Carbon balance modifications in Sphagnum-dominated peat mesocosms invaded by Molinia caerulea
Fabien Leroy, Sébastien Gogo, Christophe Guimbaud, Léonard Bernard-Jannin, Fatima Laggoun-Défarge

To cite this version:
Carbon balance modifications in *Sphagnum*-dominated peat mesocosms invaded by *Molinia caerulea*

Fabien LEROY1,2,3*, Sébastien GOGO1,2,3, Christophe GUIMBAUD4,5, Léonard BERNARD-JANNIN1,2,3, Fatima LAGGOUN-DEFARGE1,2,3

1Université d’Orléans, ISTO, UMR 7327, 45071, Orléans, France
2CNRS, ISTO, UMR 7327, 45071 Orléans, France
3BRGM, ISTO, UMR 7327, BP 36009, 45060 Orléans, France
4Université d’Orléans, LPC2E, UMR 7328, 45071, Orléans, France
5CNRS, LPC2E, UMR 7328, 45071, Orléans, France
*Corresponding author, email: fabien.leroy@univ-orleans.fr

Abstract

Peatlands are wetlands acting as carbon (C) sink at a global scale. Even if, it represents only 3% of the land area, these specific ecosystems have stored a third of the global soil C. Most peatlands (up to 80%) are located in the northern hemisphere and lie in cool temperate zone in association with waterlogged, nutrient poor conditions and *Sphagnum* mosses, which limit the activity of the soil decomposers. As a result, in spite of the relative small net ecosystem production in peatlands, the imbalance between the primary production and the decomposition is enough to allow organic matter (OM) accumulation as peat (Bragazza et al., 2009). However, global change are expected to cause a plant community shift in peatlands with an increase of vascular plants (such as graminoids at the detriment of *Sphagnum* species (Dieleman et al., 2015). Vascular plants invasion in peatlands have mostly been studied through a change of CO$_2$ and CH$_4$ emissions with different plant community composition. In spite of observed C fluxes modification, the role of vascular plant invasion on the C sink balance in peatlands are still to be elucidated. The aim of this study was to investigate how an invading graminoid plants, *Molinia caerulea*, can affect the C balance of *Sphagnum*-dominated peatland. CO$_2$ fluxes and CH$_4$ emissions were regularly measured in peat mesocosms during fourteen months and related to biotic and abiotic factor to calculate the annual C budget with and without *Molinia caerulea*.

Twelve peat mesocosms (depth and diameter: 30 cm) were collected in March 2015 in La Guette peatland (France). This is an acidic fen invaded by *Molinia caerulea*, a graminoid plant invading numerous peatlands. The mesocosms were buried outdoor and surrounded with a tarpaulin containing water from the peatland. Air and soil temperature at 5 and 20 cm depth were monitored in each mesocosm. The mesocosms were separated into 2 treatments with 6 containing only *Sphagnum rubellum* (‘Sphagnum’ mesocosms) and 6 containing *Sphagnum rubellum* and *Molinia*
Molinia caerulea ('Molinia' mesocosms). Molinia caerulea occurs in May and covers up to 80% of mesocosms until its senescence in November. Measurements were performed from May 2015 to June 2016. CO₂ and CH₄ fluxes were measured twice per week during the growing season (April-October) and every 2 weeks during the winter (November-February). CO₂ fluxes were measured using a GMP343 Vaisala probe inserted in a transparent PVC chamber. A transparent chamber was used to measure the net ecosystem exchange (NEE), balance between the gross primary production (GPP; absorption of CO₂ by photosynthesis) and the ecosystem respiration (ER, release of CO₂ into the atmosphere). ER was measured by placing an opaque cover on the chamber, to block photosynthesis. CH₄ emissions were measured during 15 min by using the SPIRIT, a portable infrared laser spectrometer (Guimbaud et al., 2011). All the measurements were performed the same day and were related to water table level (WTL), air and soil temperature at 5 and 20 cm depth. Models taking account the temperature, WTL and vegetation index were used to describe the CO₂ fluxes and CH₄ emissions based on Bortoluzzi et al. (2006) and Kandel et al. (2013) equations. The GPP, ER and CH₄ emissions models were used to compare the net ecosystem C balance (NECB; gC m⁻² y⁻¹) and global warming potential over 100 years (GWP₁₀₀; g CO₂ eq m⁻² d⁻¹) under both vegetation cover. The NECB represents the net rate C accumulation or release in or from the ecosystem. In this study, we used a simplified approach based on the GPP, ER and CH₄ emissions. The GWP₁₀₀ was calculated for both plant communities by the sum of the GPP and ER and the emissions of CH₄. The radiative force of the latter equal to 34 times those of the CO₂ (Myhre et al., 2013).

