Magma mixing in a granite and related rock association: insight from its mineralogical, petrochemical and reversed isotope features

Ding-Sheng Jiang, Xi-Sheng Xu, Yan Xia, Saskia Erdmann

To cite this version:

Magma Mixing in a Granite and Related Rock Association: Insight From Its Mineralogical, Petrochemical, and “Reversed Isotope” Features

Ding-Sheng Jiang1, Xi-Sheng Xu1, Yan Xia1, and Saskia Erdmann1,2

1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China, 2Now at Université d’Orléans–CNRS/INSU–ISTO–BRGM, UMR 7327, Orléans, France

Abstract Magma mixing commonly takes place between isotope-depleted mafic and enriched felsic magmas. Here we present isotopic evidence exhibiting the opposite behavior in the Early Cretaceous Siling complex (south China), which is composed of gabbro, quartz diorite, granodiorite, and alkali feldspar granite with locally many mafic microgranular enclaves. Field observations and zircon U-Pb dating indicate that all of the rock units crystallized contemporaneously at ca. 127–129 Ma. Mineralogical and petrochemical analyses indicate that the Siling quartz diorite and granodiorite crystallized from hybrid magmas of temporally and spatially coexisting gabbroic and granitic melts. The Siling gabbro, characterized by variable yet enriched Sr–Nd–Hf isotopic compositions ([87Sr/86Sr]t = 0.70788 to 0.70833; εNd(t) = −7.6 to −3.5; εHf(t) = −6.8 to −1.9), exhibits Th/Nb, Nb/Nb*, and Sm/Yb versus εNd(t) correlations, indicating that the gabbro represents variable mixing of magmas derived from deep-level pyroxenite and shallow-level peridotite sources. The Siling alkali feldspar granite, which has typical A-type characteristics, exhibits less enriched Sr–Nd–Hf isotopic signatures ([87Sr/86Sr]t = 0.70650; εNd(t) = −3.2 to −2.5; εHf(t) = −1.3) than the coexisting gabbro, indicating its derivation from the remelting of juvenile lower crust. “Reversed isotope” feature of the Siling gabbro and alkali feldspar granite means that the quartz diorite and granodiorite recorded “reversed isotope” mixing between isotopically enriched mafic and relatively depleted felsic magmas. The results indicate that the injection of mantle-derived mafic magma does not necessarily imprint relatively depleted isotopic signatures on the host felsic melt and that the vertical growth of the continental crust by the input of isotopically enriched magma should be concerned.

1. Introduction

Magma mixing between mafic and felsic melts is a common open-system process (e.g., Barbarin, 2005; Gagnevin et al., 2007, 2011; Griffin et al., 2002; Laumonier et al., 2014; Plail et al., 2018; Slaby & Martin, 2008; Ubide et al., 2014). Where macroscale evidence of magma mixing persists, isotopically depleted mafic magma in the form of syn-plutonic dykes or mafic microgranular enclaves (MMEs), and enriched felsic melt in the form of the host granitoids, are commonly identified (e.g., Cheng et al., 2012; Clemens & Stevens, 2016; Luo et al., 2015; Slaby & Martin, 2008; Zhang et al., 2016). In some examples, where the recharged and resident magmas have been thoroughly mixed, all macroscale evidence of mixing and whole-rock isotope heterogeneity may be obliterated (e.g., Appleby et al., 2008; Gagnevin et al., 2011; Griffin et al., 2002; Luo et al., 2015; Yang et al., 2013). Mixing of isotopically depleted mafic magma and enriched felsic magma is usually considered (e.g., Slaby & Martin, 2008; Stelten et al., 2013; Ubide et al., 2014; Zhang et al., 2016), resting on the assumption that mantle-derived mafic magmas are more isotopically depleted than crust-derived felsic melts (Barbarin, 2005; Cheng et al., 2012; Clemens & Stevens, 2016; Griffin et al., 2002; Slaby & Martin, 2008).

Isotopically enriched mafic rocks have, however, been identified in the North China Craton (e.g., Ma et al., 2014; Yang et al., 2004) and in the Pitcairn and Samoan islands (e.g., Eisele et al., 2002; Jackson et al., 2007), while isotopically depleted granitic rocks have been identified in the Central Asian Orogenic Belt (e.g., Jahn et al., 2000; Jahn, 2004; Wang et al., 2009) and in the Gangdese batholith (Tibet) (e.g., Chu et al., 2006; Chung et al., 2009). In some cases, intrusive or volcanic suites ranging from mafic through intermediate to felsic rocks show a trend of decreasing [87Sr/86Sr] ratios and increasing εNd(t) and εHf(t) values, along with increasing whole-rock SiO2 contents; that is, they show a “reversed isotope” character (Table 1; e.g., Coleman et al., 1992; Ratajeski et al., 2001; Su et al., 2011; Tomlinson et al., 2002; Xiang et al., 2017; Zhong et al., 2011). Systems with such reversed isotope characters commonly display clear evidence of magma mixing (e.g.,...
Coleman et al., 1992; Ratajeski et al., 2001; Xiang et al., 2017; Zhong et al., 2011). Waight et al. (2007) and Zhong et al. (2011) have reported two cases in which MMEs are more isotopically enriched than their granitic and syenitic hosts (Table 1).

This study documents an example of reversed isotope magma mixing in the Cretaceous Siling complex exposed in the Gan-Hang Belt, South China. Detailed field and petrographic observations, mineralogical and whole-rock elemental and isotopic analyses, and zircon U-Pb dating were carried out to characterize the ages, sources, and evolution of the gabbroic to granitic components. The results show that the isotopically relatively depleted felsic melt was recharged by and mixed with isotopically enriched mafic magma.

The study highlights that reversed isotope magma mixing should be considered for all well-mixed magma systems, where cryptic, mineral-scale evidence may persist.

2. Geological Setting and Petrography

The South China Block, which hosts the studied complex, is composed of two major blocks: the Yangtze block to the northwest and the Cathaysia block to the southeast (Figure 1a). These two blocks amalgamated during the Neoproterozoic along the Jiangshan-Shaoxing Fault to form the Jiangnan Orogeny (Li et al., 2008, 2009; Wang et al., 2008a; Xia et al., 2015, 2017). In Late Mesozoic, voluminous magmatism in the South China Block built a ~600 km wide belt of volcanic-intrusive complexes (Zhou et al., 2006; Zhou & Li, 2000). The magmatism is suggested to have been related to the subduction of the Paleo-Pacific plate toward the Eurasia continent (Li & Xu, 2012; Li et al., 2007; Sun et al., 2007; Zhou et al., 2006; Zhou & Li, 2000). Most studies have inferred that basaltic underplating played a key role in large-scale crustal partial melting (He & Xu, 2012; Liu et al., 2012, 2014; L. Liu et al., 2015; Zhou et al., 2006; Zhou & Li, 2000).

Late Mesozoic A-type granites, including the ones studied here, were emplaced along four major fault zones known as low-Nd-model-age belts (Gilder et al., 1991): the Nanling Belt, the Xiangguiyue Belt, the Gan-Hang Belt, and the Southeastern Coast Belt. The Siling complex forms part of the northeast Gan-Hang Belt (GHB), which extends for more than 450 km in a NNE-SSW direction (Figure 1a). Extensive extrusive and intrusive...
magmatic activity occurred in the GHB during the Early Cretaceous for available Ar-Ar, K-Ar, and zircon U-Pb data defining an age peak at ca. 130 Ma (Hu et al., 2017; Jiang et al., 2005, 2011; Peng et al., 2004; Qi et al., 2012, 2016; Shu et al., 2017; Sun et al., 2015; Wong et al., 2009; Xia et al., 2016; Xiang et al., 2017; Yang et al., 2012; L. Zhao et al., 2016; Zhou et al., 2013). The mafic magmatic rocks in the GHB are characterized
by variable isotopic compositions \([^{87}\text{Sr} / ^{86}\text{Sr}}\) = 0.70354–0.71086; \(\varepsilon_{\text{Nd}}(t) = -10.4 \text{ to } +6.6\); Table S6 in the supporting information; Jiang et al., 2011; Qi et al., 2012, 2016; Shu et al., 2017; Xia et al., 2016). Some granitic rocks contain MMEs (e.g., the Tonglu and Xiangshan complexes, and the Lingshan and Baijuhuajian granites), indicating the injection of juvenile mantle-derived components during their formation (Griffin et al., 2000; Jiang et al., 2005; Wong et al., 2009; Xiang et al., 2017; Zhou et al., 2013).

