Compact lensless phase imager

Abstract : Lensless quantitative phase imaging is of high interest for obtaining a large field of view (FOV), typically the size of the camera chip, to observe biological cell material with high contrast. It has the potential to be widely spread due to its inherent simplicity. However, the tradeoff is the added complexity due to the illumination. Current illumination systems are several centimeters away from the sample, use mechanics to obtain super resolution (i.e., smaller than the detector pixel size) or different illumination directions, and block the view to the sample. In this paper, we propose and demonstrate a side illumination system which reduces the height by an order of magnitude while providing an unobstructed view of the sample. We achieve this by shaping the illumination using multiplexed analog holograms that produce 9 illumination angles. We demonstrate experimentally imaging of phase samples with a FOV of ~17mm 2 .
Document type :
Journal articles
Complete list of metadatas

Cited literature [18 references]  Display  Hide  Download

https://hal-insu.archives-ouvertes.fr/insu-01632709
Contributor : Ferréol Soulez <>
Submitted on : Monday, November 13, 2017 - 4:44:27 PM
Last modification on : Friday, April 5, 2019 - 8:04:59 PM
Long-term archiving on : Wednesday, February 14, 2018 - 12:21:35 PM

File

Compact lensless phase imager ...
Publication funded by an institution

Identifiers

Collections

Citation

Manon Rostykus, Ferréol Soulez, Michael Unser, Christophe Moser. Compact lensless phase imager. Optics Express, Optical Society of America, 2017, 25 (4), pp.889 - 895. ⟨10.1364/OE.25.004438⟩. ⟨insu-01632709⟩

Share

Metrics

Record views

73

Files downloads

160