ER was significantly higher in Molinia mesocosms compared to Sphagnum ones. In both vegetation cover, the ER was maximum in July and minimum in January-February (Figure 1a). GPP increased with Molinia leaves number, whereas in Sphagnum plots the GPP was relatively constant (Figure 1b). After the senescence of Molinia caerulea, the GPP did not differ between both treatments in contrary to ER that remained higher in Molinia mesocosms compared to Sphagnum. As a consequence, the NEE was higher in Molinia mesocosms than in Sphagnum ones during the growing season, but was lower the rest of the time (Figure 1c). The CH₄ emissions significantly increased with Molinia caerulea occurrence with a peak of emissions in summer (June to August) and lowest emissions in winter (Figure 1d). While the annual CO₂ and CH₄ emissions modeling estimated an output of respectively 376 and 7 gC m⁻² y⁻¹ in Sphagnum mesocosms, it represented a release of 1018 and 33 gC m⁻² y⁻¹ with Molinia caerulea occurrence. Annual modeled GPP was respectively -417 and -1273 gC m⁻² y⁻¹ in Sphagnum and Molinia mesocosms leading to a NECB of -30 gC m⁻² y⁻¹ in Sphagnum mesocosms and of -223 gC m⁻² y⁻¹ for Molinia ones (i.e., a C-sink). Even if CH₄ emission accounted for a small part of the gaseous C efflux (~ 3%), its global warming
potential value to get CO₂ equivalent makes both plant communities acting as a warming climate effect (Table I).

Figure 1: Measurements of ecosystem respiration (ER; a), gross primary production (GPP, b), net ecosystem exchange (NEE, c) and CH₄ emissions (d) in *Sphagnum* and *Molinia* mesocosms (±SE, n=6) from May 2015 to June 2016.

Table I: Modelized annual gross primary production (GPP; gC m⁻² y⁻¹), ecosystem respiration (ER; gC m⁻² y⁻¹), net ecosystem exchange (NEE; gC m⁻² y⁻¹), CH₄ emissions (CH₄; gC m⁻² y⁻¹), net ecosystem carbon balance (NECB; gC m⁻² y⁻¹) and global warning potential over 100 years (GWP₁₀₀; g CO₂ eq m⁻² d⁻¹) in *Molinia* and *Sphagnum* mesocosms.

<table>
<thead>
<tr>
<th></th>
<th>GPP</th>
<th>ER</th>
<th>NEE</th>
<th>CH₄</th>
<th>NECB</th>
<th>GWP₁₀₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molinia</td>
<td>-1273</td>
<td>+ 1018</td>
<td>-255</td>
<td>+ 33</td>
<td>-223</td>
<td>+ 361</td>
</tr>
<tr>
<td>Sphagnum</td>
<td>-414</td>
<td>+ 376</td>
<td>38</td>
<td>+ 7</td>
<td>-30</td>
<td>+ 154</td>
</tr>
</tbody>
</table>

The shift from *Sphagnum* to *Molinia*-dominated peat mesocosms increased the annual C output (CO₂ and CH₄ emissions, Fig 1), but also lead to higher CO₂ uptake by photosynthesis (Fig. 1). The gaseous C balance shows that both plants communities act as C-sink with a storage of 30 gC m⁻² y⁻¹ in *Sphagnum* plots and 223 gC m⁻² y⁻¹ in *Molinia* ones. Nevertheless, the C-sink function of
Molinia-dominated peat mesocosms can be questioned because of the biomass production of Molinia caerulea. Indeed, the roots production, estimated by Taylor et al. (2001) at 1080 g m\(^{-2}\) y\(^{-1}\), and shoots biomass were produced with current-year photosynthetates. However, C-stored in roots, litters and leaves of Molinia caerulea could contributed to future C emissions by decomposition or respiration not take account here. Even though this C-sink function, GWP\(_{100}\) is positive for both vegetation cover. Despite Molinia plots acting more as a C sink than Sphagnum ones, the higher GWP\(_{100}\) of CH\(_4\) compared to CO\(_2\) combined with the high emissions of CH\(_4\) for Molinia plot lead to have a higher contribution of these plots to the greenhouse effect than in Sphagnum plot.

LITERATURE