The Siling complex located in the GHB crops out northwest of Hangzhou City, where it is exposed over an area of \(\sim100 \text{ km}^2\) (Figure 1b; Geological Bureau of Zhejiang Province, 1967). The complex intrudes Sinian and Ordovician metasediments and Lower Cretaceous volcanic strata and is lithologically diverse, containing granite, granodiorite, subordinate quartz diorite, and gabbro. A prominent feature of the Siling complex is that it contains many enclaves in the granodiorite and alkali feldspar granite.

2.1. Siling Gabbros

The Siling gabbros, located in the central area of the complex, are massive and medium- to coarse-grained. Many millimeter-scale granite back-veins are developed within the gabbro (Figure 2a). The mineral assemblage of the massive gabbros is dominated by plagioclase (55 vol.%), amphibole (35 vol.%), clinopyroxene (5 vol.%), orthopyroxene (2 vol.%), and biotite (3 vol.%). Accessory minerals include titanite, ilmenite, titanite, and apatite. The abundance of amphibole is a notable feature of the gabbros (Figure 2b).

2.2. Siling Quartz Diorites and Granodiorites

Quartz diorites, and more commonly granodiorites, form irregular bodies with maximum dimensions of up to \(~5 \text{ km}\), with diffuse contacts between them. The quartz diorites are typically fine- to medium-grained and are composed of plagioclase (55 vol.%), K-feldspar (12 vol.%), amphibole (10 vol.%), quartz (10 vol.%), clinopyroxene (5 vol.%), and biotite (3 vol.%). Accessory minerals include titanite, apatite, zircon, and magnetite. The Siling granodiorites are mostly porphyritic and are characterized by euhedral plagioclase (20 vol.%), K-feldspar (10 vol.%), and minor quartz (5 vol.%). Phenocrysts in a matrix of 30 vol.% plagioclase, 12 vol.% quartz, 8 vol.% K-feldspar, 5 vol.% amphibole, and 5 vol.% biotite, with accessory zircon, titanite, apatite, and Fe-Ti oxides. Rapakivi K-feldspar phenocrysts with plagioclase mantles, poikilitic quartz phenocrysts with K-feldspar mantles (Figure 2c), and plagioclase or quartz phenocrysts rimmed by biotite are common.

Enclaves in the Siling granodiorite and alkali feldspar granite are typically fine-grained and equigranular to porphyritic. They are dark gray in color and range in size from \(<5 \text{ cm}\) to \(>10 \text{ cm}\) in the longest dimension (Figure 2d). The enclaves are mostly ellipsoid-ovoid, with sharp to diffuse contacts with their hosts. These enclaves contain the same mineral assemblages as their hosts but with more abundant amphibole, biotite, plagioclase, and euhedral, acicular apatite (Figures 2e and 2f) and less K-feldspar. Partially resorbed plagioclase and ocellar quartz xenocrystals (quartz rimmed by biotite; Figure 2g) are common constituents.

2.3. Siling Alkali Feldspar Granites

The Siling alkali feldspar granites, the main lithology of the Siling complex, are massive, fine- to medium-grained, and pale red in color. Their mineral assemblage is composed of perthitic K-feldspar (55 vol.%), quartz (30 vol.%), plagioclase (5 vol.%), and interstitial biotite (5 vol.%). Accessory minerals include zircon, apatite, monazite, allanite, fluorite, and Fe-Ti oxides. Fluorite aggregates (Figure 2h) and micrographic intergrowths of quartz and alkali feldspar (Figure 2i) are common.

3. Sampling and Analytical Methods

After petrographic examination, 22 fresh representative samples were selected, and their locations are shown in Figure 1b. All gabbro samples were collected from the center of the stock to minimize any effects of contamination by granitic material (i.e., by back-veins that are present near the external contact of the stock and/or diffusive exchange between gabbro and alkali feldspar granite). Samples with visible plagioclase and ocellar quartz xenocrystals were avoided when enclaves were selected for geochemical analyses. To characterize end-member compositions and magma mixing in the Siling complex, whole-rock and mineral-scale (zircon, plagioclase, biotite) major- and trace-element and isotopic composition analyses were carried out.
3.1. Electron Microprobe Analyses of Biotite and Plagioclase

The compositions of biotite and plagioclase were determined at the State Key Laboratory for Mineral Deposits Research, Nanjing University, using a JEOL JXA-8100 electron microprobe. The analyses were carried out at a 20 kV accelerating voltage, a 20 nA beam current, and with a focused (nominal 1 μm) beam. Mineral standards were natural amphibole (Al, Mg, Ca, Na, and K), fayalite (Si, Fe, and Mn), and synthetic TiO₂ (Ti). Matrix effects were automatically corrected using the ZAF software provided by JEOL.

3.2. Zircon U-Pb Dating

Zircon grains were separated by conventional magnetic and density techniques to determine U-Pb ages and Hf isotope composition. Internal textures of all zircon crystals were characterized by cathodoluminescence (CL) microscopy, obtained using a JEOL JSM-7000F scanning electron microscope at Nanjing Hongchuang Geological Technology Co. Ltd.

Zircon U-Pb dating was carried out using an Agilent 7500a inductively coupled plasma–mass spectrometry (ICP-MS) coupled to a New Wave Research 213 nm laser ablation system at the State Key Laboratory for Mineral Deposits Research, Nanjing University. Analyses were acquired at a beam diameter of 32 μm, a 5 Hz repetition rate, and an energy of 10–20 J/cm². Homogeneous zircon GEMOC GJ-1 (207Pb/206Pb age of...
608.5 ± 0.4 Ma and 206 Pb/238 U age of 599.8 ± 4.5 Ma; Jackson et al., 2004) was used as an external standard for mass bias and instrument drift correction (analyzed twice every 10 analyses). The Mud Tank zircon standard was used as an independent control (analyzed once every 10 analyses), which yielded a weighted mean 206 Pb/238 U age of 728 ± 6 Ma (2σ; MSWD = 0.69), which is consistent with the age determined by isotope dilution-thermal ionization mass spectrometer (732 ± 5 Ma; Black & Gulson, 1978).

3.3. Zircon Hf-Isotope Analysis

In situ Lu-Hf isotopic analysis of zircon was performed on the same grains and on the same or centrally symmetrical domains that were analyzed for U-Pb age dating. The analyses were carried out using a Neptune Plus Multicollector (MC)-ICP-MS attached to a New Wave ArF 193 nm laser ablation system at the State Key Laboratory for Mineral Deposits Research, Nanjing University. Zircon standard 91500 was analyzed to evaluate the reliability of the analyses, which yielded a weighted mean 176 Lu/177 Hf ratio of 0.282296 ± 8 (2σ; Goolaerts et al., 2004). The obtained 176 Lu/177 Hf ratios and the 176 Lu decay constant of 1.867 × 10^{-11} yr^{-1} (Söderlund et al., 2004) were used to calculate initial 176 Lu/177 Hf ratios. The chondritic values of 176 Lu/177 Hf = 0.0336 ± 1 and 176 Hf/177 Hf = 0.282785 ± 11 (2σ; Bouvier et al., 2008) were used for calculating ε Hf values. The depleted mantle Hf model ages (T_{DM}) were calculated using the measured 176 Lu/177 Hf ratios, referred to a model depleted mantle with a present-day 176 Hf/177 Hf = 0.283250 and with 176 Lu/177 Hf = 0.0384 (Griffin et al., 2000). Two-stage Hf model ages (T_{DM2}) were calculated by assuming a mean 176 Lu/177 Hf value of 0.015 for the average continental crust (Griffin et al., 2002).

