally valid for 2D lattices. In the case of the 3D simple
cubic lattice we found a slight discrepancy (namely, & F
~ 0.7 r,). The cause of this discrepancy is unclear and will
not be discussed further in the present paper (for a theoret-
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Figure 4. Illustration of the permeability fluctuations

scaling in the case of the 2D square lattice. (a) The power
law dependence of o, on network size n. Note that only the
ChD results are included in this analysis (i.e., networks
smaller than 32 x 32). The symbols correspond to the
values of o,/(r) as indicated in the upper right corner.
(b) Dependence of o on network size 7 in the entire range
of n. The ChD results already shown in Figure 4a are now
represented by solid lines while the PBCG data points are
plotted using the same symbols as in Figure 4a. The shaded
line superposed on the open circle points indicates the —0.5
slope and helps in visualizing the transition from non-
universal to universal scaling (see text).
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Figure 5. The power law parameters calculated for oy
using the ChD results only (i.e., for networks smaller than
32 x 32 0r 10 x 10 x 10): (a) the exponent o and (b) 3, the
decimal log of the pre-factor. The symbols are the same as
in Figure 2.

ical discussion of r. based on percolation cluster statistics,
see Hunt [2001]).

3.2. Three-Dimensional Simple Cubic and Two-
Dimensional Triangular and Hexagonal Networks

[21] First of all, it is interesting to note that the PBCG
solving method was more successful in 3D simple cubic
networks than in 2D square ones. There were almost no
unsolved realizations except with distribution B6é for which
we reduced the mean-square residual criterion to 10~ '°. For
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Figure 6. The power law parameters calculated for oy
using the ChD results only (i.e., for networks smaller than
32 x 32 0r 10 x 10 x 10): (a) the exponent o and (b) 3, the
decimal log of the pre-factor. The symbols are the same as
in Figure 2.

lack of time, we did not use PBCG in the case of the 2D
triangular and hexagonal lattices.

[22] In all three lattices, we observed that k& and 1/F did
not converge toward unity with increasing network size. In
other words, if we estimate k., and 1/F as (k), and (1/F),
for the largest networks considered here, we find that k.,
and 1/F., depend on o,/(r). This is, of course, expected
when the A distributions are used. Indeed, k., and 1/F.
must increase with increasing o,./(r) in the case of the 3D
simple cubic and 2D triangular lattices, whereas the oppo-
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site has to occur for the 2D hexagonal lattice. The reason is
that the upper quartile and the 0.65 quantile of the A
distributions (i.e., critical radius 7, of the 3D simple cubic
and the 2D triangular lattices, respectively) increase with
increasing o,/(r) whereas the 0.35 quantile decreases (i.e. r,.
of the 2D hexagonal lattice). More surprising was the
observation that k., and 1/F,, depended on o,/(r) even
when we used the distributions B, C and D, for which the
appropriate quantiles were maintained equal to 1 and a
behavior similar to that of the 2D square lattice could
reasonably be expected. This is illustrated in Figure 7
showing (k), and (k). in 3D simple cubic networks as a
function of n. The variations of k., with o,/(r) appeared to
be significant, although much smaller than the variations
obtained with the A distributions. They were also quite
different in the three lattices considered (see Table 2). The
inverse formation factor had essentially the same behavior
owing to the approximate relation k.. F,, ~ 1, as discussed
above. One important observation was that, for all lattices,
the distributions of k£ and 1/F obtained with the two types of
distribution used (i.e., A and B, A and C, or A and D) were
identical after normalization with respect to k., and 1/F .
[23] As in the previous section, we observed a strong
increase of (k), with decreasing n in all lattices. However,
unlike the 2D square lattice, the triangular, hexagonal and
cubic lattices did not produce (k), = 1 independently on n
and o,/(r). We also observed a decrease of (k), with
increasing n and o,/(r) in both two-dimensional lattices
whereas (k), increased with » in the 3D simple cubic lattice
(see Figure 7). The variations of (k), were generally much

