Physical properties of dust in comets: a post-Rosetta understanding

Anny Chantal Levasseur-Regourd 1
1 IMPEC - LATMOS
LATMOS - Laboratoire Atmosphères, Milieux, Observations Spatiales
Abstract : The combination of investigations on dust particles within comet 67P/Churyumov-Gerasimenko (67P/C-G) from the Rosetta mission, from remote observations of their light scattering properties, and from theoretical and experimental studies, is providing an unprecedented insight into the structure, formation and early evolution of comets. Through its 26 months-length duration, Rosetta has provided a ground-truth for the high porosity of the nucleus, with studies of CONSERT experiment suggesting that the porosity increases inside the nucleus and that a major component of the nucleus consists of refractory carbonaceous compounds [1-4]. It has also established the aggregated structure of dust particles within a wide range of sizes in the inner coma, with, e.g., MIDAS experiment giving evidence for the hierarchical fractal structure of dust particles, down to tens of nm-sized grains [5-6]. Such discoveries confirm previous interpretations of remote observations of solar light scattered by dust in cometary comae, which have suggested for a few comets, including 67P/C-G, the presence of fractal, likely porous aggregates, and of more compact particles within the coma [7,8]. Some drastic changes in remote polarimetric observations of comets during fragmentation or disruption events could have been clues to differences in structure between the surface and the interior of their nuclei. Finally, the significance of such results for the possible survival and delivery of the surface of telluric planets of organics after heavy bombardment event(s) in the early Solar System will be discussed. References: 1 Kofman, Herique et al. Science 2015. 2 Ciarletti, Levasseur-Regourd et al. A&A 2015. 3.Brouet, Levasseur-Regourd et al. MNRAS 2016. 4 Herique, Kofman et al., MNRAS 2017. 5 Bentley, Schmied, et al., Nature, 2016. 6 Mannel, Bentley et al., MNRAS, 2016. 7 Lasue, Levasseur-Regourd et al., Icarus, 2009. 8 Hadamcik, Levasseur-Regourd et al., MNRAS, 2017.
Keywords : Comets Dust Rosetta
Document type :
Conference papers
Complete list of metadatas

https://hal-insu.archives-ouvertes.fr/insu-01690194
Contributor : Catherine Cardon <>
Submitted on : Monday, January 22, 2018 - 5:55:54 PM
Last modification on : Wednesday, May 15, 2019 - 3:32:56 AM

Identifiers

  • HAL Id : insu-01690194, version 1

Citation

Anny Chantal Levasseur-Regourd. Physical properties of dust in comets: a post-Rosetta understanding . AOGS 2017, 14th Annual Meeting Asia Oceania Geosciences Society, Aug 2017, Singapore, Singapore. pp.abstract ID PS11-A023. ⟨insu-01690194⟩

Share

Metrics

Record views

79