3.4. Whole-Rock Major and Trace Element Analysis

Whole-rock major-element compositions were determined using a Thermo Scientific ARL9800XP + X-ray fluorescence spectrometer with a 50 kV accelerating voltage and a beam current of 50 mA at the State Key Laboratory for Mineral Deposits Research, Nanjing University. For major-element analyses, mixtures of whole-rock powders (0.5 g) and Li₂B₄O₇ + LiBO₂ + LiBr (11 g) were fused into glass disks. Loss on ignition (LOI) was determined by ignition at 1100°C for 10 h on 2 g of powder. Standard GSR-3 was used to monitor the analytical accuracy.

Trace element analysis of whole rocks was carried out at Nanjing FocuMS Technology Co. Ltd. About 40 mg powder was mixed with 0.5 mL HNO₃ and 1.0 mL HF in high-pressure PTFE bombs. These bombs were steel-jacketed and placed in the oven at 195°C for 48 h for mafic samples and 72 h for felsic samples. Rock digestion diluent was nebulized into Agilent Technologies 7700x quadrupole ICP-MS (Hachioji, Tokyo, Japan) to determine the trace element abundances. Deviation were better than ±10% for elements exceeding 10 ppm and better than ±5% for elements exceeding 50 ppm.

3.5. Whole-Rock Sr-Nd-Hf Isotope Analysis

Whole-rock Sr and Nd-Hf isotopes were measured using a Finnigan Triton TI thermal ionization mass spectrometer and a Neptune (Plus) MC-ICP-MS, respectively, at the State Key Laboratory for Mineral Deposits Research, Nanjing University, following the methods of Pu et al. (2005) and Yang et al. (2010). The Sr-Nd-Hf isotope compositions were normalized to 86 Sr/88 Sr = 0.1194, 146Nd/144Nd = 0.7219, and 176 Hf/177 Hf = 0.7325, respectively. During the analyses, every 10-sample analyses were followed by one standard measurement. Standards NBS-987, Jndi-1, and JMC-475 were used for Sr, Nd, and Hf isotopic measurements, respectively. Measured 87 Sr/86 Sr values for NBS-987, 143Nd/144Nd values for Jndi-1, and 176 Hf/177 Hf values for JMC-475 were 0.710248 ± 0.000004 (2σ), 0.512095 ± 0.000008 (2σ), and 0.282151 ± 0.000009 (2σ), respectively.

4. Results

4.1. Mineral Compositions

Biotites in the Siling alkali feldspar granite are annite-rich with X_{Fe} values [Fe^2+/(Fe^2+ + Mg)] of 0.67–0.69, and they are F-rich (2.8–3.3 wt.%; Table S1).

Representative plagioclase compositions of Siling quartz diorite and granodiorite are listed in Table S2 and illustrated in Figure 3. Plagioclase crystals in the more evolved Siling granodiorite sample (SL26) are texturally simple and of relatively homogeneous composition. They have an andesine composition (~An_{32-44}) with weak normal zoning. Plagioclase crystals in the quartz diorite and less-evolved granodiorite (SL46),
however, exhibit prominent core-rim zoning (Figures 3a and 3b) and commonly display sieve textures with abundant K-feldspar, biotite, and Fe-Ti oxide inclusions. The sieve-textured plagioclase cores in the quartz diorite and less-evolved granodiorite have andesine compositions (~An$_{32-46}$ and ~An$_{33-38}$, respectively), comparable with those of plagioclases in the more-evolved granodiorite. Rim zones in the sieve-textured plagioclase are more calcic, with labradorite to andesine compositions (An$_{29-64}$ and An$_{18-54}$, respectively; Figures 3a and 3b).

4.2. Zircon U-Pb Dating

Zircons in the dioritic MME (sample SL21) and quartz diorite (SL20) are moderately bright and prismatic in CL images, with weak oscillatory zoning (Figure 4f). Twenty spot analyses of zircons from the dioritic MME gave a weighted mean 206Pb/238U age of 128 ± 1 Ma (MSWD = 0.44; Figure 4a). Twenty-two spot analyses of zircons from the quartz diorite gave a weighted mean 206Pb/238U age of 127 ± 1 Ma (MSWD = 0.16; Figure 4b).

Zircons in the granodiorite show significant core-rim zoning in CL (Figure 4f). The rims are gray while the cores are black. For one sample (SL46), analyses of 34 crystals yielded a weighted mean 206Pb/238U age of 129 ± 1 Ma (MSWD = 0.10; Figure 4c). Zircons in the alkali feldspar granite are typically dark in CL, with pronounced oscillatory zoning (Figure 4f). For two samples (SL03, SL05), analyses of 17 grains from each yielded weighted mean 206Pb/238U ages of 129 ± 1 Ma (MSWD = 0.61; Figure 4d) and 129 ± 1 Ma (MSWD = 0.66; Figure 4e), respectively.

4.3. Zircon Hf Isotopic Compositions

Results of in situ analyses of Lu-Hf isotopes in zircons are given in Table 2 and Table S4 and illustrated in Figures 4f and 5. Zircon $\varepsilon_{Hf}(t)$ values range from −6.5 to −2.5 in dioritic MME and from −7.0 to +0.5 in quartz diorite, with weighted means of −4.2 ± 0.6 and −4.5 ± 0.6, respectively. Zircons from the Siling granodiorite and alkali feldspar granite exhibit less enriched Hf isotopic compositions with $\varepsilon_{Hf}(t)$ values of −6.1 to +0.8 and −3.4 to +4.0, with weighted means of −2.3 ± 0.6 and −1.2 ± 0.7, respectively.

4.4. Whole-Rock Major- and Trace-Element Compositions

The Siling gabbros have low SiO$_2$ (45–47 wt.%), high K$_2$O (1.5–2.5 wt.%), and high K$_2$O/Na$_2$O ratios (0.5–1.2). They are classified as shoshonitic and potassic (Figures S1a and S1b; Foley et al., 1987; Peccerillo & Taylor, 1976). They also have relatively high MgO contents (6.0–6.7 wt.%) but have low Mg numbers.
[Mg# = 30–32; Mg# = 100 \times \text{MgO}/(\text{MgO} + \text{FeO})\text{t}], reflecting their high Fe contents (FeO\text{t} = 13.1–14.9 wt.%). They display a relative enrichment in light-rare-earth-elements (LREE) over heavy-rare-earth-elements (HREEs), with weakly negative Eu anomalies (Eu/Eu* = 0.82–0.87; Figure S2e; Taylor & McLennan, 1985).

The Siling gabbros also have high contents of large-ion lithophile elements (LILE; Rb, K, and Pb), with significant negative Nb-Ta anomalies (Figure S2f; McDonough & Sun, 1995).