3
- X x 1.9
/\w + 1-6
'$ 24 . o 1.2
% * 0.8
0 o 0.4
= 14 ° . 0.06
S x X
~ 07 e
$ e
\-é -1 - . Q_g ¥ %
E" -~ ChD PBCG

-2 | | [

1 2 3 4 5
log,¢(n)

Figure 7. Illustration of the permeability scaling in the

case of the 3D simple cubic lattice. Notice the large negative
scale dependence of (k), (same symbols as in Figure 1) and
the small positive scale dependence of (k), (solid lines). As
indicated in the diagram, the ChD solving method was used
in networks smaller than 32 x 32 while PBCG was utilized
above this size.
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Table 2. Values of k,, and 1/F., as a Function of o,/(r) for
Various Lattices

o,/{r)
0.06 0.4 0.8 1.2 1.6 1.9

A, 2D square

koo 1.0 1.0 1.0 1.0 1.0 1.0

1/F 1.0 1.0 1.0 1.0 1.0 1.0
B, 3D simple cubic

koo 0.83 0.37 0.23 0.16 0.12 0.10

1/F 0.91 0.56 0.37 0.25 0.20 0.16
C, 2D triangular

o 0.90 0.63 0.57 0.59 0.61 0.65

1/F 0.95 0.73 0.63 0.57 0.59 0.60
D, 2D hexagonal

koo 1.11 1.61 1.75 1.83 1.86 2.04

1/F, 1.06 1.37 1.59 1.75 1.77 1.82

smaller than those of (k),, with the largest ones
corresponding to the hexagonal lattice.

[24] For all lattices, we performed the power law analy-
sis described in section 3.1, on the normalized 8({(k),) and
8((1/F),) in networks solved using ChD (i.e., smaller than
32 x 32 0r 10 x 10 x 10). The values of « and (3 found are
plotted in Figures 2 and 3. We see that, for all the lattices,
—a and (3 increase with increasing o,./(r). The 2D triangular
and 3D simple cubic lattices have the smallest values of —«
and 3 whereas the 2D hexagonal lattice has the largest. The
2D square lattice is in the middle. This order is consistent
with the order of the percolation thresholds (0.25 for 3D
simple cubic, 0.35 for 2D triangular, 0.5 for 2D square and
0.65 for 2D hexagonal).

[25] The results of the power law analysis of o, and o
are presented in Figures 5 and 6. As in the last paragraph we
see that, for all the lattices, —a and (3 increase with
increasing o,/(r). Note that the values obtained for the 2D
triangular and 3D simple cubic lattices appear to coincide
exactly with each other. This is a very surprising result since
these two lattices have different dimensionalities. The fact
that their only common feature is the coordination number,
Z = 6, suggests that connectivity is the main parameter
controlling transport properties scaling in these networks.
The 2D triangular and 3D simple cubic lattices have the
smallest values of —a and (3, the 2D hexagonal lattice the
largest, and, as before, the 2D square lattice the medium
ones. Again, the values of o, obtained for the 3D simple
cubic lattice using PBCG (i.e., for networks 10 x 10 x 10
and larger) revealed a transition to the same “universal”
power law as before (i.e., « = —0.5).

