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Abstract

Sunspot number series are subject to various uncertainties, which are still poorly known. The

need for their better understanding was recently highlighted by the major makeover of the in-

ternational Sunspot Number [Clette et al., 2014]. We present the first thorough estimation of

these uncertainties, which behave as Poisson-like random variables with a multiplicative coef-

ficient that is time- and observatory-dependent. We provide a simple expression for these un-

certainties, and reveal how their evolution in time coincides with changes in the observations,

and processing of the data. Knowing their value is essential for properly building composites

out of multiple observations, and for preserving the stability of the composites in time.

1 Introduction

1.1 Historical Context

The sunspot number time series is the longest still-ongoing scientific experiment, and is also

our only direct observation of solar activity up to centennial time-scales. As such, it is of major

importance for quantifying the influence of the Sun on the heliosphere.

The Wolf number NW, also known as the sunspot number, or relative sunspot number, was intro-

duced by Rudolf Wolf in 1848 [Wolf, 1850]. This quantity is based on the total number of sunspots

Ns and the number Ng of sunspot groups that are present on the Sun according to the formula

(whose different weights are at the origin of the qualifier relative):

NW = k(10Ng +Ns) . (1)

This combination is justified by the fact that neither of the two numbers, by itself, satisfactorily

describes solar activity. The scaling factor k is assigned to each observer to compensate for their

differing observational qualities; its value mainly depends on the observer’s ability to detect the

smallest sunspots (in relation to telescope aperture, local seeing, and personal experience) and

on how complex groups are split. The method used today for computing these scaling factors is

explained by Clette et al. [2007].

Hundreds of observers have collected and tabulated Wolf numbers NW over various periods in

time. Merging all of these records into one single composite sunspot number SN is a formidable

enterprise [Bray and Loughhead, 1964, Hoyt and Schatten, 1998, Clette et al., 2007], which re-

quires a good understanding of their uncertainties. Surprisingly, very little is known about these
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uncertainties. So far, they have never been included in the original Wolf number records. Our

objective is to fill that gap by providing a better understanding of these uncertainties, and a way

to quantify them.

Before addressing them, however, let us first address how observations and conventions have

evolved over time.

Routine sunspot observations started in the early 17th century by astronomers such as Harriot,

Galileo, and Fabricius. Thanks to them, and to multiple other observers, it is now possible to

reconstruct an index of solar activity over more than four centuries [Hoyt and Schatten, 1998,

Vaquero, 2007, Svalgaard, 2013]. However, information on both sunspots and sunspot groups,

enabling reconstruction of the composite itself is available from 1749 onwards only (for monthly

means).

Continuous daily sunspot information allowing the computation of a daily composite Sunspot

Number SN started in 1848 when R. Wolf initiated systematic sunspot observations in Zürich.

Between 1749 and 1848, the Sunspot Number was computed from primary standard observers

[Friedli, 2016]. After 1848, the standard observers were the successive directors of the Zürich Ob-

servatory (Wolf, Wolfer, etc.). Their daily observations were always taken as the reference value,

while the best value from secondary stations was chosen when there was no daily observation

available from Zürich. From 1877 onward, secondary values were an average of all secondary sta-

tions instead of the single best value. After 1926, the Zürich primary value was an average of the

different observers (including assistants) at the main observing station, instead of only the main

standard observer.

Table 1 summarises the main changes in time coverage, observers, and observational practices

that could have influenced the quality of the observations or the computation of the Sunspot

Number. Key dates are taken from Bray and Loughhead [1964], Clette et al. [2014], Friedli [2016].

Between the transfer in 1981, by A. Koeckenlebergh, of the Sunspot Number production from

Zürich to Brussels, and until 2005, when an extensive reviewing of the routines started, the re-

duction techniques described by Clette et al. [2007] did not change significantly. However, the

transition to Brussels brought a major change in the production, with S. Cortesi, who is still ob-

serving as of July 2016, becoming the standard observer. From 1981 onward, daily values started

to be derived from the whole network instead of a mix of standard observers, with the network

as backup. The composite was named “international Sunspot Number” (SN) in contrast to the

records made by individual observers, called Wolf numbers or relative sunspot numbers1.

The most notable changes occurred in the size and geographical extension of the observing net-

work. The number of observers grew steadily from 1981 to 1995, and then started to decline

after Koeckenlebergh’s initial phase of intensive recruitment. This number stabilised after 2000

[Clette et al., 2014, Figure 8]. From 2005 to 2015, there was an intensive phase of growth in terms

of products. In 2015, the international Sunspot Number was finally revised, and new corrections

were applied to it; see Clette et al. [2014, 2016]. Today, the international Sunspot Number is pro-

duced and distributed by the Centre for Sunspot Index and Long-term Solar Observations (SILSO,

www.sidc.be/silso), at the Royal Observatory of Belgium.

1.2 Errors in the Sunspot Number: What we Know

Although considerable attention has been given to the calculation of the international Sunspot

Number [Clette et al., 2016], its uncertainties remain elusive. These uncertainties are important

not just for statistical assessments of the sunspot number, but also for intercalibrating differ-

ent Wolf number series and properly merging multiple observations into one single composite

1In the following, “sunspot number” will designate the sunspot number in a generic way, whereas “Wolf number” will

refer to the relative sunspot number NW from specific stations, and “international Sunspot Number” will be used for the

composite SN from SILSO.
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Table 1: Key dates in sunspot number observations (1700 – 2015). Before 1848, the num-

ber of observations per day is highly variable. For that period, information can be found

in [Hoyt and Schatten, 1998, Vaquero and Vázquez, 2009, Svalgaard and Schatten, 2016, Cliver,

2016]

Period Description Method Time Standard

Coverage Observer

1700 – Historical sources Crude yearly Yearly -

1748 gathered by R. Wolf averages

1749 – Historical sources Standard and Monthly only Staudacher

1817 gathered by R. Wolf auxiliary observer

(covering gaps)