The quartz diorites and granodiorites have SiO\text{2} and total-alkali contents of 59–67 wt.% and 7.1–7.8 wt.% respectively. Enclaves in the granodiorite and alkali feldspar granite are respectively dioritic and

Figure 4. Zircon U–Pb concordia plots with weighted mean \(^{206}\text{Pb}/^{238}\text{U}\) ages for the Siling complex: (a) dioritic MME; (b) quartz diorite; (c) granodiorite; and (d, e) granite samples. All age data are within error (±1 Ma) of each other at 127–129 Ma. (f) CL images of representative zircons from the Siling complex. The small solid circles indicate the location of points for LA–ICPMS U–Pb dating. The large dashed circles indicate the location of LA–MC–ICPMS Hf isotopic analyses. Note that relict zircon cores (Figure 4f) in the Siling granodiorite (e.g., SL46–03) have age similar to the rims (e.g., SL46–02).
granodioritic in composition. All these rocks are predominantly classified as alkaline (Figure S1c; Wright, 1969) and are metaluminous to strongly peraluminous (Figure S1d), with A/CNK ratios of 0.82–1.26. In chondrite-normalized REE diagrams, they are characterized by moderate enrichment in LREE and nearly flat HREE, with moderately negative Eu anomalies (Eu/Eu* = 0.64–0.78; Figures S2a and S2c). They exhibit enrichment in LILE and moderate to pronounced negative anomalies in high-field strength elements (HFSE), including Ti, Nb, and Ta (Figures S2b and S2d).

The Siling alkali feldspar granites are characterized by high SiO2 (70–77 wt.%) and total alkali contents (~8.3–9.8 wt.%) and are thus classified as alkaline (Figure S1c). They contain 0.98–2.01 wt.% FeOt and <0.3 wt.% MgO and are therefore classified as ferroan (Fe# = 0.88–0.95). They are metaluminous to weakly peraluminous (A/CNK = 0.96–1.04; Figure S1d) and are characterized by typical seagull REE patterns (Figure S2e) marked by flat HREE and moderately steep LREE, with significantly negative Eu anomalies (Eu/Eu* = 0.02–0.41). They display enrichment in HFSE (Th, U, Zr, and Hf), Rb, and Pb; depletion in Ba, Sr, Eu, P, and Ti; and weakly negative Nb-Ta anomalies (Figure S2f).

Overall, the Siling gabbros, quartz diorites, granodiorites, and alkali feldspar granites define coherent and linear geochemical trends for most selected major and trace elements (Figure S3).

4.5. Whole-Rock Sr-Nd-Hf Isotopes

Whole-rock Sr-Nd-Hf isotopic compositions for the Siling complex are listed in Tables 2 and 3 and illustrated in Figure 6. For the Siling gabbros, 87Sr/86Sr ratios are 0.70853–0.70889 with (87Sr/86Sr)i ratios of 0.70788–0.70833. Their (143Nd/144Nd)i ratios show considerable variation, with a range of 0.512078–0.512285, corresponding to εNd(t) values of /C0 7.6 to /C0 3.5. Initial 176Hf/177Hf ratios have a range of 0.282501–0.282638, corresponding to εHf(t) values of /C0 6.8 to /C0 1.9.

The Siling quartz diorites, granodiorites, and enclaves also show wide ranges of Sr-Nd isotopic compositions, with (87Sr/86Sr)i ratios of 0.70606–0.70878 and (143Nd/144Nd)i ratios of 0.512194–0.512287, corresponding to εNd(t) values of /C0 5.3 to /C0 3.5. The (176Hf/177Hf)i ratio of one granodiorite sample (SL46) is 0.282617, corresponding to an εHf(t) value of −2.7.

The least-evolved Siling alkali feldspar granite sample (SL28) has a (87Sr/86Sr)i ratio of 0.70560 with a relatively low (176Hf/177Hf)i ratio. The whole-rock εNd(t) values of the Siling alkali feldspar granites are relatively uniform, ranging from −3.2 to −2.5. The (176Hf/177Hf)i ratio of sample SL03 (from which the in situ zircon Hf isotopic composition was determined) is 0.282656, corresponding to an εHf(t) value of −1.3.

The whole-rock Sr-Nd-Hf isotopic compositions of the Siling gabbros are thus more enriched than those of the coexisting granites, highlighting the reversed isotope character of the complex (Figure 6).

5. Discussion

5.1. Ages of Rock Units in the Siling Complex

The Siling alkali feldspar granite has been previously dated at 89.8–93.4 Ma by the K-Ar method for biotite (Lu et al., 2008). According to our new LA-ICP-MS zircon U-Pb age data, the Siling alkali feldspar granite should form at ca. 129 Ma, consistent with recent dating results (131.0 ± 3.0 Ma; Wu et al., 2012). The 90–93 Ma biotite age is thus interpreted as recording a later thermal disturbance of the K-Ar isotopic system due to its low closure temperature (300°C–350°C; Harrison et al., 1979; Lee et al., 1997). The inferred granite crystallization age of ca. 130 Ma closely compares to that of other spatially associated granites (135–126 Ma; Figure 1a; Jiang et al., 2011; Li...
et al., 2013; Sun et al., 2015; Wong et al., 2009; Xia et al., 2016; Xiang et al., 2017; Yang et al., 2012; Zhou et al., 2013).

Zircon U-Pb ages of the quartz diorite and granodiorite (127–129 Ma) are indistinguishable from the alkali feldspar granite ages; that is, they are ~127–129 Ma, which is consistent with their field relations, including gradational contacts between the granitic units. Small-scale granite back-veins in the Siling massive gabbro (Figure 2a) further indicate that the Siling gabbro and alkali feldspar granite were emplaced contemporaneously (Barbarin, 2005), thereby highlighting the temporal relationships among rock units in the Siling complex.

5.2. Magma Mixing and the Origin of Quartz Diorite and Granodiorite

5.2.1. Genesis of the Enclaves
Enclaves hosted by the Siling granodiorite and alkali feldspar granite have fine-grained igneous textures (Figure 2e) and locally quenched margins. They yield a crystallization age similar to that of their host rocks (ca. 128 Ma; Figures 4a and 4b), thus precluding the possibility that they represent crustal xenoliths (cf. Maas et al., 1997; Xu et al., 2006) or restites (cf. Chappell & Wyborn, 2012; Vernon, 2007). Their distinct Sr-Nd-Hf isotopic compositions relative to their host rocks also preclude the possibility that they represent autoliths (cf. Donaire et al., 2005). Acicular apatite in the enclaves (Figure 2f) indicates relatively rapid crystallization (quenching). Felsic xenocrysts such as partially resorbed plagioclase and ocellar quartz (Figure 2d) are interpreted to have been mechanically captured by the enclave magma (Cheng et al., 2012; Plail et al., 2018; Ubide et al., 2014; Zhang et al., 2016), suggesting that the Siling enclaves were formed by the injection of relatively mafic magma into granitic melt. The injected mafic magma would have undergone rapid crystallization in the relatively cool felsic host melt.

5.2.2. Formation of Quartz Diorite and Granodiorite
Both the presence of dioritic MMEs and the uniform ages of all the units of the Siling complex are consistent with the quartz diorite and granodiorite having been formed by the mixing of gabbroic and granitic magmas. Evidence of such a hybrid origin includes the following. First, there is ample evidence of mineral-scale disequilibrium or significant core-rim mineral zoning, such as rapakivi K-feldspar, quartz mantled by K-feldspar (Figure 2c), sieve-textured plagioclase (Figure 3), and core-rim zoned zircons (Figure 4f; cf. Ma et al., 2017; Wang et al., 2008b; Xu et al., 1999; Zhang et al., 2016). Second, Sr-Nd-Hf isotopic signatures are intermediate between those of gabbro and alkali feldspar granite (Table 3; Figure 6). Third, the diorite and granodiorite show highly variable zircon Hf isotopic compositions ($\varepsilon_{\text{Hf}}(t) = -7.0$ to $+0.5$ and -6.1 to $+0.8$, respectively; Tables S4 and 2 and Figures 5a and 5c; Gagnevin et al., 2011; Griffin et al., 2002; Shaw & Flood, 2009; Shaw et al., 2011; Stelten et al., 2013). Fourth, there is a sharp increase in plagioclase An contents from resorbed, sieve-textured sodic cores (\simAn$_{32-46}$–\simAn$_{19-32}$) to normally zoned calcic rims (An$_{19-64}$–An$_{17-52}$, Figures 3a and 3b). Fifth, linear trends are observed in most whole-rock major- and trace-element contents (Figure 5; Plail et al., 2018). Mass-balance calculations (Figure 7) indicate that quartz diorite and granodiorite can be produced by the mixing of Siling gabbroic and granitic magmas in the approximate proportions of 55:45 to 88:12. Some mixing/mingling may have taken place in upper