4. Discussion and Conclusions

[26] The first point to discuss concerns the power law
analysis extensively used here. Although the fit was always
of good quality (i.e., correlation coefficients larger than
0.95), we do not think these power laws can be extrapolated
to an infinite range of n. Indeed, extrapolating the straight
lines in Figure 4a leads to conceptually impossible cross-
over points. Cross-over cannot occur because the fluctua-
tions of k£ and 1/F should be strictly monotonic functions of
o,/(r) for any network size. The PBCG data in Figure 4b
confirm that a transition occurs at a sufficiently large
network size and suggest that, beyond this transition, the
slope of the log(oy) versus log(n) curves approaches a single
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value, —0.5, for all values of 0,/(r) (a similar behavior was
observed for the 3D simple cubic lattice). We surmise that
this transition to a “universal” scaling behavior is generally
valid in all lattices (i.e., independently on topology and
dimensionality) and for all parameters studied here, i.c.,
8((k)), 8((1/F)), o4 and oy, The existence of a transition
from non-universal scaling at small scales to universal
scaling at large scales is also supported by theoretical
arguments based on percolation theory [Hunt, 1998, 2001].
The universal exponent is —1 for 8((k)) and &({1/F)) versus
n, and —0.5 for o, and oy, versus n. Accordingly, for 6((k))
and O((1/F)) versus the linear scale S, the universal expo-
nent becomes —2 in two dimensions and —3 in three
dimensions (in agreement with the theoretical prediction
of Hunt [1998] only in the two-dimensional case), whereas
it is equal to —1 in two dimensions and —3/2 in three
dimensions for o and o/ versus S. The transition defines a
characteristic size reminiscent of the concept of Statistical
Representative Elementary Volume (SREV) recently pro-
posed by Zhang et al. [2000] (i.e., in volumes larger than
the SREV the transport properties become weakly scale
dependent; see also Hunt [1998, 2001]). Our interpretation
is that, in networks smaller than the transition size, the
fluctuations of £ and 1/F are controlled not only by the
underlying r distribution but also by the relative positions of
small and large pipes. In particular, the occurrence of
through-going chains of large pipes must generate extremely
large permeability fluctuations. The probability of occur-
rence of such a chain decreases as its length increases,
explaining that the fluctuation enhancement effect described
above decreases with increasing network size. According to
this explanation, past the transition, the probability of
occurrence of through-going chains becomes negligible,
the fluctuations of k£ and 1/F only depend on the underlying
r distribution, and a weak scale dependence results (i.c.,
characterized by low values of a). Notice also that fluctua-
tion enhancement must obviously increase with increasing
heterogeneity as was observed here.

[27] The position of the transition n* can be estimated
from log;o(o4) versus log;o(n) curves (see the examples in
Figure 4b). Although precise quantification was notattempted
here, we can state that the transition scale S* (i.e.,
corresponding to n*) appeared to be a weakly increasing
function of heterogeneity [Hunt, 2001]. We find that, in the
average, a 30 x 30 2D square network should be an
acceptable SREV while we may need networks slightly
greater than 10 x 10 x 10 in the case of the 3D simple
cubic lattice. Thus S* appeared to be significantly larger
than the correlation length (i.e., the length of an individual
pipe here). This suggests that the non-universal scaling laws
described above may apply in field situations where the
system size S is on the order of a few tens of correlation
lengths (see also Hunt [2001]).

[28] Since the values of o are much closer to —0.5 for 1/F
than k, the SREV size appropriate for electrical conduction
must be smaller than that defined above for hydraulic flow.
This is not surprising. For a given 7 distribution, the local
hydraulic conductances (proportional to *) have a much
wider distribution than the electrical ones (proportional to
). Generally speaking, this study confirms that 1/F has
essentially the same properties as k, but strongly attenuated.
This justifies the numerous attempts of estimating perme-
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ability variations from electrical measurements in the field,
but also points out an important practical problem, namely
that it is difficult to determine accurately the variations of a
very irregular parameter (i.e., k) from measurements of a
much smoother one (i.e., 1/F). The percolation-based rela-
tion 7. = 8 k F is potentially very useful but an independent
technique of estimating 7, is then required (remember also
that this relation implies that surface electrical conduction is
unimportant).

[29] Another related remark is that ensemble geometric
averages are much closer to 1 than ensemble arithmetic
averages in all lattices (one obtains exactly 1 only for the 2D
square lattice). In other words, geometric averaging, in
general, yields relatively accurate estimations of k... Note
however that an overestimation by up to one order of
magnitude can occur in 2D hexagonal networks with high
o,/(r) and low n. Also, as explained previously, 1/F is less
sharply variable than k. Consequently, geometric averaging
works even better for 1/F, with discrepancies on the order of
a few tens of percent (at worst, an overestimation of 1/F .,
by a factor of 2 is produced in 2D hexagonal networks with
high o,./(r) and low n).

