K. Adalier and A. Elgamal, Mitigation of liquefaction and associated ground deformations by stone columns, Engineering Geology, vol.72, issue.3-4, pp.275-291, 2004.
DOI : 10.1016/j.enggeo.2003.11.001

B. J. Barratt and P. W. Day, Geotechnical design using SANS 10160: A comparison with current practice, Proceedings of the First Southern African Geotechnical Conference, p.121, 2016.
DOI : 10.1201/b21335-24

H. Bolton-seed, K. Tokimatsu, L. Harder, and R. M. Chung, Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations, Journal of Geotechnical Engineering, vol.111, issue.12, pp.1425-1445, 1985.
DOI : 10.1061/(ASCE)0733-9410(1985)111:12(1425)

K. O. Cetin and R. B. Seed, Nonlinear shear mass participation factor (rd) for cyclic shear stress ratio evaluation, Soil Dynamics and Earthquake Engineering, vol.24, issue.2, pp.103-113, 2004.
DOI : 10.1016/j.soildyn.2003.10.008

K. O. Cetin, R. B. Seed, A. Der-kiureghian, K. Tokimatsu, L. F. Harder-jr et al., Standard Penetration Test-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, vol.130, issue.12, pp.1314-1340, 2004.
DOI : 10.1061/(ASCE)1090-0241(2004)130:12(1314)

J. Chameau and G. W. Clough, Probabilistic Pore Pressure Analysis for Seismic Loading, Journal of Geotechnical Engineering, vol.109, issue.4, pp.507-524, 1983.
DOI : 10.1061/(ASCE)0733-9410(1983)109:4(507)

A. Choobbasti, M. Naghizaderokni, and M. Naghizaderokni, Reliability analysis of soil liquefaction based on standard penetration: a case study in Babol city, 2015 International Conference on Sustainable Civil Engineering, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01587203

R. Dawkins, The selfish gene, 2016.

J. M. Duncan, Factors of Safety and Reliability in Geotechnical Engineering, Journal of Geotechnical and Geoenvironmental Engineering, vol.126, issue.4, pp.307-316, 2000.
DOI : 10.1061/(ASCE)1090-0241(2000)126:4(307)

F. Farrokhzad, A. Choobbasti, and A. Barari, Liquefaction microzonation of Babol city using artificial neural network, Journal of King Saud University - Science, vol.24, issue.1, pp.89-100, 2012.
DOI : 10.1016/j.jksus.2010.09.003

J. Hwang and C. Yang, Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data, Soil Dynamics and Earthquake Engineering, vol.21, issue.3, pp.237-257, 2001.
DOI : 10.1016/S0267-7261(01)00002-1

I. Idriss and R. Boulanger, Semi-empirical procedures for evaluating liquefaction potential during earthquakes, Soil Dynamics and Earthquake Engineering, vol.26, issue.2-4, pp.115-130, 2006.
DOI : 10.1016/j.soildyn.2004.11.023

K. Ishihara, Liquefaction and flow failure during earthquakes, G??otechnique, vol.43, issue.3, pp.351-451, 1993.
DOI : 10.1680/geot.1993.43.3.351

T. Iwasaki, Soil liquefaction studies in Japan: state-of-the-art, Soil Dynamics and Earthquake Engineering, vol.5, issue.1, pp.2-68, 1986.
DOI : 10.1016/0267-7261(86)90024-2

T. Iwasaki, T. Arakawa, and K. Tokida, Simplified procedures for assessing soil liquefaction during earthquakes, International Journal of Soil Dynamics and Earthquake Engineering, vol.3, issue.1, pp.49-58, 1984.
DOI : 10.1016/0261-7277(84)90027-5

. Fig, 11 Limit state (boundary between liquefaction and non-liquefaction states)

T. Iwasaki, K. Tokida, and F. Tatsuoka, Soil liquefaction potential evaluation with use of the simplified procedure, International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1981.