1818 – Historical sources, Idem Daily, with Schwabe

1847 Zürich observatory partial coverage

1848 – Start of systematic Idem, Daily, with full Wolf

1876 observations crude counts coverage, one

by R. Wolf one to five secondary station

observers used for gaps

1877 – Systematic Two standard Daily average Wolf

1892 observations, observers of secondary Wolfer

full counts + auxiliary stations for gaps

1893 – Systematic Idem Daily average Wolfer

1927 observations of secondary

stations for gaps

1926 – Zürich network Several standard Daily average Brunner

1980 observers of standard Waldmeier

+ auxiliary observers; a few

to ≈ 40 stations

1981 – SILSO network Full network, Daily average Cortesi

2015 pilot station, ≈ 50 →≈ 80 weighted

outlier removal stations counts

2015 SILSO network, Full network, Daily average Cortesi

transition to pilot station, ≈ 90 stations unweighted

version 2.0 outlier removal counts

3



record. Few have investigated that question, probably because uncertainty estimation is a non-

trivial task.

There are several aspects to these uncertainties. Most studies concentrate on the effect of ran-

dom errors, and how close independent measurements are when made under identical condi-

tions. These are usually called precision or repeatability [Taylor and Kuyatt, 1994]. Accuracy is

a different concept, which refers to differences in absolute calibration, and in instrument bias.

Stability is associated with long-term drifts. Both accuracy and stability are taken care of by the

scaling factors k; they are beyond the scope of our study, which will mostly concentrate on short-

term effects, i.e. the precision. In the following, we shall use the generic word “error” to refer to

these short-term uncertainties.

Vigouroux and Delachie [1994] were among the few who studied the dispersion of daily values

within different ranges of monthly sunspot numbers. They concluded that a Poisson-like statis-

tic was appropriate, because the error scaled as the square-root of the sunspot number. Other

studies [Morfill et al., 1991] had also reported such a scaling. More recently, Usoskin et al. [2003]

found that all monthly values of the group sunspot number associated with a certain level of daily

values also tend to follow a Poisson distribution.

In an effort to better predict the sunspot number series on time-scales of weeks to years,

several statistical models have been developed. Allen and Huff [2010], for example, used

stochastic differential equations to model the sunspot numbers as a diffusion process, whereas

Noble and Wheatland [2011] used a more elaborate Fokker–Planck equation. A direct conse-

quence of such a diffusion process is the exponential distribution of the first-order difference

of the sunspot number record [Pop, 2011, Noble and Wheatland, 2013]. Such methods could po-

tentially be used as well to characterise random fluctuations on a daily basis. However, since they

have been primarily designed to reproduce solar variability, and not observational errors, there

remains an important need for estimating errors while making few assumptions.

If the Wolf number NW truly behaved like a Poisson variable, with values fluctuating indepen-

dently from one day to another, then for a fixed level of solar activity this series of daily values

should vary randomly with a standard deviation (i.e. error) σNW =
p

NW, and we would know the

error. In practice, we find a more complex scaling, which can be approximated by σNW ≈α
p

NW,

with 0 < α 6= 1. Most of what follows will concentrate on the estimation of σNW , its dependence

on the solar cycle, and on the observatory. As we shall see, these statistical properties give new

insight into the sunspot number.

1.3 Errors in Sunspot Numbers: Origin

Random errors in sunspot numbers may have various origins. The Sun is a natural cause: small

spots emerge and wane on time-scales between hours and weeks, while large groups can sur-

vive for months [Howard, 1992]. Their complex evolution generates a natural scatter in the com-

puted Wolf numbers, with occasional large day-to-day variations. Because the Wolf number NW

mixes spots and groups, which have different dynamics, the resulting error becomes a complex

function of solar activity. This variability generates natural scatter between non-simultaneous

observations.

A second natural culprit is the observer himself. Two observers who are counting spots and

groups simultaneously are likely to disagree because seeing conditions may not be the same,

telescopes have different resolutions, their procedure of counting spots and splitting groups dif-

fer, and so on. Some of these effects may also result in a weakly nonlinear dependence between

the numbers of spots counted by two different observers [Lockwood et al., 2016b]. In addition,

although most observers report a unique observation per day, some may take the best observa-

tion among several. In practice, these discrepancies between observers can reach several tens of

percent. Even after correcting them for the scaling factor k, discrepancies remain in the temporal

evolution of the daily Wolf number; see Fig. 1.
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Figure 1: Six months of daily Wolf numbers, as recorded by four stations, illustrating the discrep-

ancies that may arise between observers. The stations are : Uccle Obs. Belgium (UC2), Locarno

Obs., Switzerland (LO), Kanzelhöhe Obs., Austria (KZ2), and Kislovodsk Obs., Russia (KS2).

Disentangling the origins of these errors is a challenging task that goes beyond the scope of our

study. Let us therefore generically call error whatever causes the sunspot number to deviate from

its true value.

Such errors can be assessed either in the time domain, or by comparing observers. “Time domain

errors” can be inferred by time series analysis of Wolf number records. This is possible only when

these records are sufficiently long and uninterrupted. Differences between observers, called here

“dispersion errors”, on the contrary require a substantial sample of simultaneous observations,

with no need for continuity in time.

Thanks to the large number of stations that offer long and almost uninterrupted records of their

Wolf number, we are now in a unique position of inferring and comparing these two types of er-

rors from several decades of observations. To do so, we consider a dataset of 52 quasi-continuous

observations, most of which are used for compiling the international Sunspot Number at SILSO.

More details on these observations can be found in Table 1 of the review by Clette et al. [2016]. In

the following, we consider daily values from 2 January 1944 to 8 February 2015. For the interna-

tional Sunspot Number we use the latest version, which is currently version 2.0.

This article is structured as follows: Section 2 presents different estimators of the error, while Sec-

tion 3 compares their results. In Section 4 we discuss their implications on the Sunspot Number,

and in Section 5 we propose a transform to ease their interpretation. Section 6 focuses on the

consequences of this analysis. Conclusions follow in Section 7.

