1. O. Aggarwal and . Aguiar, 13 L. Aiello, 14,15 A. Ain, 16 P. Ajith, 17 B. Allen, 10,18,19 A. Allocca, p.23

2. K. Arnaud, Arun, 25 S. Ascenzi, 26,15 G. Ashton, 10 M, p.19

C. Diaz, C. Casentini, and G. Cerretani, 26,15 S. Caudill, 18 M.Cavaglì a, 73 F. Cavalier, 24 R. Cavalieri, 34 G, E. Cesarini, vol.57, issue.26, pp.15-74

S. J. Coccia, S. B. Cooper, and . Coughlin, Cohadon, 60 A. Colla, 81, Collette, 82 L. Cominsky, 83 M. Constancio Jr., 13 L. Conti J.-P. Coulon, 54 S. T. Countryman, 39 P. Couvares, 1 P. B. Covas, 86 E. E. Cowan, pp.61-105

L. Danilishin, S. D. Antonio, and 1. K. Danzmann, 10 A. Dasgupta, 89 C. F. Da Silva Costa, 6 V. Dattilo, 34 I. Dave, 48 M, p.40

D. Palma, 28 A Di Virgilio, 21 Z. Doctor, 77 V. Dolique, 65 F

1. M. Etzel, R. Evans, and . Everett, 74 M. Factourovich, 39 V. Fafone, 26,15,14 H. Fair, 35 S. Fairhurst, 94 X. Fan, 71 S. Farinon, 47 B. Farr, 77 W. M. Farr, 45 E, 21 I. Fiori, 34 D. Fiorucci, 30 R. P. Fisher, 35 R. Flaminio, 65,96 M. Fletcher, 36 H. Fong, 97 S. S. Forsyth, p.44

J. Fournier, 54 S. Frasca, 81,28 F. Frasconi, 21 Z. Frei, 98 A. Freise, 45 R. Frey, 59 V. Frey, 24 E. M. Fries, 1 P. Fritschel, 12 V. V. Frolov, 7 P. Fulda, 6,68 M. Fyffe, 7 H. Gabbard, 10 B. U. Gadre, 16 S. M. Gaebel, p.45

M. L. Gorodetsky, S. E. Gossan, and M. Gosselin, 34 R. Gouaty, 8 A. Grado, 105,5 C. Graef, 36 M, p.29

. Kondrashov, Kontos, 12 M. Korobko, 27 W, Z. Korth, p.10

M. Mow-lowry, 94 Arunava Mukherjee, 17 D. Mukherjee, 18 S. Mukherjee, 87 N. Mukund, 16 A. Mullavey, p.44

1. S. Pai, J. R. Pai, and . Palamos, 59 O. Palashov, 113 C. Palomba, 28 A. Pal-Singh, 27 H. Pan, 75 C, pp.18-25

1. R. Pedraza and . Pedurand, 37 A. Perreca, 1 L. M. Perri, 85 H. P. Pfeiffer, 97 M. Phelps, 36 O, 28 M. Pichot, 54 F. Piergiovanni, 57,58 V. Pierro, 9 G. Pillant, 34 L. Pinard, 65 I. M. Pinto, 9 M. Pitkin, 36 M. Poe, 18 R. Poggiani, p.36

1. G. Prix and . Prodi, Prokhorov, 49 O. Puncken, 10 M. Punturo, 33 P. Puppo, 28 M. Pürrer, 29 H. Qi, 18 J. Qin, 52 S, pp.28-29

4. J. Vedovato, P. J. Veitch, and . Veitch, Venkateswara, 141 G. Venugopalan, 1 D. Verkindt, 8 F. Vetrano, 57,58 A. Viceré, 57,58 A. D. Viets, 18 S. Vinciguerra, 45 D. J. Vine, H. Wang, 45 M. Wang, 45 Y. Wang, 52 R. L. Ward, pp.1458-1480