[30] A second important point is that the large (statistical)
increase of k£ with increasing measurement scale commonly
observed in the field [e.g., Brace, 1980; Painter, 1996;
Schulze-Makuch et al., 1999] does not occur here (note that
we use “size” and “‘scale” synonymously hereafter). Early
studies attributed this large, positive scale dependence to a
bias in the sampling of the permeability distribution at small
scales (for example, fractures are systematically excluded in
laboratory measurements, Brace [1980]). In that case, a
positive scale effect is an artifact, not a property of the
geological systems considered. More recent explanations
are based on assuming nested heterogeneity structures [e.g.,
Di Federico and Neuman, 1997]. However, the effect of
nested structures is somewhat controversial. In a recent
theoretical discussion, Hunt [2003] reported an example
of nested structure producing a negative scale effect. He
also speculated that nested structures should not lead to
positive scale effects unless they involve some sort of
sampling bias. A related work is that of de Dreuzy et al.
[2001a, 2001b], who studied flow through two-dimensional,
random fracture networks obeying power law length dis-
tributions. Although these authors do not use the term
“nested structure,” their fracture networks provide an
excellent example of hierarchical media. Interestingly, they
were able to vary the hierarchiness continuously by chang-
ing the exponent a of the fracture length distribution. For
a < 3 long fractures are present (including fractures longer
than the network considered), the fracture network is
significantly hierarchical, and a positive scale effect was
found. This result may provide a clue to clarify the relation
between positive scale effects and sampling biases. Indeed,
in a flow measurement on a given network, the fractures
longer than the network scale are obviously undersampled.
It is revealing that de Dreuzy et al. [2001b] observed
unlimited scale effects only for a < 2 (i.e., very strong
nested structure) and a perfect correlation between length
and aperture of individual fractures, that is, when the
undersampling of high permeabilities at any given scale
was the most severe. For @ > 3 long fractures are essentially
absent, the fracture network has a weak nested structure,
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and no positive scale effects were found. This is in quali-
tative agreement with our results since our pipe networks
were not hierarchical and sampling biases were forbidden
by our procedures.

[31] Whatever the importance of nested structures in
geologic materials, its effect must decrease and eventually
become negligible if the maximum scale considered is
reduced. Accordingly, we expect that nested structures
should be largely unimportant in the samples or blocks
used in the laboratory studies of Henriette et al. [1989],
Tidwell and Wilson [1997, 1999a, 1999b, 2000], and Zhang
et al. [2000]. Consistently with our results, Zhang et al.
[2000] did find that (k), decreases and o) increases with
increasing measurement scale. They also observed an in-
crease of 04 (and, strangely, of (®),), but it is visually clear
that the rate of change is lower for o4 than for o;. From the
values reported in Henriette et al. [1989] we estimated (k),,,
(k)g, or and og for two different scales ((®), was also
calculated and found constant as it should be). In agreement
with our network results, we observed an increase of o and
o, a decrease of (k),, and, more importantly, an increase of
(k) with increasing scale as in the 3D simple cubic net-
works. Note however that the variations appear to be rather
small. Again we observe that the rate of change seems to be
lower for o4 than for o;. Following Henriette et al. [1989]
we constructed very large network realizations (96 x 96 and
32 x 32 x 32), divided them in smaller and smaller
subnetworks, calculated k in all networks and subnetworks
(using PBCG when needed) and examined the variations of
k as a function of size. The £ and 1/F distributions obtained
with this new procedure were not distinguishable from the
ones described in the previous sections. This is not surpris-
ing since ergodicity is implied in our procedure.