2 Estimating Errors

To assess errors in the different Wolf number series, one should ideally compare the observed

sunspot number x(t) to a reference value s(t)

x(t) =λs(t)+η(s(t), t) (2)

where η incorporates both additive and multiplicative errors, and the factor λ is normally com-

pounded by the use of the time-dependent scaling factor k, so that λ = 1. Since there is no such

reference sunspot number, errors can only be guessed by making assumptions. In the following,

we shall generically call η the residual noise, and its standard deviation the error.

There are two complementary approaches for estimating η. One is by comparing simultaneous

observations provided by different stations. These so-called “dispersion errors” will be addressed

in Section 2.3. Let us first start with “time-domain errors”, which consist in determining how

regularly a given Wolf number record evolves in time.
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2.1 Time-Domain Errors

In the following, we consider four approaches for estimating time-domain errors.

Spectral Noise Floor Model

When we mix a time series s(t) with a sequence of uncorrelated white noise η(t) of standard devi-

ation ση, then the power spectral density of the mixture x(t) = s(t)+η(t) equals

Px (ω) = Ps (ω)+Pη(ω)= Ps (ω)+σ2
η , (3)

where Pi stands for the power spectral density (with proper normalisation) of time series i . The

power spectral density of the sunspot number record tends to fall off rapidly with frequency be-

cause of the lack of variability on sub-daily time-scales. As a consequence, additive noise will

manifest itself by a floor level at high frequency. Such a noise floor provides a simple means for

quantifying ση, assuming that the noise is white. For coloured noise, whose power spectral den-

sity P(ω) varies as ω−γ, this estimator remains valid, but it then applies only to the high-frequency

tail of the spectrum.

Two advantages of this estimator are its simplicity, and the possibility to handle time series with

irregular sampling. However, the spectral estimator may underestimate the true noise level, es-

pecially if the noise spectrum is non-white (i.e. for γ > 0). Here we estimate the power spectral

density by means of the Lomb–Scargle method [Press and Rybicki, 1989], which does not require

regularly sampled records.

Autoregressive Sunspot Number Model

The idea behind autoregressive (AR) modelling is to reproduce the dynamics of the sunspot num-

ber time series with a linear parametric model, and then use that model to forecast the sunspot

number one day ahead. The innovation, or difference between the observed and the predicted

sunspot number then provides us with an estimate of the residual noise η(t). Linear parametric

models are widely used to model systems that can be described by linear differential equations

with a stochastic forcing [Chatfield, 2003], and AR models have been shown to properly capture

coloured and white noise in climate data [Mann and Lee, 1996, Schulz and Mudelsee, 2002].

We model the daily-valued sunspot number time series x(t) as

x̂(ti ) = a1x(ti−1)+a2x(ti−2)+·· ·+ap x(ti−p ) (4)

η(ti ) = x(ti )− x̂(ti ) , (5)

where x̂(t) stands for the predicted sunspot number. We find that models of order p = 8 yield the

best compromise between model parsimony and predictive capacity. High-order models tend to

become unstable, and, conversely, the predictive capacity drops for small orders. Note that the

time-average of x(t) must be subtracted before fitting the AR model.

This estimator of the noise level requires time series that are regularly sampled, and devoid

of data gaps. To meet this requirement, we first interpolate all data gaps by expectation-

maximization [Dudok de Wit, 2011]. This powerful technique relies on the high correlation be-

tween simultaneous observations of the sunspot number to replace missing values by conserving

the values of the covariance matrix between observations, regardless of whether there are obser-

vations or not. Expectation-maximization has been widely used in climate data analysis [e.g.

Schneider, 2001], and in addition it allows the interpolation error to be estimated. Here, we first

fill in all data gaps, then estimate the AR model, and subsequently consider the residual error η(ti)

only for those days ti for which there is an observation.
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The main asset of the AR model is the possibility to estimate the residual noise on short time

intervals (typically, a few months), which we shall make use of to investigate solar cycle variations

of η(t).

Autoregressive Noise Model

The sunspot number record x(t) = s(t)+η(t) can be viewed as random noise η(t) superimposed

on a slowly fluctuating signal component s(t) with large excursions over decadal periods. In that

case, it is appropriate to difference the data to remove that large-amplitude slow component.

Let y(ti) = x(ti)−x(ti−1). For small time steps we have s(ti) ≈ s(ti+1), so that

y(ti ) = η(ti )−η(ti−1) . (6)

Broadband noise is often well modelled by first-order AR models, in which the predicted value

reads η̂(ti) = a1η(ti−1). From this we obtain

〈y(ti )y(ti )〉 = 2σ2
η(1−a1) (7)

〈y(ti )y(ti+1)〉 = −σ2
η(1−a1)2

where 〈· · ·〉 stands for ensemble averaging. Finally the standard deviation of the noise becomes

ση =
〈y(ti )y(ti )〉

2
√

〈y(ti )y(ti+1)〉
. (8)

The requirements and assets of this approach are the same as for the regular AR model. However,

because it is unaffected by trends and slow variations, the differenced AR model is likely to give a

more realistic estimate of the noise level.

Wavelet Denoising

Wavelet denoising [Ogden, 1996] consists in decomposing a record into discrete series of non-

redundant wavelet coefficients that describe the spectral content at different time-scales. Ran-

dom noise tends to be evenly spread out in time, and over all wavelet coefficients, whereas the

salient features of the signal of interest are generally captured by a few outstanding wavelet co-

efficients, by virtue of the properties of the wavelet transform. Wavelet denoising then consists

in thresholding these coefficients: the smallest ones are discarded, while the largest ones are re-

tained for reconstructing the signal. Conversely, we recover the residual error by using the small-

est wavelet coefficients only for reconstruction.