P. Vela, Bayesian 3.2 (2.8) 1.7 (1.5) 1.3 (1.2) 0

J. Psrs, H. , Q. , S. , T. et al., 1.54) (Manchester et al. 2005); however, they are incorrect and therefore the spin-down limits have been calculated using the observed spin-down. For eight pulsars in the globular cluster 47 Tuc private communication) intrinsic period derivatives to calculate the spin-down limits, with that for X being the 3? upper limit from Ridolfi et al. (2016) given that it gives a characteristic age older than 10 9 years. For PSR J1823?3021A (in globular cluster NGC 6624) and PSR J1824?2452A (in globular cluster M28), we follow) and calculate the spin-down limit assuming that the contributions to the observed ? frot are negligably affected by cluster accelerations. The intrinsic spin-down for PSR J2129+1210C (in globular cluster M15) is taken from which shows that the observed spin-down is negligably affected by accelerations (it is in the outskirts of the cluster as is shown in Anderson 1993). The following pulsars use distance estimates that are not taken from the values given in the ATNF pulsar catalog, This does not include the high-value targets already listed in Table 2. For PSR J0023+0923 and PSR J0340+4130, instrinsic period derivatives are available in the ATNF pulsar catalog PSR J1418?6058 (distance to more distant association in Yadigaroglu & Romani 1997), PSR J1813?1246 (lower limit on distance from Marelli et PSR J1823?3021A (distance for NGC 6624 in Valenti et al. 2007), PSR J1824?2452A (distance for M28 in Rees & Cudworth PSR J1826?1256 (lower distance range from Wang 2011; Voisin et al. 2016), PSRs J1910?5959A, C, and D (distances of 4.45 kpc calculated from the distance modulus to NGC 6752 in Table 4 of Gratton et al. 2003), PSR J2129+1210C (McNamara et al. 2004), and PSR J2234+06 (P. C. C. Freire 2016, pp.1017-7156, 1991.

J. Aasi, GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA, The Astrophysical Journal, vol.785, issue.2, p.119, 2014.
DOI : 10.1088/0004-637X/785/2/119

URL : https://hal.archives-ouvertes.fr/in2p3-00923583

J. Abadie, BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR, The Astrophysical Journal, vol.737, issue.2, p.93, 2011.
DOI : 10.1088/0004-637X/737/2/93

URL : https://hal.archives-ouvertes.fr/in2p3-00624014

B. Abbott, Upper limits on gravitational wave emission from 78 radio pulsars, Physical Review D, vol.354, issue.4, p.42001, 2007.
DOI : 10.1088/0264-9381/21/5/073

URL : http://arxiv.org/pdf/gr-qc/0702039

?. Abbott and B. P. , Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar, The Astrophysical Journal, vol.683, issue.1, pp.45-671, 2008.
DOI : 10.1086/591526

A. A. Abdo, LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS, The Astrophysical Journal Supplement Series, vol.208, issue.2, p.17, 2013.
DOI : 10.1088/0067-0049/208/2/17

URL : https://hal.archives-ouvertes.fr/in2p3-00915642

P. Canizares, S. E. Field, J. R. Gair, and M. Tiglio, Gravitational wave parameter estimation with compressed likelihood evaluations, Physical Review D, vol.87, issue.12, p.124005, 2013.
DOI : 10.1088/0264-9381/27/24/245007

URL : http://arxiv.org/pdf/1304.0462

C. Cutler, fields, Physical Review D, vol.523, issue.8, p.84025, 2002.
DOI : 10.1086/312276

R. J. Dupuis and G. Woan, Bayesian estimation of pulsar parameters from gravitational wave data, Physical Review D, vol.72, issue.10, p.102002, 2005.
DOI : 10.1103/PhysRevD.70.022001

URL : http://arxiv.org/pdf/gr-qc/0508096

R. G. Gratton, A. Bragaglia, E. Carretta, G. Clementini, S. Desidera et al., Distances and ages of NGC??6397, NGC??6752 and 47??Tuc, Astronomy & Astrophysics, vol.553, issue.2, p.529, 2003.
DOI : 10.1086/320980

URL : http://www.aanda.org/articles/aa/pdf/2003/35/aah4497.pdf

P. Jaranowski, A. Królak, and B. F. Schutz, Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection, Physical Review D, vol.13, issue.6, p.63001, 1998.
DOI : 10.1103/PhysRevLett.13.789