Figure 5. Histogram of $\varepsilon_{\text{Hf}}(t)$ values for zircons from the (a) Siling quartz diorite, (b) dioritic MME, (c) granodiorite, and (d) alkali feldspar granite. Zircons from the Siling quartz diorite and dioritic MME show more enriched Hf isotopic compositions than those from the granodiorite and alkali feldspar granite.
Table 3
Sm-Nd and Rb-Sr Isotopic Compositions of the Gabbros, Quartz Diorites, MMEs, Granodiorites, and Alkali Feldspar Granites From the Siling Complex

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂ wt.%</th>
<th>Sm (ppm)</th>
<th>Nd (ppm)</th>
<th>147Sm/144Nd</th>
<th>143Nd/144Nd</th>
<th>εNd(t)</th>
<th>TDM2 (Ma)</th>
<th>Rb (ppm)</th>
<th>87Rb/86Sr</th>
<th>87Sr/86Sr</th>
<th>87Sr/86Sr TDM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Siling gabbros</td>
<td></td>
</tr>
<tr>
<td>SL39</td>
<td>45.33</td>
<td>5.07</td>
<td>21.0</td>
<td>0.1465</td>
<td>0.512323 ± 2</td>
<td>0.512201</td>
<td>-5.2</td>
<td>1319</td>
<td>75.8</td>
<td>544</td>
<td>0.41</td>
</tr>
<tr>
<td>SL40</td>
<td>45.00</td>
<td>4.92</td>
<td>21.1</td>
<td>0.1414</td>
<td>0.512403 ± 10</td>
<td>0.512285</td>
<td>-3.5</td>
<td>1191</td>
<td>97.4</td>
<td>570</td>
<td>0.50</td>
</tr>
<tr>
<td>SL41</td>
<td>46.68</td>
<td>4.05</td>
<td>18.1</td>
<td>0.1362</td>
<td>0.512330 ± 4</td>
<td>0.512217</td>
<td>-4.9</td>
<td>1307</td>
<td>81.1</td>
<td>611</td>
<td>0.39</td>
</tr>
<tr>
<td>SL42</td>
<td>46.70</td>
<td>4.34</td>
<td>19.8</td>
<td>0.1334</td>
<td>0.512189 ± 3</td>
<td>0.512078</td>
<td>-7.6</td>
<td>1531</td>
<td>78.3</td>
<td>774</td>
<td>0.30</td>
</tr>
<tr>
<td>SL43</td>
<td>45.60</td>
<td>4.49</td>
<td>19.8</td>
<td>0.1390</td>
<td>0.512257 ± 5</td>
<td>0.512141</td>
<td>-6.4</td>
<td>1423</td>
<td>79.8</td>
<td>633</td>
<td>0.37</td>
</tr>
<tr>
<td>SL44</td>
<td>46.19</td>
<td>4.03</td>
<td>18.0</td>
<td>0.1362</td>
<td>0.512192 ± 3</td>
<td>0.512079</td>
<td>-7.6</td>
<td>1526</td>
<td>102</td>
<td>818</td>
<td>0.37</td>
</tr>
<tr>
<td>SL45</td>
<td>45.15</td>
<td>4.74</td>
<td>20.1</td>
<td>0.1433</td>
<td>0.512367 ± 4</td>
<td>0.512248</td>
<td>-4.3</td>
<td>1249</td>
<td>84.7</td>
<td>737</td>
<td>0.34</td>
</tr>
<tr>
<td>The Siling quartz diorites and granodiorites</td>
<td></td>
</tr>
<tr>
<td>SL20</td>
<td>59.29</td>
<td>7.09</td>
<td>35.4</td>
<td>0.1216</td>
<td>0.512388 ± 3</td>
<td>0.512287</td>
<td>-3.5</td>
<td>1215</td>
<td>142</td>
<td>502</td>
<td>0.83</td>
</tr>
<tr>
<td>SL23</td>
<td>63.44</td>
<td>7.74</td>
<td>39.6</td>
<td>0.1188</td>
<td>0.512305 ± 5</td>
<td>0.512207</td>
<td>-5.1</td>
<td>1346</td>
<td>142</td>
<td>350</td>
<td>1.19</td>
</tr>
<tr>
<td>SL46</td>
<td>66.10</td>
<td>5.57</td>
<td>29.6</td>
<td>0.1143</td>
<td>0.512320 ± 5</td>
<td>0.512225</td>
<td>-4.7</td>
<td>1323</td>
<td>139</td>
<td>430</td>
<td>0.95</td>
</tr>
<tr>
<td>SL26</td>
<td>67.20</td>
<td>4.93</td>
<td>27.0</td>
<td>0.1109</td>
<td>0.512287 ± 2</td>
<td>0.512194</td>
<td>-5.3</td>
<td>1376</td>
<td>117</td>
<td>448</td>
<td>0.76</td>
</tr>
<tr>
<td>The Siling MMEs</td>
<td></td>
</tr>
<tr>
<td>SL21</td>
<td>54.79</td>
<td>9.46</td>
<td>48.9</td>
<td>0.1175</td>
<td>0.512337 ± 3</td>
<td>0.512239</td>
<td>-4.4</td>
<td>1296</td>
<td>114</td>
<td>426</td>
<td>0.78</td>
</tr>
<tr>
<td>SL15</td>
<td>60.86</td>
<td>13.2</td>
<td>53.3</td>
<td>0.1503</td>
<td>0.512324 ± 3</td>
<td>0.512199</td>
<td>-5.2</td>
<td>1317</td>
<td>337</td>
<td>188</td>
<td>5.25</td>
</tr>
<tr>
<td>SL13</td>
<td>65.75</td>
<td>29.9</td>
<td>105</td>
<td>0.1723</td>
<td>0.512419 ± 5</td>
<td>0.512276</td>
<td>-3.7</td>
<td>1166</td>
<td>138</td>
<td>75.8</td>
<td>53.5</td>
</tr>
<tr>
<td>The Siling alkali feldspar granites</td>
<td></td>
</tr>
<tr>
<td>SL28</td>
<td>70.25</td>
<td>7.38</td>
<td>42.6</td>
<td>0.1053</td>
<td>0.512426 ± 3</td>
<td>0.512338</td>
<td>-2.5</td>
<td>1155</td>
<td>198</td>
<td>66.8</td>
<td>8.69</td>
</tr>
<tr>
<td>SL02</td>
<td>74.91</td>
<td>9.18</td>
<td>43.7</td>
<td>0.1277</td>
<td>0.512412 ± 7</td>
<td>0.512304</td>
<td>-3.1</td>
<td>1178</td>
<td>379</td>
<td>22.0</td>
<td>5.04</td>
</tr>
<tr>
<td>SL03</td>
<td>73.64</td>
<td>10.6</td>
<td>51.0</td>
<td>0.1260</td>
<td>0.512408 ± 6</td>
<td>0.512302</td>
<td>-3.2</td>
<td>1184</td>
<td>297</td>
<td>43.3</td>
<td>20.1</td>
</tr>
<tr>
<td>SL04</td>
<td>75.84</td>
<td>8.40</td>
<td>41.8</td>
<td>0.1221</td>
<td>0.512432 ± 9</td>
<td>0.512329</td>
<td>-2.6</td>
<td>1145</td>
<td>392</td>
<td>14.4</td>
<td>79.7</td>
</tr>
<tr>
<td>SL05</td>
<td>76.61</td>
<td>7.50</td>
<td>31.5</td>
<td>0.1447</td>
<td>0.512432 ± 8</td>
<td>0.512310</td>
<td>-3.0</td>
<td>1146</td>
<td>410</td>
<td>12.5</td>
<td>96.1</td>
</tr>
<tr>
<td>SL06</td>
<td>76.10</td>
<td>8.75</td>
<td>35.9</td>
<td>0.1480</td>
<td>0.512449 ± 8</td>
<td>0.512324</td>
<td>-2.8</td>
<td>1119</td>
<td>473</td>
<td>12.4</td>
<td>112</td>
</tr>
</tbody>
</table>

...larger text...