Since we are interested in daily variations only, we consider wavelet coefficients at the lowest level

(or time-scale) only. As shown by Donoho et al. [1993], a robust measure of the noise level at the

smallest scale is then given by

ση = 0.675 mediani (|c j=1

i
|) , (9)

where {c
j=1

i
} denotes the wavelet detail coefficients obtained with a single-level (j=1) discrete-

wavelet decomposition. The median is performed over the time indices i, and it attenuates the

impact of large outliers. In the following we consider fourth order Daubechies wavelets, which

provide a good compromise between compactness and regularity. The normalisation by 0.675

ensures that for white noise with unit variance, we obtain ση = 1.

As for the AR model, our wavelet noise estimator requires daily sampled records with no data

gaps. To overcome this, we interpolate missing values as with the AR model, and in Equation 9

we ignore all wavelet coefficients that are associated with data gaps.

This multiscale approach quantifies the ubiquitous level of random fluctuations that affect daily

variations of the sunspot number, and it excludes discontinuities, whatever their origin. For that

reason, the wavelet noise estimator is likely to underestimate the noise level.
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2.2 Comparison of Time-Domain Errors

Figure 2 compares the time-domain errors in the sunspot number as obtained by the four meth-

ods with our sample of 52 stations. As expected, the wavelet estimator, which ignores outliers,

yields the smallest errors. The two AR methods, on the contrary, yield the largest estimates. This

was also expected, as these methods are better suited for capturing random fluctuations with a

non-white power spectral density. The close agreement between the two AR methods suggests

that long-term variations do not affect their outcome.

The errors that we obtain by the four methods are within a factor of 2.5 to 3 of each other, which

is reasonably close, given their differing assumptions. Our preference goes to the AR methods,

which are the least likely to underestimate the error and offer good temporal resolution. In Fig-

ure 2, we use the average of the two AR estimates as a single measure of error, and sort all stations

after it in order to better reveal the common trend in all error estimates.

The main conclusion that we draw from Figure 2 is the consistency of these error estimates: large

values in one estimator usually also lead to large values in the others. Note that the number of

observations has no major influence on the error, as suggested by the poor correlation between

the errors and the degree of coverage (i.e. number of days with observations versus the total

number of days). The ratio between the largest and the smallest average error remains within a

factor of two, thus suggesting that all observatories have quite comparable time-domain errors.

The error on the international Sunspot Number (labelled here as SSN) is by far the lowest of all,

as would be expected from an average.
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Figure 2: Average error in Wolf number records as estimated by four different methods: i) spectral

method, ii) AR method, iii) AR method with differencing, and iv) wavelet method. The histogram

represents the time-coverage of these observing stations. The stations are sorted after the average

of the two AR methods. The codes refer to the sample of 52 stations studied by Clette et al. [2016];

SSN stands for the international Sunspot Number, which is the only one to have 100 % coverage.
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2.3 Dispersion between observers

This dispersion error requires a substantial number of concurrent observations, but not neces-

sarily continuity in time. Figure 3 illustrates it by showing the distribution of sunspot numbers

recorded on a given day by 46 stations, after correction by their individual scaling factor k. The

international Sunspot Number is based on an average of these values, after eliminating outliers.
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Figure 3: Distribution of Wolf sunspot numbers observed on 1 October 2015 by 46 stations, after

correction for their scaling factor k. Most of these values are used for determining the interna-

tional Sunspot Number.

To properly estimate the dispersion, we select from the sample set of 52 stations a sub-sample of

N=13 stations that exhibit high and rather uniform time-coverage between 1967 and 2014. The

majority of them have a temporal coverage exceeding 50 %. The Wolf numbers from these 13

stations are shown in Figure 4; the same sample will be used throughout our study. We use the

above-mentioned expectation-maximization technique to fill in gaps.

To estimate the dispersion, we first scale all 13 Wolf numbers to the international Sunspot Num-

ber SN from SILSO:

N∗
W,i (t)= γi NW,i (t) where γi =

SN

NW,i
(10)

because each station uses a slightly different absolute scaling. We estimate the scaling factor γi

by weighted total least squares [Schaffrin and Wieser, 2008], and not by classical least squares.

The former properly takes into account errors in the numerator and in the denominator. Failing

to do so will adversely bias the results; see below in Section 6.

The residual error for each station now reads

ǫi (t) = N∗
W,i (t)−〈N∗

W, j (t)〉 j , (11)

and its time-dependent standard deviation

σ(t)=

√

√

√

√

1

N −1

N
∑

i=1

ǫ2
i

(t) (12)

provides us with a convenient measure of the dispersion error. We ignoreσ(t) for days when more

than one third of the stations have missing observations. The presence of an excessive number

of interpolated values may otherwise lead to an underestimation of high-frequency variations.
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Figure 4: Wolf numbers observed by our subset of 13 stations. Interpolated values appear in

grey. The names of the stations, or their individual observers, are: WFS Berlin, Germany (BN-

S), Catania Obs., Italy (CA), T.-A. Cragg, Australia (CRA), K. Fujimori. Japan (FU), R. Hedewig,

Germany (HD-S), Hurbanovo Obs., Slovakia (HU), Kandilli Obs., Turkey (KH), Kislovodsk Obs.,

Russia (KS2), Kanzelhöhe Obs., Austria (KZm), Locarno Obs., Switzerland (LO), Skalnate Obs.,

Slovakia (SK), San Miguel Obs., Argentina (SM), Uccle Obs. Belgium (UC).
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3 Comparing Time-Domain and Dispersion Errors

Let us briefly compare the properties of the errors before proceeding with their physical inter-

pretation. Figure 5 compares the power spectral density of the residual error in the time domain

[η(t) in Equation 5], the residual error from the dispersion [ǫ(t) in Equation 11], and of the in-

ternational Sunspot Number SN(t). The residual error in the time domain mostly contains high

frequencies only, as AR models cannot properly capture slow variations in their innovations [see

for example Ljung, 1997]. The only exception is a conspicuous 11-year modulation that comes

from the solar cycle.
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Figure 5: Power spectral density of the sunspot number, of the residual error associated with the

dispersion, and of the residual error in the time domain (obtained from the AR model). The latter

two power spectral densities are averaged over the 13 selected observers. Three characteristic

time-scales are also shown. We estimate the power spectral density by using Welch periodograms.

