Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere

To cite this version:
Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere

The origin of cometary matter and the potential contribution of comets to inner-planet atmospheres are long-standing problems. During a series of dedicated low-altitude orbits, the Rosetta Orbiter Spectrometer for Ion andNeutral Analysis (ROSINA) on the Rosetta spacecraft analyzed the isotopes of xenon in the coma of comet 67P/Churyumov-Gerasimenko. The xenon isotopic composition shows deficits in heavy xenon isotopes and matches that of a primordial atmospheric component. The present-day Earth atmosphere contains 22 ± 5% cometary xenon, in addition to chondritic (or solar) xenon.

Comets are among the most pristine solar system materials (1). Their abundant volatile species, mainly in the form of ices, are intimately mixed with refractory silicate-rich phases and organics, the origins of which—either in the protosolar disk or interstellar medium—are still under debate (1). The discovery that Comet 81P/Wild contains high-temperature minerals akin to those found in primitive meteorites containing key isotopic signatures (e.g., that of oxygen) typical of solar system reservoirs (2) suggests that some of the cometary constituents were cycled close to the Sun and were radially transported outward. However, the case of ice is less clear. Enrichments in deuterium and nitrogen-15 in comets (3, 4) have been regarded as either originating from processing in the disk outskirts or resulting from low-temperature ion-molecule reactions in molecular clouds. Another unresolved problem is the possible contribution of comets to inner-planet atmospheres. Although the D/H and 36Ar/34Ar signatures of the terrestrial atmosphere and oceans suggest an inner solar system origin for volatile elements on Earth (5), variations in the D/H ratio in primitive meteorites point to the contribution of interstellar water to asteroids (6).

Xenon, the heaviest stable noble gas, with nine isotopes of different nucleosynthetic origins (7, 8), is a key element for identifying nuclear components present in presolar material. The composition of solar system Xe, represented by measurements of the solar wind (7), is the result of the homogenization of such components. Several radioactive decays also produce Xe isotopes, among which that of 129I (half-life of 15.6 million years) decaying into 129Xe provides time constraints on the early evolution of the solar system. Earth’s atmosphere has a xenon composition that is unique among solar system objects and reservoirs (9). It is depleted relative to expectations based on the extrapolated behavior of the lighter noble gases Ne, Ar, and Kr, by a factor of ~20 relative to Kr (normalized to the abundance in chondritic meteorites). Atmospheric Xe is also isotopically (mass-dependently) fractionated, being enriched in heavy isotopes by 30 to 40 per mil per atomic mass unit (u) compared with chondritic xenon (hereafter, Q-Xe) or solar wind xenon (hereafter, SW-Xe); this is known as the xenon paradox (10). When corrected for mass-dependent isotopic fractionation (MDF), atmospheric Xe does not directly correspond to any known solar system component. These observations have led to the definition of a theoretical primordial component termed U-Xe (9) (where U stands for Ur, the German word for primordial, and not for uranium-derived fission Xe). U-Xe is close to SW-Xe for the 124-130Xe isotopes but is depleted in the heavy Xe isotopes, particularly 132Xe and 134Xe. U-Xe has not been clearly identified in meteorites or planetary samples.

We report the determination of the isotopic composition of xenon in a comet. Xenon isotopes were measured with the Double Focusing Mass Spectrometer (DFMS) of the Rosetta Orbiter Spectrometer for Ion andNeutral Analysis (ROSINA) instrument suite (11) on the Rosetta spacecraft. DFMS is a high-mass-resolution instrument (mass divided by change in mass = 3000 at 1% peak height at a mass/charge ratio of 28 u/e) that measured gases emitted by comet 67P/Churyumov-Gerasimenko (67P/C-G), presumably from sublimation of ice (3). The Xe measurements were carried out during a series of dedicated low-altitude orbits, between 10 and 7 km from the comet’s center of mass, from 14 to 31 May 2016 (12). Because of the high resolution of DFMS, mass/charge ratios of 129, 131, 132, 134, and 136 u/e were essentially free of interfering species of similar mass, as confirmed by the shapes of the peaks, whereas interference presumably due to S1+ was detected at mass/charge = 128 u/e and corrected using peak deconvolution (12). A slight contribution of a few percent at mass/charge = 130 u/e, due to S2+-containing 34S, was also corrected. The average Xe isotope ratios were derived from this database, with uncertainties corresponding to 1 standard deviation (σ) of the mean. The ROSINA instrument was equipped with a gas calibration unit that permitted in-flight analysis of reference gases, including xenon (12).

