Skip to Main content Skip to Navigation
Journal articles

Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets

Abstract : Recently, Whitburn et al. (2016) presented a neural-network-based algorithm for retrieving atmospheric ammonia (NH3) columns from Infrared Atmospheric Sounding Interferometer (IASI) satellite observations. In the past year, several improvements have been introduced, and the resulting new baseline version, Artificial Neural Network for IASI (ANNI)-NH3-v2.1, is documented here. One of the main changes to the algorithm is that separate neural networks were trained for land and sea observations, resulting in a better training performance for both groups. By reducing and transforming the input parameter space, performance is now also better for observations associated with favourable sounding conditions (i.e. enhanced thermal contrasts). Other changes relate to the introduction of a bias correction over land and sea and the treatment of the satellite zenith angle. In addition to these algorithmic changes, new recommendations for post-filtering the data and for averaging data in time or space are formulated. We also introduce a second dataset (ANNI-NH3-v2.1R-I) which relies on ERA-Interim ECMWF meteorological input data, along with surface temperature retrieved from a dedicated network, rather than the operationally provided Eumetsat IASI Level 2 (L2) data used for the standard near-real-time version. The need for such a dataset emerged after a series of sharp discontinuities were identified in the NH3 time series, which could be traced back to incremental changes in the IASI L2 algorithms for temperature and clouds. The reanalysed dataset is coherent in time and can therefore be used to study trends. Furthermore, both datasets agree reasonably well in the mean on recent data, after the date when the IASI meteorological L2 version 6 became operational (30 September 2014).
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download
Contributor : Catherine Cardon Connect in order to contact the contributor
Submitted on : Saturday, December 16, 2017 - 9:20:45 AM
Last modification on : Tuesday, November 16, 2021 - 5:22:33 AM


Publisher files allowed on an open archive



Martin van Damme, Simon Whitburn, Lieven Clarisse, Cathy Clerbaux, Daniel Hurtmans, et al.. Version 2 of the IASI NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets. Atmospheric Measurement Techniques, European Geosciences Union, 2017, 10 (12), pp.4905 - 4914. ⟨10.5194/amt-10-4905-2017⟩. ⟨insu-01665525⟩



Record views


Files downloads