The key result here is the close agreement between the two types of errors on short time-scales

(typically below 3 to 4 days), which suggests that rapid variations in are essentially dominated by

random noise. For longer time-scales, the signal-to-noise ratio gradually improves, with distinct

maxima around periodicities of 27 days and 11 years.

Figure 5 has more to tell. On time-scales shorter than the solar cycle, the power spectral density of

the dispersion error on average falls off as a power law, with f−1/2. Such a scaling suggests that the

residual noise is scale-free, behaving similarly to flicker noise. Scale-free behaviour is common

in natural processes [Sornette, 2004]. However, unlike what has been found in solar studies [e.g.

Lepreti et al., 2000], the scale-free behaviour that we observe deals with the dispersion among

observers, and not with the sunspot record itself. Our results suggest that long-range correlations

(as caused, for example by slow drifts in the observing strategy) affect the dispersion error. Cases

have indeed been reported wherein the sunspot-counting procedure of specific stations has been

drifting in time. The use of a scaling factor k (see Eq. 1) is likely to have a major impact on these

long-range correlations as it represents a feedback loop in the calibration procedure. The lack of

crisp and fully traceable procedure for determining k is one of the main challenges that awaits

the estimation of long-term errors in sunspot number records.

The dispersion error also reveals some unexpected spectral peaks: the one at a one-year period

suggests that the seasonal variations in the observations (the network is mainly located in the

northern hemisphere) might introduce a small but statistically noticeable error. Likewise, there
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is a small peak at seven days, which we might associate with the way data are collected on a

weekly basis by some observers.

Each of the five above-mentioned error estimators (four in the time domain, and one based on

the dispersion between observers) comes with its assumptions. In AR models, we assume the

residual noise η(t) to be normally distributed. This assumption holds for high levels of solar ac-

tivity, but it breaks down when the sunspot count drops below approximately 20, where quanti-

sation effects become important. All but the wavelet and dispersion estimators require the noise

to be stationary in time, while from the Poisson statistics we expect the error to increase with

the sunspot number. These problems can be alleviated by estimating the noise level over shorter

time intervals, for which stationarity reasonably applies.

The integer and positive value of the sunspot number bring in additional constraints. The statisti-

cal analysis of count rates require a special treatment [Davis et al., 1999]. Ignoring this may affect

the outcome of the analysis [Bartlett, 1947]. We shall come back to this issue later in Section 5,

and use it there to infer more properties from the sunspot number. Meanwhile, these results tell

us that the quantitative comparison of our errors should be done with caution.

4 What Errors Tell us about the Sunspot Numbers

The central result of this study appears in Figure 6, which shows how the error varies with the

sunspot number. In this figure, we average the two types of errors and the sunspot number over

periods of 82 days; this duration is a compromise between the typical lifetime of an active region

and the period beyond which the sunspot number record becomes non-stationary.

Figure 6a shows how the time-domain error, and the dispersion error scale with the Wolf number

NW. Interestingly, the two errors scale very differently: time-domain errors tend to increase as

the square-root of the sunspot number, as one would expect from a Poisson process, whereas

the dispersion error increases almost linearly with the sunspot number. A linear scaling would

indeed be expected from observation-related errors if these are proportional to the number of

spots counted. If, for example, a given observer occasionally tends to underestimate the number

of spots by 10 %, then this fraction should remain the same, whatever the total number of spots

counted. Therefore, a square-root scaling is indicative of solar variability, whereas a linear scaling

is more likely to be associated with observational errors.

What seems at first surprising in this figure is the large excess of time-domain errors over the dis-

persion ones, except near solar maximum. One might expect that the two should be comparable.

For sunspot numbers that are typically below 50 to 100, the error is dominated by random fluc-

tuations in time, while most observers tend to agree well and thus have a small dispersion error.

We conclude that solar variability, and not the observers, is then the dominant source of the er-

ror. This is further corroborated by the scaling of σ, which then tends to be proportional to the

square-root of the sunspot number, for both types of errors. Closer to solar maximum, however,

dispersion errors take over, and the scaling switches from a square-root to a steeper linear one.

Accordingly, near solar maximum, observational effects, and not the Sun itself, are responsible.

As already highlighted in Section 1.3, these errors are a complex mix. For example, the ability of

observers to count spots is more put to the test during solar maximum, when the distinction of

individual spots in large clusters is prone to errors. Whether group counting/splitting is affected

in the same way by the solar cycle is unclear; the ambiguity between individual groups and clus-

ters of nearby spots exists whatever the level of solar activity. However, groups are easier to split

during solar minimum. To investigate such effects, we focus in Figure 6b on time-domain errors,

but we consider separately the Wolf number (NW), the number of spots (Ns), and the adjusted

number of groups (N∗
g = 10Ng). In the following, we shall use this adjusted number because it

conveniently gives NW = Ns +N∗
g .
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Figure 6: Dependence of the error σ on the Wolf number. Each symbol represents a value aver-

aged over an 82-day time interval. The upper plot (a) compares the time-domain error and the

dispersion error of the Wolf number with Wolf number. The middle plot (b) compares the time-

domain error of the Wolf number (NW), of the adjusted number of groups (N∗
g = 10Ng), and of

the number of spots (Ns). The bottom plot (c) shows the same, for dispersion errors. In addition,

two scaling laws are shown with dashed lines to facilitate comparison: σ∝ NW, and σ∝
p

NW.
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Figure 6b indeed shows that the error in the number of spots and groups scale similarly, ex-

cept near solar maximum, where the error in the number of spots tends to grow linearly (and

thus faster), while the error in the number of groups continues to grow as the square-root of the

sunspot number. We conclude that the number of spots is more prone to observational errors

than the number of groups, whose scaling bears the signature of solar variability whatever the

level of activity. Accordingly, the number of groups is a statistically better-behaved tracer of solar

activity near solar maximum.