5.3. Origin of the Mafic End-Member
5.3.1. Role of Crustal Contamination
The Siling gabbros are characterized by low SiO₂ (45–47 wt.%) and moderately high MgO (6.0–6.7 wt.%) contents. However, they display "crust-like" trace-element and isotopic signatures, including enrichment in LILE (Rb, Ba, K) and Pb, depletion in Nb-Ta, low Ce/Pb (3–6) and Nb/U (9–15) ratios, high (87Sr/86Sr) ratios (0.70788–0.70833), and low and variable εNd(t) (−7.6 to −3.5) and εHf(t) (−6.8 to −1.9) values, possibly reflecting high degrees of crustal contamination or assimilation.
Two possible crustal contamination scenarios are depicted in Figure 9, where depleted mantle-derived magmas are contaminated by different rocks with variable Sr-Nd-Nb compositions and Nb/U ratios. In both scenarios, exceptionally high degrees of contamination or assimilation (65–90 wt.%) would be required to account for the isotopic compositions, Nb/U ratios, and Nb contents of the Siling gabbro. Contamination by, or assimilation of, such large amounts of crust is thermally implausible (Glazner, 2007) and would have significantly modified the major- and trace-element compositions (other than Nb and U) of the gabbro, which is not observed. A lack of correlation between Sr-Nd-Hf isotopic ratios and Ce/Pb and Nb/U ratios for the Siling gabbro (not shown) also precludes significant crustal contamination. Further, the wide range of isotopic compositions of the Siling gabbro cannot be explained simply by variable silicate and/or carbonate crustal contamination, because the isotopically least enriched gabbro sample (SL40) has SiO₂, MgO, and CaO contents similar to those of the most enriched sample (SL42; Table S5).

Xia et al. (2017) proposed that the Hangzhou and surrounding areas (Figure 1a) where the Siling complex is exposed were in an intraoceanic arc zone during the Neoproterozoic amalgamation between the Yangtze and Cathaysia blocks, lacking pre-Neoproterozoic basement rocks. This would mean that basement rocks in the Siling area had been isotopically depleted until ~130 Ma when extensive magmatism commenced in the region (e.g., Li et al., 2009; Xia et al., 2017). The crust-like trace-element and isotope character of the Siling gabbro is thus chiefly ascribed to inheritance from its mantle source, although its heterogeneous Sr-Nd-Hf isotopic compositions suggest contributions from more than one source.

5.3.2. Nature of the Mafic Magma Sources

The Sr-Nd-Hf isotopic compositions of the Siling gabbro [(87Sr/86Srτ128Ma = 0.70788; εNd(128 Ma) = –6.8 to –1.9)] are significantly more enriched than those of depleted mantle (DM) [(87Sr/86Srτ128Ma = 0.70258; εNd(128 Ma) = +9.3; εHf(128 Ma) = +15.9; Workman & Hart, 2005), thereby precluding its derivation solely from the partial melting of depleted mantle peridotite. The abundance of amphibole in the Siling gabbro (Figure 2e) attests to a high initial H₂O content in the mafic magma, with 4–6 wt.% H₂O at a crystallinity of up to 30 vol.% (Pichavant et al., 2002), further supporting this interpretation (H₂OMORB < 0.5 wt.%; Kelley et al., 2006). Although crystal fractionation of anhydrous minerals may have elevated the H₂O content of the Siling gabbro, initial melts with high H₂O contents would be required. In addition, the available petrographical observations, significant LILE and LREE enrichment, and enriched Sr-Nd-Hf isotopic compositions require a volatile-rich, K₂O-rich, and isotopically enriched mantle source (cf. Guo et al., 2015; Lu et al., 2013; Ma et al., 2013; Yang et al., 2004).

Mafic shoshonitic igneous rocks such as the Siling gabbro (Figure S1a) are considered to be typically derived from partial melting of a metasomatized, enriched subcontinental lithospheric mantle (SCLM) (e.g., Guo et al., 2015; D. Liu et al., 2015; Lu et al., 2013). Volatile-bearing minerals such as phlogopite and/or amphibole are the major repositories for LILE in the lithospheric mantle (Foley et al., 1996; Ionov et al., 1997). Experimental studies have verified that reactions between partial melts or fluids derived from subducted eclogite-facies crustal rocks and surrounding mantle peridotite produce phlogopite- and/or amphibole-bearing pyroxenite (i.e., veined “metasomes”; Dasgupta et al., 2007; Herzberg, 2011; Herzberg et al., 2014; Kokfelt et al., 2006; Prelevič et al., 2013; Sobolev et al., 2005, 2007). The high concentrations of LILE, LREE, and volatiles that characterize shoshonitic igneous suites are assumed to have been introduced into their mantle source in this way. Partial melting of such a “hybridized” mantle source generates shoshonitic

Figure 6. (a) SiO₂ versus (87Sr/86Sr); (b) SiO₂ versus εNd(t); and (c) SiO₂ versus εHf(t) plots for the Siling gabbro, MME, quartz diorite, granodiorite, alkali feldspar granite, and spatially and temporally related mafic and granitic rocks. The rocks from the Siling complex show a broad inverse relationship between feldspar granite, and spatially and temporally related ma and solid lines in Figure 6c represent in situ εef(t) values for zircon and whole-rock εef(t) values, respectively. Data sources for coeval mafic rocks (Table S6) and A-type granites are as in Figure 1.
mafic magmas with relatively high K$_2$O, H$_2$O, and LILE contents and enriched Sr-Nd-Hf isotopic signatures relative to magmas derived from pure mantle peridotite (Herzberg, 2011; Sobolev et al., 2005, 2007). All these compositional characteristics apply to the Siling gabbro. Its significant depletions in Nb and Ta is, moreover, a characteristic fingerprint of subduction-zone magmatism (e.g., Duggen et al., 2005; Zeng et al., 2016), and its strong enrichment in Pb relative to Ce, and the resulting positive Pb anomalies and low

![Figure 7](image_url)

Figure 7. Whole-rock mixing test for major elements using mass-balance calculations of the type $C_h = C_f \times X_f + C_m \times (1 - X_f)$ (where C_h is the concentration of element i in the hybrid magma, C_m is the composition of the mafic end-member, C_f is the composition of the felsic end-member, and X_f is the mass fraction of the felsic end-member magma). The average composition of the Siling gabbro samples was used as the mafic end-member and the least-evolved composition of the Siling alkali feldspar granite sample (SL28) as the felsic end-member. The major-element compositions of the quartz diorite and granodiorite plot on a straight line that passes through the origin, indicating that they were formed by mixing of the modeled end-member magmas. The red line represents the theoretical straight line. Proportions of the felsic end-member in the rocks are 55%–88% for the quartz diorite and granodiorite. Some of the whole-rock scatter may have resulted from crystal-liquid fractionation of both end-member magmas and/or more complex mixing behavior (Zhang et al., 2016).
Ce/Pb ratios (3–6), likely reflects the contribution of pelagic sediment in its source (Plank, 2014). It is therefore concluded that the mafic magma parent of the Siling gabbro was formed through partial melting of a pyroxenite-bearing enriched SCLM that was previously modified by Neoproterozoic subduction-related metasomatism (e.g., Wang et al., 2015).