[32] In a series of thorough studies, Tidwell and Wilson
[1997, 1999a, 1999b, 2000] systematically quantified the
spatial fluctuations of permeability in meter-scale blocks of
sandstones and volcanic tuff as a function of R, the radius of
the measuring device. In all cases they found that the
variance of log(k) was a decreasing power law of R with
an exponent varying between —0.3 and —0.6 (note that
these values cannot be directly compared to ours). They also
calculated (log(k)), (i.e., equivalent to the geometric aver-
age (k),) and discovered that it increased with increasing R
in the sandstone blocks while it decreased in the volcanic
tuff block. The measured variations were significant (for an
approximately 8.5-fold increase in R, (k). increased by a
factor of 1.5 in Berea sandstone, 2.2 in Massillon sandstone
and decreased by a factor of 1.5 in volcanic tuff). Interest-
ingly, (k), had the same behavior as (k), (that is, it
increased with increasing R in the sandstone blocks while
it decreased in the volcanic tuff block).

[33] The negative scale dependence of (k), in volcanic
tuff is not consistent with our results for the 3D simple cubic
lattice but it is possible that the pore space of volcanic tuffis
better represented by some other, differently behaving, 3D
lattice than by the simple cubic lattice. On the other hand,
the positive scale dependence of (k), in the two sandstones
is in serious disagreement with our results. We argue
however that the results of Tidwell and Wilson [1997,
1999a, 2000] are faulty despite the outstanding carefulness
of their work. Our opinion is based on the following
reasoning: assuming that the distribution of permeability
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at the smallest scale Sy is completely known and that it is
bounded by ki, and k,.x (a reasonable assumption since
the system considered is not infinite), the permeability of
any sample of volume larger than S, must be lower
(respectively, greater) than k.., (respectively, k). Note
that this must be true whether the spatial distribution of & is
correlated or not. The extrema are actually reached only in
homogeneous volumes of material with k& = kp,ax (OF ki) at
every point. Consequently, the successive k distributions at
increasing scales must be entirely included within each
other (i.c., nested distributions) as illustrated in Figure 8a
(showing the k distributions obtained here in 2D square
networks of size 4 x 4, 8 x 8, 16 x 16 and 32 x 32 with
distribution A4). The k distributions reported in Tidwell and
Wilson [1997, 1999a, 2000] were not nested (they were
similar to the distributions illustrated in Figure 8c), imply-
ing that the measurements of £ with the smallest R used in
these studies were statistically biased. Notice that the
absence of this anomaly in the case of volcanic tuff
coincided with a negative scale dependence of (k),. It
seems likely to us that the anomalous behavior of the
sandstone blocks is related to the rock rather than to the
experimental method. Perhaps, quarrying produced a thin
damaged layer at the surface of relatively hard rocks like
Berea and Massillon sandstones whereas this did not occur
in softer volcanic tuff. Alternatively, salt precipitation due to
weathering may reduce permeability inside a thin layer at
the rock surface [e.g., Evans, 1969; Jeannette, 2000]. Note
that the volcanic tuff block was indeed cut very shortly
before the permeability measurements were made (no such
information was specified for the sandstone blocks).