Interestingly, the magnitudes of the two types of errors are comparable, which is not a trivial re-

sult. Indeed, if the daily number of spots and groups had fluctuated exactly like independent

Poisson processes, then we would have σNs =
p

Ns and σN∗
g
=
p

10
√

N∗
g . The two errors would

then differ by
p

10 ≈ 3. The difference that we observe between the expected and observed scal-

ings is most likely rooted in the distinct lifetimes of their associated solar structures: groups, on

average, have a longer lifetime [Howard, 1992], and therefore are less likely to fluctuate in time,

yielding a relatively lower error.

This different behaviour of groups and spots should also appear in the dispersion error, and Fig-

ure 6c indeed confirms this. According to this figure, observers are more likely to disagree on the

number of spots than on the number of groups as soon as the sunspot number exceeds approxi-

mately 50. This difference is attenuated when spots and groups are merged into a single sunspot

number, although one can still detect a slight increase in the error.

These results raise several issues and questions. Since Ns and Ng have errors that behave statis-

tically differently, one should be extremely careful in regressing one against the other. This issue

will be further addressed in Section 6. We also note that the inflection point observed in Figure 6a

near a sunspot number of about 50 coincides with the transition from simple to more complex

spots. Clette et al. [2016], when analysing variations in the weighting factors, also observed a

modification around that value.

5 Transforming the Sunspot Number

One of the main motivations behind our study is to find a simple way to estimate the error at

any time and for any station. If the sunspot number truly behaved as a random Poisson random

variable, then σ = γ
p

NW, with γ= 1 and the problem would be solved. In Figure 6a, we already

see that this scaling does not hold. In addition, γ is station- and time-dependent.

There are several reasons why the sunspot number does not exactly behave like a Poisson vari-

able. First, this would require variations in the number of sunspots to be independent from

one day to another, while we know their average lifetime to be considerably longer. Second,

the sunspot number mixes groups and spots, and so, a more complex distribution is expected.

Furthermore, different observational practices will also inevitably affect the precision.

As a first approximation, one may expect the sunspot number at a given time to be a mix of

Poisson and Gaussian random variables, namely x(t) =αp(t)+ g (t), with

• p ∼P (µP ) an independent random Poisson variable whose (time-dependent) expectation

is µP. This random variable is multiplied by a gain α> 0.

• g ∼ G (µG ,σG ) an independent random Gaussian variable whose expectation is µG, and

standard deviation is σG.

The Poisson part p(t) comes from the counting of fluctuating numbers of sunspots, whereas the

Gaussian part g(t) comes from other additive errors, such as observational ones. σG expresses the

level of observational noise that gets added to the sunspot number, whereas the gain α refers to
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both the lifetime of sunspots and the amount of averaging performed when building the sunspot

number record. Smaller values of α and σG are better.

Most of the statistical tools that we have used so far are optimised for Gaussian random variables,

and, therefore, they are not ideally suited for the sunspot number. This is an incentive for finding

a transform that would turn the sunspot number into a new random variable whose distribution

is a Gaussian of fixed width and mean value, whatever the level of solar activity. This procedure

is called variance stabilisation [Bartlett, 1947].

There exist several transforms for doing variance stabilisation. The generalised Anscombe trans-

form [Anscombe, 1948, Mäkitalo and Foi, 2012] is well suited for a mix of Poisson and Gaussian

random variables. The equation

x′ =







2
α

√

αx + 3
8α

2 +σ2
G
−αµG x >− 3

8α− σ2
G

α +µG

0 x ≤− 3
8
α− σ2

G

α
+µG

(13)

transforms x into a new Gaussian random variable x’ whose standard deviation is approximately

unity, i.e. x′ ∼G (0,1).

If we are able to find α and σG, then we have direct access to the error σ. Furthermore, α and σG

provide insight into the way errors enter the sunspot number.

The generalised Anscombe transform is frequently used to convert counts into a Gaussian vari-

able that can be more efficiently denoised, before being transformed back. There are more ad-

vantages to it. For example, the transformed data are better suited for AR modelling. Formally,

we should apply the AR model after transforming the data. However, this will affect the residual

errors, requiring a re-estimation of all quantities. We found the computational price high, for a

modest reduction in the residual noise and unchanged conclusions. Therefore, and for the sake

of simplicity, we shall not re-estimate the errors here.

The additive noise that enters the sunspot number has several possible contributions: observer,

instrumental, seeing, etc. For that reason, it is unlikely to be biased and we may reasonably set

µG ≈ 0. The generalised Anscombe transform then reduces to

x′ =
2

α

√

αx +
3

8
α2 +σ2

G
(14)

In the following, we estimate the parameters α and σG by using a sliding window of 11 years to

infer the residual error of x′ (excluding days with no observations), and then bin this error in

intervals of 82 days, exactly as we did in Section 4. Finally, we seek the values of α and σG that

minimise |σ′−1| for that 11-year interval. The duration of that interval needs to be long enough

to let the sunspot number vary from solar minimum to solar maximum, hence the 11-year dura-

tion. The gain α is well constrained by the observations, whereas the value of σG is sensitive to

what happens near solar minimum, when quantization errors become relatively important; its

uncertainty is too large to enable us to discuss it here in meaningful terms.

Figure 7 illustrates the usefulness of the generalised Anscombe transform by comparing the

sunspot number from the Locarno station, and its time-domain error, before and after the trans-

form. Thanks to this transform, the error now stays remarkably close to unity, regardless of the

level of solar activity. This figure a posteriori supports the validity of the generalised Anscombe

transform.

For the observations from the Locarno station that are shown in Figure 7, we find the average gain

to be α= 4.2±0.2 for the Wolf number, α= 2.8±0.1 for the number of groups, and α= 2.9±0.1

for the number of spots. From these, the error can be directly estimated by error propagation; see

Equation 15 below.