H. Jeffreys, Theory of Probability, 1998.

T. J. Johnson, BROADBAND PULSATIONS FROM PSR B1821???24: IMPLICATIONS FOR EMISSION MODELS AND THE PULSAR POPULATION OF M28, The Astrophysical Journal, vol.778, issue.2, p.106, 2013.
DOI : 10.1088/0004-637X/778/2/106

URL : https://hal.archives-ouvertes.fr/in2p3-00923346

N. K. Johnson-mcdaniel, Gravitational wave constraints on the shape of neutron stars, Physical Review D, vol.265, issue.4, p.44016, 2013.
DOI : 10.1086/428488

N. K. Johnson-mcdaniel and B. J. Owen, Maximum elastic deformations of relativistic stars, Physical Review D, vol.245, issue.4, p.44004, 2013.
DOI : 10.1126/science.1233232

D. I. Jones, Parameter choices and ranges for continuous gravitational wave searches for steadily spinning neutron stars, Monthly Notices of the Royal Astronomical Society, vol.453, issue.1, p.53, 2015.
DOI : 10.1093/mnras/stv1584

D. Keitel, R. Prix, M. A. Papa, P. Leaci, and M. Siddiqi, Search for continuous gravitational waves: Improving robustness versus instrumental artifacts, Physical Review D, vol.89, issue.6, p.64023, 2014.
DOI : 10.1103/PhysRevD.80.042003

URL : http://arxiv.org/pdf/1311.5738

B. Knispel and B. Allen, Blandford???s argument: The strongest continuous gravitational wave signal, Physical Review D, vol.78, issue.4, p.44031, 2008.
DOI : 10.1086/338805

URL : http://arxiv.org/pdf/0804.3075

B. J. Mcnamara, T. E. Harrison, and H. Baumgardt, The Dynamical Distance to M15: Estimates of the Cluster???s Age and Mass and of the Absolute Magnitude of Its RR Lyrae Stars, The Astrophysical Journal, vol.602, issue.1, p.264, 2004.
DOI : 10.1086/380905

B. J. Owen, Maximum Elastic Deformations of Compact Stars with Exotic Equations of State, Physical Review Letters, vol.223, issue.21, p.211101, 2005.
DOI : 10.1038/nature03525

M. Pitkin, Prospects of observing continuous gravitational waves from known pulsars, Monthly Notices of the Royal Astronomical Society, vol.415, issue.2, p.1849, 2011.
DOI : 10.1111/j.1365-2966.2011.18818.x

URL : https://academic.oup.com/mnras/article-pdf/415/2/1849/3541273/mnras0415-1849.pdf

R. Prix and B. Krishnan, Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics, Classical and Quantum Gravity, vol.26, issue.20, p.204013, 2009.
DOI : 10.1088/0264-9381/26/20/204013

URL : http://arxiv.org/pdf/0907.2569v1.pdf

R. F. Rees and K. M. Cudworth, A new look at the globular cluster M28, The Astronomical Journal, vol.102, p.152, 1991.
DOI : 10.1086/115863

J. D. Scargle, Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, a New Method to Analyze Structure in Photon Counting Data, The Astrophysical Journal, vol.504, issue.1, p.405, 1998.
DOI : 10.1086/306064

J. Skilling, Nested sampling for general Bayesian computation, Bayesian Analysis, vol.1, issue.4, p.833, 2006.
DOI : 10.1214/06-BA127

URL : http://doi.org/10.1214/06-ba127

E. Valenti, F. R. Ferraro, and L. Origlia, Near-Infrared Properties of 24 Globular Clusters in the Galactic Bulge, The Astronomical Journal, vol.133, issue.4, p.1287, 2007.
DOI : 10.1086/511271

J. Veitch and A. Vecchio, Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network, Physical Review D, vol.191, issue.6, p.62003, 2010.
DOI : 10.1088/0264-9381/25/18/184006

J. Veitch, Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Physical Review D, vol.56, issue.4, p.42003, 2015.
DOI : 10.1088/0264-9381/31/19/195010

W. Wang, Possible distance indicators in gamma-ray pulsars, Research in Astronomy and Astrophysics, vol.11, issue.7, p.824, 2011.
DOI : 10.1088/1674-4527/11/7/007

URL : http://arxiv.org/pdf/1104.1254