[34] Following Hunt [1998, 2001, 2003], we define the
scaling problem as follows: knowing the complete distribu-
tion of some property X (e.g., k) at a minimum scale S (i.e.,
X measured in rock volumes of size Sy covering the entire
system considered), what are the distributions of X at scales
larger than Sy? An increase of the ensemble mean of X with
increasing scale is called a “positive scale effect” (PSE). It
is necessary to further distinguish between “weak” and
“strong” PSE. Weak PSE corresponds to the case where the
distributions of X at increasing scales are nested (consist-
ently with the assumption of absence of sampling bias at the
minimum scale) and the ensemble mean of X nevertheless
increases with scale. This can be achieved as illustrated in
Figure 8b where the successive distributions all have an
approximately identical maximum, forcing the ensemble
mean to increase with scale. Strong PSE denotes the case
illustrated in Figure 8c. The successive distributions are not
nested, with their maxima increasing with scale. For most
physical properties of rocks (e.g., k), strong PSE indicates
sampling bias at small scales. As discussed above, the data
of Tidwell and Wilson [1997, 1999a, 2000] showed strong
PSE, and so did the field studies reported by Brace [1980]
or Schulze-Makuch et al. [1999]. The results of de Dreuzy et
al. [2001a, 2001b] seem to belong to the weak PSE class
despite the large amplitude of the PSE reported, which is
simply due to the fact that &, is huge in the case of large
fractures. Our results for (k), indeed showed that weak PSE
is not strictly impossible. Weak PSE should be favored if
the high-permeability elementary volumes have enhanced
connectivity (e.g., fractures). Our contention is again that
these conclusions should generally hold in macroscopic
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Figure 8. (a) Example of ensemble cumulative distribu-

tions of logo(k) obtained at different scales (i.e., in 4 x 4,
8 x 8,16 x 16, and 32 x 32 networks) for the 2D square
lattice with r distribution A4. These distributions all appear
symmetric, suggesting a lognormal character. Note also that
they all intersect each other at the median point correspond-
ing to k= 1. This is consistent with our observation that (k),
is always equal to unity in the 2D square lattice. The
successive minima and maxima are indicated by solid
triangles, demonstrating that these distributions were nested.
(b) Illustration of the ‘“weak” PSE. The successive
distributions are nested and have the same maximum. The
successive mean values must increase with scale, eventually
reach the maximum asymptotically at infinite scales.
(¢) Illustration of the “strong” PSE. The successive
distributions are not nested, indicating that sampling bias
occurred at small scales.

porous media at scales larger than the correlation length
[Hunt, 1998].

[35] Wealso demonstrated that, in two-dimensional lattices,
the fluctuations of £ and 1/F and, more importantly, their
scaling properties depend on topology. From our results, it
appears that the most appropriate topological parameter to
consider is the lattice coordination number Z (i.e., number
of connected bonds per node). Remembering that Z char-
acterizes the lattice connectiveness, we see that, in two-
dimensional lattices, the less connected the lattice the
greater the fluctuation enhancement effect described in
section 3. We can reasonably assume that this is also true
in three-dimensional lattices and in the real pore networks
of rocks. New imaging technologies now allow acquisition
of high-resolution three-dimensional images of the pore
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space of rocks [e.g., Spanne et al., 1994; Fredrich et al.,
1995]. Using the medial axis analysis, Lindquist et al.
[1996] showed that the pore space of rocks can be repre-
sented as a graph, the topology of which can be quantified.
Recently, Lindquist et al. [2000] showed that the pore
network of Fontainebleau sandstone had locally measured
coordination numbers strongly fluctuating in space around
an average value between 3 and 4. This is significantly
lower than 6, the value corresponding to the 3D simple
cubic lattice. Hence we expect the overall percolation
threshold in this type of rock (i.e., clean sandstone) to be
higher than 0.25 (maybe to approach 0.5), therefore yielding
scaling properties more resembling the 2D square lattice
than the 2D triangular lattice. Low values of the coordina-
tion number are also consistent with a clearly identifiable
SREYV as observed by Zhang et al. [2000].

[36] It is well known that the network flow equations are
mathematically similar to the finite difference equations of
Darcian flow. Our results can therefore be generalized to
numerical simulations of flow through macroscopically
heterogeneous porous media. In particular, the topology of
the grid used should affect the results (e.g., triangular grids
are known to reduce grid-orientation effects [Mattax and
Dalton, 1990]). This remark is especially important if the
goal of the numerical simulations is to establish a scaling
rule. In two-dimensional models we stress again that the
widely used square grid has unique characteristics and may
not yield truly representative results in systems with a
number of grid blocks insufficiently large. Of course, these
problems should vanish in systems with a very large
number of grid blocks since scaling becomes presumably
“universal.”
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