Figure 8 displays the probability density function of the residual noise associated with the trans-

formed sunspot number, confirming that it is indeed close to a Gaussian distribution of unit vari-

ance, whatever the level of solar activity. In contrast, the probability density function (not shown)
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Figure 7: Illustration of the sunspot number and its residual error σ before (a) and after (b) apply-

ing the Anscombe transform. The sunspot number record comes from the Locarno station, with

α = 4.2 and σG = 0. Both the sunspot number and the residual error are averaged over windows

of 82 days.
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form of the sunspot number displayed in Figure 7. Also shown is a Gaussian distribution of zero

mean, and unit variance. Gaussian kernels were used to estimated the probability density func-

tion.
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associated with the original data has long tails and is skewed, even when considered for a fixed

level of solar activity. The generalised Anscombe transform may be considered here as a renor-

malisation technique because all residual-noise distributions collapse onto one single curve.

Note that the gain α is larger for the Wolf number NW than for its constituents. Had these been

independent, then all values of the gain would have been identical. This difference can thus be

ascribed to correlations between Ns and Ng.

The gain α is station-dependent: for the 13 stations that were used in Section 2.3, the average

gain for the sunspot number ranges from from 4.0 to 7.8. As mentioned before, lower values are

indicative of a lower noise level, or may also result from averaging.

Because the error depends on the sunspot number, solar-cycle averages should be treated with

care. In Section 3, we averaged errors over several decades. Such averages are actually difficult

to interpret in absolute terms, although they still make sense when comparing methods, or

stations, provided that the time span is the same.

An interesting exercise now consists in monitoring variations in the gain for the international

Sunspot Number from SILSO. This sunspot number is a composite record, whose number (and

quality) of inputs is time-dependent, and thus it should lead to significant variations in the noise

level. Figure 9 illustrates this by showing how the gain has evolved from 1818 to 2015. Higher val-

ues imply a larger noise level. The sharp drop near 1880 coincides with a change of strategy, when

after 1877 the number of sunspots was averaged over two standard observers (Wolf and Wolfer)

rather than based on a single daily value. Around 1930, the smaller drop corresponds to the new

standard observer Waldmeier. The gradual drop occurring between 1926 and 1981 is likely due to

a combination of factors: i) assistant’s values were increasingly often taken into account; ii) values

from the network were progressively used to assess the quality of the standard observation; and

iii), the network grew during that time period. The lowest gains occur in the 1980s. The transition

from Zürich to Brussels in 1981 probably led to a slight deterioration in the gain. After 1981, the

slight U-shape is concomitant with the change in number of stations/observers. However, the

gain remains stable during that period.

Figure 9 thus vividly illustrates how the handling of multiple simultaneous observations has im-

pacted the quality of the sunspot number. In this sense, it highlights again the need for a statisti-

cal assessment of the international Sunspot Number.

Taking the square-root of the sunspot number is not just a mathematical trick to ease its analy-

sis. In some specific cases, there is also a physical motivation for performing such a transform.

Wang et al. [2005] showed that the fluctuations of the solar equatorial magnetic field at 1 AU scale

better with the square-root of the sunspot number. More recently, Fröhlich [2016] used the same

transform to improve the correlation with the total solar irradiance, and to infer errors from the

latter.

6 Consequences

Our results have several immediate consequences. First, we are now able to estimate the error

in any daily sunspot record, provided that its temporal coverage is sufficiently high, typically >
70%. If there are more data gaps, then these need to be filled in beforehand, e.g. by expectation-

maximization. By using one of the two AR models (see Section 2.1) we then estimate the residual

noise, whose standard deviation provides a measure of the error σ.

Alternatively, we may use the generalised Anscombe transform, and, by error propagation, find

the error thanks to the relation

σ=α

√

NW

α
+

3

8
. (15)
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Figure 9: Variation in the gain α, inferred from the international Sunspot Number record, for a

sliding window of 11 years (in time steps of 5.5 years). Missing values occur when the number

of data gaps (which cannot be interpolated by other means) exceeds 20 %. Also shown is the

international Sunspot Number, SN averaged over six months.

Equation 15 is convenient to use once the gain α is known. Some values of the gain are tabulated

in Table 2 for the international Sunspot Number. From these, and for Cycles 21 and following, we

may use the approximation

σ≈ 1.7
√

SN +1 . (16)

This error is crucial for making a composite record out of multiple observations. For example,

the maximum-likelihood estimator of an average sunspot number reads

〈NW(t)〉 =
∑N

i=1 N (t )
W,i

σ−2
i

(t)
∑N

i=1 σ
−2
i

(t)
. (17)

Given that the error σ typically varies by a factor of two to three between different observers (see

Figure 2), we may expect changes in the international Sunspot Number to occur once these errors

are taken into account.

However, a more subtle, and misleading consequence of the errors arises when comparing

records. The estimation of the scaling factors k, and the extension of the sunspot number record

backward in time rely heavily on comparisons between individual records. Let us assume that we

want to estimate the ratio between the Wolf numbers from the Kanzelhöhe (KZm) and Locarno

(LO) stations, to be called henceforth β.

Figure 10 illustrates the scatter plot of these two Wolf numbers and reveals a linear relationship,

with considerable dispersion. The ratio between the two numbers can be estimated in different

ways. The classical one involves a least-squares fit, wherein we minimise the cost function

J =
∑

i

(

NW,KZm(ti )−β1NW,LO(ti )
)2

. (18)

In doing so, we discard all errors, and assume that the regressor NW,LO is perfectly known, which

is obviously incorrect.

Alternatively, we could also minimise

J =
∑

i

(

NW,KZm(ti )/β2 −NW,LO(ti )
)2

, (19)
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Table 2: Average gain α associated with each solar cycle of the international Sunspot Number.

Each period is also associated with a standard observer.