Figure 1 shows the xenon composition of 67P/C-G, normalized to that of the solar wind (horizontal orange line) and to 132Xe (the most abundant Xe isotope in most cases), together with other solar system compositions (terrestrial atmosphere and chondritic). The data obtained from the in-flight calibration runs are consistent with a terrestrial Xe composition, as expected, but the 67P/C-G Xe isotopic ratios deviate markedly from solar, or chondritic, values. Whereas 128Xe/132Xe, 130Xe/132Xe, and 134Xe/132Xe are solar-like within uncertainties, 67P/C-G Xe is strongly depleted in 133Xe and 136Xe, by ~40 and ~60%, respectively.

We first tested the possibility that the observed variations are due to MDF, in which case the data should align along the dotted curve of Fig. 1. The 132Xe/136Xe ratios could be reasonably accounted for by MDF affecting a solar-like Xe component. The required fractionation factor, however, should be extremely high, around 14% per atomic mass unit, higher than ever observed for Xe (or other noble gases) in any solar system object or reservoir. Notesc et al. (13) found no evidence for Xe isotopic fractionation upon trapping in water ice, and trapping of ionized Xe results in a MDF of no more than 1% (14). Alternatively, MDF could also be due to distillation enhancing isotopic fractionation during loss of Xe isotopes from a reservoir (e.g., cometary ice). To produce

References

1. Centre de Recherches Pétrographiques et Géochimiques, CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501 Vandoeuvre lès Nancy, France. 2. Physikalisches Institut, University of Heidelberg, D-69120 Heidelberg, Germany. 3. Department of Geosciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel. 4. Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace, CNRS, Université Pierre et Marie Curie, 4 Avenue de Neptune, 94100 Créteil, France. 5. Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace, CNRS, Université Pierre et Marie Curie, 4 Avenue de Neptune, 94100 Créteil, France. 6. Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace, CNRS, Université Pierre et Marie Curie, 4 Avenue de Neptune, 94100 Créteil, France. 7. Laboratoire d'Atmosphères et Géoclimatiques, CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 4, France. 8. Institut de Recherche en Astrophysique et Planétologie, CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 4, France. 9. Institute of Astronomy, University of Hawaii, Honolulu, HI 96822, USA. 10. Department of Space Science, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA. 11. Max-Planck-Institut für Sonnensystemforschung (MPS), Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany. 12. Laboratoire d’Astrophysique de Marseille, CNRS, Aix Marseille Université, 13388 Marseille, France. 13. Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA. 14. Institut de Recherche en Astrophysique et Planétologie, CNRS, Université Paul Sabatier, Observatoire Midi-Pyrénées, 9 Avenue du Colonel Roche, 31028 Toulouse Cedex 4, France.

Corresponding author. Email: bmarty@crpg.cnrs-nancy.fr | Deceased.
The composition of 67P/C-G Xe can be derived from MDF of solar or meteoritic Xe. Three MDF processes are envisioned (kinetic, equilibrium, and gravity and centrifugal force) (12), yielding slightly different MDF trends, and none of them can reproduce 67P/C-G Xe from U-Xe, SW-Xe, or Q-Xe compositions. In contrast, mixing of Q-Xe or SW-Xe with 67P/C-G Xe reproduces the composition of U-Xe (Fig. 2).

Solar system xenon is the result of mixing of three different nucleosynthetic sources: the p-process, producing the rare 134Xe and 136Xe isotopes (which could not be measured here); the s-process, producing 128-132Xe isotopes; and the r-process, producing 134,136Xe isotopes (8). Thus, the isotopic composition of cometary xenon is possibly the result of a nucleosynthetic mix that is different from that which produced solar xenon. From theoretical considerations and correlations of Xe isotopes observed in presolar grains (SiC and nanodiamonds (8)), the s-process Xe composition is reasonably well defined, but Xe isotope variations in presolar material require at least two different r-process compositions (8). Figure 3 shows mixing of 35% s-process Xe with 65% r-process Xe (12), the latter being defined by the two r-process compositions identified by (8).