As discussed above, isotopic variations in the Siling gabbro cannot be explained by crustal contamination or assimilation and most likely reflect mantle-inherited heterogeneity. Mantle heterogeneity, even on a meter-scale, has long been invoked to explain isotopic diversity between and within igneous suites (Borghini et al., 2013; Herzberg, 2011; Herzberg et al., 2014; Hofmann, 2003; Sobolev et al., 2005, 2007; Zeng et al., 2017), due to partial melting of pyroxenite-rich to depleted peridotite mantle sources (e.g., Kokfelt et al., 2006; Shorttle et al., 2014; Stracke & Bourdon, 2009; Zhang et al., 2012). The Siling gabbro displays decreasing Th/Nb and increasing Nb/Nb* ratios with increasing εNd(t) values (Figures 10a and 10b). Similar correlations have been observed for Icelandic basalts (Kokfelt et al., 2006; Stracke & Bourdon, 2009) and East Pacific Rise basalts (Zhang et al., 2012), which are considered to record partial melting of a heterogeneous mantle source (Kokfelt et al., 2006; Stracke & Bourdon, 2009; Zhang et al., 2012).

High Th/Nb and low Nb/Nb* ratios are typical signatures of continental crust (Rudnick & Gao, 2003), and variations in Sr-Nd-Hf isotopic compositions reflect distinct source components. The progression to less continental crust-like Th/Nb and Nb/Nb* ratios along with more depleted Nd isotopic signatures (Figures 10a and 10b) suggests that the contribution of enriched components decreased systematically. Additionally, the isotopically less enriched gabbro evolved with lower Sm/Yb ratios (Figure 10c), implying partial melting of distinct sources at different mantle levels (e.g., Zhang et al., 2012). Due to the more fusible nature and lower solidus, for an upwelling hybridized mantle composed of pyroxenite and peridotite, melting would
Figure 9. (a) $\varepsilon_{Nd}(t)$ versus $^{87}\text{Sr} / ^{86}\text{Sr}$ ratio diagram and (b) Nb/U versus Nb diagram for assessing the role of crustal contamination in the formation of the Siling gabbro. The compositions of end-members or components assumed for diagenesis for assessing the role of crustal contamination in the formation of the rhyolitic volcanic rock (sample X9 (Qi et al., 2016). (2) The Early Proterozoic basement (granulite and schist; Yuan Quzhou ma (Chen & Xing, 2016) are assumed to be represented contaminants. (3) For the Shuangxiwu group (Li et al., 2009), and the Paleoproterozoic Dongling complex intrusions in Figure 9b, $\text{Nb} = 16.4$–116ppm and Nb/U = 58.3–58.6. (4) The Early Proterozoic Shuangxiwu sample 04ZJ67 with the lowest Nb content (2.58 ppm) and Nb/U ratio (5.0; Li et al., 2009) is expressed by the pink star in Figure 9b. The composition of the southeastern China lithospheric mantle is assumed to be represented by the Tieshan and Yangfang syenites (Wang et al., 2005). Compositions of subduction-zone hydrous melts are from Kessel et al. (2005). Data sources for coeval ma rocks (Table S6) and A-type granites are as in Figure 1.

5.4. Origin of the Felsic End-Member
5.4.1. A-Type Affinity
The Siling alkali feldspar granite is classified as a typical aluminous A-type granite because of its (1) high whole-rock 10,000 \times Ga/Al ratios and Zr + Nb + Ce + Y concentrations (Whalen et al., 1987; Figure 11); (2) high zircon saturation temperatures ($T_Z = 773$–799°C; Boehnke et al., 2013) (King et al., 2001); (3) high total alkali and HFSE concentrations (Frost et al., 2001); and (4) ferroan whole-rock composition (Table S5) and Fe- and F-rich biotite (Table S1; Frost & Frost, 2010). The petrogenesis of A-type granite is still debated (e.g., Barker et al., 2013; Huang et al., 2011; Namur et al., 2011; Papoutsa et al., 2016; Xu & Tang, 2017; Yang et al., 2017), but it is generally accepted that it represents high-temperature magma that crystallized at relatively low melt-H_2O concentrations (Bonin, 2007; Creaser et al., 1991; Collins et al., 1982; Frost et al., 2001; Frost & Frost, 2010; King et al., 1997, 2001).

5.4.2. Genesis of the Alkali Feldspar Granite
The Siling alkali feldspar granite exhibits Nd-Hf isotopic compositions ($\varepsilon_{Nd}(t) = -3.2$ to -2.5; $\varepsilon_{Hf}(t)_{\text{whole-rock}} = -1.3$) closely approaching those of the isotopically least enriched Siling gabbro sample in the present study (sample SL40; $\varepsilon_{Nd}(t) = -3.5$; $\varepsilon_{Hf}(t)_{\text{whole-rock}} = -1.9$), suggesting that the two rock types are petrogenetically related. The Siling A-type granite may thus have formed through extreme fractional crystallization from the isotopically least enriched gabbroic magma (cf. Mushkin et al., 2003; Namur et al., 2011; Zhong et al., 2011), or partial melting of juvenile lower crust rocks with isotopic compositions similar to those of the exposed Siling gabbro (represented by sample SL40; cf. Ratajeski et al., 2001; Ratajeski et al., 2005; Tang et al., 2014; Wenner & Coleman, 2004). However, anhydrous granite cannot be derived by fractional crystallization from such hydric mafic magma (sample SL40, 4–6 wt.% H_2O; Pichavant et al., 2002). Granitic magma derived by fractional crystallization from such a mafic parent would have higher or equivalent H_2O concentrations (Annen et al., 2006; Claeson & Meurer, 2004).

In contrast, the A-type affinity of the Siling granitic magma indicates that it had a low H_2O content (cf. Bonin, 2007; Frost et al., 2001; Frost & Frost, 2010; King et al., 1997; Whalen et al., 1987). The absence of large volumes of mafic cumulates in the Siling area is also consistent with the interpretation that Siling-type mafic magma was not the parental magma for fractional crystallization of the Siling alkali feldspar granite.

The following model of granite genesis is therefore proposed. The Siling alkali feldspar granite parental magma was produced by partial melting of juvenile mafic lower crust that is isotopically comparable with

commence with the deeper pyroxenite (Lambart et al., 2009). The observed correlations between trace-element and isotopic compositions therefore indicate that the mafic magma parent of the Siling gabbro represents a variable mixture of magmas derived from diverse mantle sources, melting at different levels. Nevertheless, simple binary mixing models indicate that pyroxenite-derived melt may contribute up to 85 wt.% of the magma (Figure 10d). Sr isotopes diffuse more quickly and more efficiently than Nd-Hf isotopes during mixing (Lesher, 1990; Menzies & Murthy, 1980), so the latter tend to better record mantle source heterogeneity, which is consistent with their greater variability than that of Sr isotopes in the Siling gabbro (Table 3; Figure 6). The Siling gabbro thus reveals the existence of an enriched SCLM during the Mesozoic in south China (e.g., Wang et al., 2005), at least beneath the GHB.
Figure 10. Correlations of $\varepsilon_{\text{Nd}}(t)$ values with (a) Th/Nb, (b) Nb/Nb*, and (c) Sm/Yb ratios. (d) $\varepsilon_{\text{Nd}}(t)$ versus ($^{87}\text{Sr}/^{86}\text{Sr}$) diagram for the Siling gabbro. The average Sr and Nd isotopic compositions of the Longyou ultramafic intrusions (Qi et al., 2016) are used to represent the isotopic compositions of the asthenosphere mantle-derived melts. The enriched end-members are represented respectively by the average compositions of the Shengyuan trachyandesitic rocks (Shu et al., 2017) and the isotopically most enriched mafic dyke sample HSY1 from the GHB (Qi et al., 2012). Data sources for coeval mafic rocks (Table S6) are as in Figure 1.