Solar cycle number Start and end year Standard observer α

6 1810 – 1823 8.9

7 1823 – 1834 Schwabe 10.4

8 1834 – 1844 10.2

9 1843 – 1856 10.2

10 1856 – 1867 Wolf 9.9

11 1867 – 1879 9.3

12 1879 – 1890 Wolf – Wolfer 6.5

13 1890 – 1902 Wolfer 6.3

14 1902 – 1914 6.1

15 1914 – 1924 6.3

16 1924 – 1934 6.1

17 1934 – 1944 runner 5.0

18 1944 – 1954 Waldmeier 3.9

19 1954 – 1965 Cortesi – 1957 2.9

20 1965 – 1976 2.1

21 1976 – 1987 SILSO 2.7

22 1987 – 1997 Cortesi 2.6

23 1997 – 2009 2.7

24 2009 – 3.1
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Figure 10: Scatter plot of the sunspot number from the Kanzelhöhe Observatory (KZm) vs that of

the Locarno Observatory (LO). The three fits correspond to the three models, as discussed in the

text. Error bars represent ±1σ.
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wherein we now assume that the dependent variable NW,KZm is errorless. Weighted to-

tal least squares (also known as errors-in-variables-regression) is a generalisation of clas-

sical least squares, which allows both variables to have errors [Golub and van Loan, 1980,

Schaffrin and Wieser, 2008]. Errors-in-variables-regression avoids regression dilution. With it,

we obtain a sounder estimate β3 of the ratio, which gives more weight to smaller values.

The ratios we find for the three approaches are respectively β1 = 0.9729±0.0068, β2 = 1.0232±
0.0073, and β3 = 1.0030±0.0073. Notice how the two classical solutions obtained by least squares

differ by more than 5 %. More importantly, if we regress one record to the other, and back again,

then the end result will differ from the initial one, and it will be systematically smaller. Indeed,

we have β1β2 = 0.9955 < 1. This is known as the regression-toward-the-mean problem. Small

as this difference may be, it will generate a trend in the composite. Present sunspot composites

are built mainly with backbones, or by daisy-chaining. With backbones, one or a few stations

are preferentially used as references to calibrate all the others [e.g. Svalgaard and Schatten, 2016],

whereas in daisy-chaining each record is regressed to the subsequent one, and calibration thus

passes from one station to the other. Lockwood et al. [2016a] recently highlighted how easily both

approaches can generate spurious trends. A natural way out consists in stitching together the

different records after decomposing them into different time-scales, while taking into account

their uncertainty [Dudok de Wit et al., 2016].

7 Conclusions

In this study we have provided the first thorough estimate of the uncertainty associated with daily

values of the sunspot number. Our main findings are:

• Estimating the uncertainty (what we call here error) without an independent reference re-

quires assumptions. Among existing techniques, autoregressive models provide a simple,

and yet reliable, method for estimating the error based on the difference between the ob-

served and predicted sunspot number. This error mostly quantifies short-term variability,

i.e. precision.

• We consider two types of errors: a “time-domain” one, estimated via autoregressive mod-

elling, and a “dispersion error”, obtained from the scatter among observers for a given day.

The latter is systematically lower for sunspot numbers up to about 100. The two scale dif-

ferently with the sunspot number: a square-root dependence (i.e. Poisson-like) is found for

the “time-domain error”, and a more linear one for the “dispersion error”. We conclude that

random fluctuations in solar activity are the prime cause for errors for sunspot numbers up

to about 100. Observational errors prevail beyond that value.

• The relative error is smaller for the number groups than for the number of spots. In addi-

tion, the former has a dominant contribution coming from solar variability, whatever the

level of solar activity. In this sense, the number of groups is less likely to be affected by

observer effects, and is a more robust quantity.

• Interestingly, dispersion errors show evidence of scale-free variations, which suggests that

differences between observers are affected by long-range correlations, i.e. slow drifts.

• The generalised Anscombe transform gives us an analytical model for explaining how vari-

ations can be described in terms of a mix between Poisson and Gaussian random fluctua-

tions. The former is by far the dominant one, and observational constraints are too weak

to properly assess the (presumably weak) contribution from Gaussian fluctuations. Such a

transform offers new perspectives for describing solar fluctuations as a diffusion process,

as the transformed sunspot number behaves as a Gaussian random variable.
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• For the international Sunspot Number, and for solar cycles after 1981, the error (i.e. preci-

sion) can be approximated by σ ≈ 1.7
p

SN +1, where SN is the sunspot number. The two

numerical coefficients are time- and observer-dependent. By monitoring their evolution

in time, we witness how changes in the observation strategy have affected the error in the

sunspot number since the early 19th century.

• The nonlinear scaling of the error with sunspot number means that linear regressions be-

tween different sunspot records should be done with the utmost care. Classical least square

is not appropriate, as it tends to bias the results. We recommend instead error-in-variables-

regression by total least squares.

We have not addressed so far the estimation of errors from monthly, or from yearly sunspot num-

bers. Indeed, these are quite different issues. In principle, such errors can be simply propagated

from daily observations (when available) provided we know their covariance matrix. Unfortu-

nately, the correlation between successive values of the sunspot numbers depends on the differ-

ent lifetimes of spots and groups, and that of observational errors. In addition, it depends on the

level of solar activity. For these reasons, the derivation of errors for monthly or yearly values is a

task that requires a separate study.

Before the 19th century, and for periods when the time coverage is sparser, error propagation

may not be adequate, and other approaches need to be considered, such as the one described by

Usoskin et al. [2003], after revisiting some of their assumptions in the light of what we found here.

The analysis of such sparse data is likely to become an important issue as more historical records

are being uncovered [Arlt, 2008, Vaquero and Vázquez, 2009]. For such irregular observations,

the spectral-noise estimate (see Section 2) could be a fallback solution. However, this estimator

becomes unreliable as the sample size shrinks.

On time-scales of months and beyond, linear autoregressive models are no longer adequate ei-

ther. The reason for this is not the sample size, but the requirement to have nonlinear models in

order to properly describe the sunspot number on those time-scales [e.g. Letellier et al., 2006].

Another major challenge is the assessment of the stability of the sunspot number, which is crucial

for properly reconstructing past solar activity. Our time-domain estimates are of no help here,

because they only detect short-term variations. Our dispersion error diagnoses the presence of

long-term errors in the sunspot number, but it cannot remove them. Clearly, this will become an

important issue for future revisions of the international Sunspot Number.
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