This scenario accounts reasonably well for the deficits of 134Xe and 136Xe observed in 67P/C-G and is more consistent with the cometary 129Xe/132Xe ratio than the MDF model is. It implies that 129Xe is enriched relative to 132Xe and the solar composition by 34 ± 11% (1σ). This large monoisotopic excess could be due to a specific nucleosynthetic process preferentially producing 129Xe, a possibility supported by some nanodiamond fractions with 129Xe/132Xe ratios up to 2.2 (16). Alternatively, in situ (within ice) β-decay of 129I (half-life of 15.6 million years) after the start of solar system formation (SSSF) is unlikely: The 129I/131I ratio at the SSSF was ~1 × 10^−3 (17), and an in situ origin after the SSSF would require an enrichment of iodine relative to xenon by more than 10^2 orders of magnitude, which is not observed in the coma of 67P/C-G (12). This 129I excess could then result from in situ (within ice) or ex situ (in the ambient gas) decay of 129I before the SSSF. In this case, xenon trapped in ice would be much older, by several tens of millions of years, than the SSSF. Assuming that 129I and 127I were produced in comparable proportions during r-process nucleosynthesis, icy grains should have trapped both I and Xe relatively shortly after their last nucleosynthetic event. This exotic Xe component would have to be older than 100 million years before the SSSF, given the initial solar system abundances of 129I, 244Pu, and 237Cm (18).

Cometary noble gases are concentrated in ice (13, 19, 20), and a presolar origin for Xe would imply that cometary ice is also presolar. Such an origin is in agreement with the detection of abundant O2 (1 to 10% relative to H2O) released by 67P/C-G (21). Indeed, molecular oxygen might
have been produced from the radiolysis of H$_2$O icy grains by cosmic rays and/or hard photons before the comet was assembled (22), and this process would require long periods of time (107 to 109 years) in the protosolar nebula and/or low-density environments such as molecular clouds (22). A presolar origin is independently supported by the presence of S$_2$ in 67P/C-G (23) and HD0/H$_2$O and D$_2$O/HDO ratios closely resembling those of interstellar material (3).

The peculiar Xe isotopic composition of 67P/C-G provides a fingerprint of the contribution of comets to the terrestrial atmosphere. 67P/C-G Xe, which is largely depleted in 134Xe and 136Xe, indicates that comets may be the source of U-Xe. Mixing 22 ± 5% (σ) cometary (67P-Q; dark blue dots). The cometary contribution, 22 ± 5%, and the propagation of errors were determined using mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well reproduced by mixing Q-Xe (67P-Q; dark red squares) is well reproduced by mixing U-Xe with Q-Xe (67P-Q; dark green squares) is well reproduced by mixing (green squares) is well repro...
Science Policy Office through PRODEX/ROSINA PRODEX Experiment Arrangement 90020. ROSINA would not produce results without the work of the many engineers, technicians, and scientists involved with the mission, the Rosetta spacecraft, and the ROSINA instrument team over the past 20 years, whose contributions are gratefully acknowledged. These measurements could only be performed thanks to the skillful maneuvering of the spacecraft close to the comet by the operations team in Darmstadt, Germany. Rosetta is an ESA mission with contributions from its member states and NASA.

We acknowledge the work of the whole ESA Rosetta team. ROSINA data are publicly available at ESA’s Planetary Science Archive at www.cosmos.esa.int/web/psa/rosetta and NASA’s Planetary Data System at https://pdsbn.astro.umd.edu/data_ssb/missions/rosetta/index.shtml. M.R. and K.A. performed data reduction. M.R., K.A., and B.M. analyzed the data. B.M. interpreted the data and wrote the paper. K.A., M.R., and H.B. contributed to data interpretation and the supplementary materials. All authors contributed to the ROSINA instrument and commented on and revised the manuscript.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/356/6342/1069/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S5
Table S1
References (27–36)
5 November 2016; accepted 3 May 2017
10.1126/science.aal3496
Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere

Science 356 (6342), 1069-1072.
DOI: 10.1126/science.aal3496

Comets contributed to Earth’s atmosphere

Models of xenon’s origin in Earth’s atmosphere require an additional, unknown source that has been a mystery for several decades. Marty et al. measured isotopic ratios of xenon released from comet 67P/Churyumov-Gerasimenko and found that they match the heretofore unknown source. The xenon appears to have been trapped in ice within the comet since before the solar system formed. Comets contributed about a quarter of the xenon on Earth, which constrains the amount of other materials (such as water) delivered to our planet by comets.

Science, this issue p. 1069