A. Janalizadechoobbasti, M. Naghizaderokni, and A. Talebi, A Study of the Effect of Soil Improvement Based on the Numerical Site Response Analysis of Natural Ground in Babol City, Open Journal of Civil Engineering, vol.06, issue.02, p.163, 2016.
DOI : 10.4236/ojce.2016.62015

URL : https://hal.archives-ouvertes.fr/insu-01433796

S. K. Jha and K. Suzuki, Reliability analysis of soil liquefaction based on standard penetration test, Computers and Geotechnics, vol.36, issue.4, pp.589-596, 2009.
DOI : 10.1016/j.compgeo.2008.10.004

A. Journel, Constrained interpolation and qualitative information?The soft kriging approach, Mathematical Geology, vol.28, issue.1, pp.269-286, 1986.
DOI : 10.1007/978-1-4757-2769-2

C. H. Juang, C. J. Chen, T. Jiang, and R. D. Andrus, Risk-based liquefaction potential evaluation using standard penetration tests, Canadian Geotechnical Journal, vol.1, issue.4, pp.1195-1208, 2000.
DOI : 10.1061/(ASCE)0733-9410(1985)111:12(1425)

S. S. Kutanaei and A. J. Choobbasti, Prediction of combined effects of fibers and cement on the mechanical properties of sand using particle swarm optimization algorithm, Journal of Adhesion Science and Technology, vol.107, issue.6, pp.487-501, 2015.
DOI : 10.1002/(ISSN)1096-9853

S. S. Liao and R. V. Whitman, Overburden Correction Factors for SPT in Sand, Journal of Geotechnical Engineering, vol.112, issue.3, pp.373-377, 1986.
DOI : 10.1061/(ASCE)0733-9410(1986)112:3(373)

C. Mccully and C. Bleobaum, A genetic tool for optimal design sequencing in complex engineering systems, Structural Optimization, vol.25, issue.2-3, pp.186-201, 1996.
DOI : 10.1007/BF01196956

S. No, Iranian code of practice for seismic resistant design of buildings, Tehran: Third Revision, pp.2800-2805, 2005.

M. N. Rokni, M. Hassanlo, and M. Ramzani, A DEVELOPED PROCEDURE FOR PREDICTING THE RISK OF LIQUEFACTION: A CASE STUDY OF RASHT CITY, International Journal of GEOMATE, vol.12, issue.29, pp.59-65, 2017.
DOI : 10.21660/2017.29.160105

URL : https://hal.archives-ouvertes.fr/insu-01433794

H. B. Seed and I. M. Idriss, Simplified procedure for evaluating soil liquefaction potential, Journal of Soil Mechanics & Foundations Div ASCE, vol.97, issue.9, pp.1249-1273, 1971.

S. Sert, Z. Luo, J. Xiao, W. Gong, and C. H. Juang, Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability, Computers and Geotechnics, vol.75, pp.182-191, 2016.
DOI : 10.1016/j.compgeo.2016.02.004

S. Yaghmaei-sabegh and H. Mohammad-alizadeh, Improvement of Iranian Seismic Design Code Considering the Near-Fault Effects, International Journal of Engineering, vol.25, issue.2 (C), p.147, 2012.
DOI : 10.5829/idosi.ije.2012.25.02c.08

T. Youd, I. Idriss, R. D. Andrus, I. Arango, G. Castro et al., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering, vol.127, issue.10, pp.817-833, 2001.
DOI : 10.1061/(ASCE)1090-0241(2001)127:10(817)

W. Zhang and A. T. Goh, Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression, Geomechanics and Engineering, vol.10, issue.3, pp.269-284, 2016.
DOI : 10.12989/gae.2016.10.3.269

W. Zhang, A. T. Goh, Y. Zhang, Y. Chen, and Y. Xiao, Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines, Engineering Geology, vol.188, pp.29-37, 2015.
DOI : 10.1016/j.enggeo.2015.01.009