Figure 11. (a) (K$_2$O/MgO), (b) (Na$_2$O + K$_2$O)/CaO, (c) Nb, and (d) (Zr + Nb + Ce + Y) versus 10,000 × Ga/Al discrimination diagrams (after Whalen et al., 1987), showing A-type affinity of the Siling alkali feldspar granite. Data sources for coeval A-type granites as in Figure 1. Data for I-type granitic rocks in the area that predate the ~129 Ma A-type granites are from L. Zhao et al. (2016) and Zhou (2016).
the least enriched gabbro sample (SL40). At an early stage of magmatism, most of the mantle-derived magma was emplaced in the deep crust, forming juvenile lower crust. Continued injection of mantle-derived magmas led to partial melting of crystallized juvenile lower crust to produce slightly earlier I-type granitic melt, such as the Tianmushan basin volcanic rocks (136–130 Ma; L. Zhao et al., 2016) and the Xianxia and Tonglizhuang granites (131–132 Ma; Wu et al., 2012; Zhou, 2016; Figure 11), after incubation for tens to hundreds of kiloyears of magmatism in the area (Annen et al., 2006; Blundy & Annen, 2016). Then the dehydrated granulitic restite source after extraction of I-type granitic melts further melted under higher temperatures to produce relatively anhydrous, high-temperature, and F-rich granitic melt (Collins et al., 1982; Huang et al., 2011; King et al., 2001; Landenberger & Collins, 1996; Whalen et al., 1987; J. L. Zhao et al., 2016). The resulting A-type granitic melt ascended to the exposed upper crust where the Siling alkali feldspar granite was formed, coupled with the fractional crystallization of plagioclase and K-feldspar (Figure 12). This view is in accordance with the lack of inherited zircons in the Siling alkali feldspar granite. Its high-temperature, F-rich character (indicated by the presence of fluorite aggregates, Figure 2b, and F-rich biotites, Table S1) may have lowered the magma viscosity sufficiently for efficient mixing with coexisting gabbroic magma (Annen et al., 2006; González-García et al., 2017).

6. Implications

Magma mixing commonly takes place between isotopically depleted mafic and enriched felsic magmas. Almost all mafic-felsic magma mixing models thus assume a more depleted composition for the mafic end-member in thoroughly mixed magmatic systems (e.g., Barbarin, 2005; Fodor & Johnson, 2016; Laumonier et al., 2014; Luo et al., 2015; Schleicher et al., 2016; Slaby & Martin, 2008; Ubide et al., 2014). However, as shown here for the Siling complex and in other studies (e.g., Coleman et al., 1992; Ratjeski et al., 2001; Waight et al., 2007; Xiang et al., 2017; Zhong et al., 2011; Table 1), reversed isotope magma mixing may also occur. The important implication of this type of magma mixing is that it may account not only for whole-rock but also for mineral-scale compositional trends that may at first sight require complex assimilation-fractional-crystallization (AFC) processes (e.g., the direct addition of enriched mantle-derived magmas versus magma recharge, combined with crustal assimilation).

For example, plagioclase phenocrysts with high-An content, high-(87Sr/86Sr), and low-An content, low-(87Sr/86Sr), zones that is, crystals that record reversed isotope zoning (also referred to as decoupling between isotopic and chemical variations; Ginibre and Davidson, 2014), are characteristic of many phenocrysts erupted at arc volcanoes and crystals present in intrusive igneous rocks. Examples of this include andesite at Merapi (Chadwick et al., 2007), dacite at Capraia Volcano (Gagnevin et al., 2007), trachyandesite at El Chichón (Andrews et al., 2008; Davidson et al., 2001; Teply et al., 2000), dacite at Parinacota (Ginibre & Davidson, 2014), anorthosite in the Bushveld Complex (Yang et al., 2013), and hawaiite at Skye Volcano (Font et al., 2008). The zonation in plagioclase is commonly assumed to record crustal assimilation (e.g., Borisova et al., 2013; Chadwick et al., 2007; Deegan et al., 2010), but reversed isotope magma mixing may...
serve as an alternative explanation, which should at least be considered along with AFC models. High-An content, high-(87Sr/86Sr) zones in plagioclase phenocrysts may represent zones that have crystallized from isotopically enriched mafic magma, whereas low-An content, low-(87Sr/86Sr) zones may record the injection of isotopically relatively depleted, less-mafic melt. Mixing of compositionally contrasting magmas has been indeed identified in all volcanic magma systems in which plagioclase exhibits prominent reversed isotope zoning, including Merapi (Costa et al., 2013; Erdmann et al., 2016), Capraia Volcano (Gagnevin et al., 2011), El Chichón (Andrews et al., 2008; Tepley et al., 2000), Parinacota (Ginibre & Wörner, 2007), the Bushveld complex (Naldrett et al., 2009; Roelofse & Ashwal, 2012; Yang et al., 2013), and Skye Volcano (Font et al., 2008). Reversed isotope magma mixing may thus be more common than typically invoked. Caution is therefore warranted when a more depleted composition is presumed for the mafic end-member in mixing models, when isotopic equilibrium has already been established in MME-granitoid associations. Both normal and reversed isotope magma mixing should be considered in rigorous interpretations of thoroughly mixed magma systems.

In addition to better understand magmatic processes, reversed isotope signatures may also have implications for the growth of continental crustal. The crustal growth is a matter of ongoing debate (e.g., Gazel et al., 2015; Hawkesworth & Kemp, 2006), and detrital zircon U-Pb and Lu-Hf isotopic systematics have proven to be helpful in improving our understanding of this topic (e.g., Hawkesworth & Kemp, 2006; Iizuka et al., 2010; Liu et al., 2017; Xu et al., 2007). Most of the conclusions reached using this approach are predicated on the assumptions that high εHf(t) or εNd(t) values imply a continental growth event with mantle-derived magma added to continental crust, while low values imply the reworking of preexisting older crustal material (e.g., Belousova et al., 2010; Liu et al., 2017; Yang et al., 2009). However, reversed isotope signatures reflect the opposite, with isotopically enriched magma contributing to the growth of continental crust, while relatively depleted melts reflect reworking of juvenile crust. It is therefore suggested that the vertical growth of continental crust through the input of isotopically enriched magma should be considered further, particularly concerning reversed isotope signatures.

7. Conclusions

1. The Cretaceous Siling complex located in the GHB (south China) is composed of gabbro, quartz diorite, granodiorite, and alkali feldspar granite, with many MMEs enclosed in granodiorite and alkali feldspar granite. Field observations and zircon U-Pb age data indicate that all of the rock units crystallized contemporaneously at ca. 127–129 Ma.

2. The Siling quartz diorite and granodiorite crystallized from hybrid magmas of coexisting isotopically enriched gabbroic and relatively depleted granitic magmas, thus recording reversed isotope magma mixing. This highlights that the injection of mantle-derived mafic magma does not necessarily imprint comparatively depleted isotopic signature on the host felsic melt.

3. The Siling gabbro, characterized by variable yet enriched Sr-Nd-Hf isotopic composition, represents mixtures of magmas derived from diverse mantle sources melting at different levels. The Siling alkali feldspar granite with typical A-type affinities and relatively depleted isotopic signatures was derived from the remelting of juvenile lower crust.

Acknowledgments
The data presented in this paper are available from the corresponding author (xsxu@nju.edu.cn). We are sincerely grateful to Zhenyu He, Lei Liu, Wentao Hong, Kai Zhao, Xisong Zhang and Shijing Hang for the field investigations and helpful discussions. The thoughtful and constructive comments by Editor Michael Walter and two anonymous reviewers are greatly appreciated. This work was financially supported by the National Natural Science Foundation of China (grant 41430208) and the National Key R&D Program of China (grant 2016YFC0600203).

References

